
Supplemental Results: Examples and Evaluations

LEKAN MOLU, Microsoft Research, USA

CCS Concepts: • Software and its engineering → Software libraries and repositories; • Applied computing
→ Physical sciences and engineering; • Mathematics of computing → Solvers.

Additional Key Words and Phrases: partial differential equations, level sets, reachability theory

ACM Reference Format:
Lekan Molu. 2025. Supplemental Results: Examples and Evaluations. J. ACM 00, 0, Article 000 (2025),
26 pages. https://doi.org/XXXXXXX.XXXXXXX

1 EXAMPLES AND NUMERICAL EXPERIMENTS
We now present problems motivated by real-world scenarios and amend them to HJ PDE forms
where their numerical solutions can be resolved with our LevelSetPy toolbox. The problems that
we consider belong in transport, differential games, and time-to-reach problem
classes. The library has been tested on numerous problems; however, for the sake of brevity we will
only report a few results.

For the differential games, we do not necessarily analyze a single game, but rather a collection/-
family of games, Υ = {Γ1, · · · ,Γ𝑔}. Each game within a differential game may be characterized as
a pursuit-evasion game, Γ. Such a game terminates when capture occurs, that is the distance between
players falls below a predetermined threshold. Each player in a game shall constitute either a pursuer
(𝑃) or an evader (𝐸). Let the cursory reader not interpret 𝑃 or 𝐸 as controlling a single agent. In
our various numerical experiments, we are poised with one or several pursuers (enemies) or evaders
(peaceful citizens). However, when 𝑃 or 𝐸 governs the behavior of but one agent, these symbols will
denote the agent itself. The nucleolus of our illustrative examples is to geometrically (approximately)
ascertain the separation between the CZ and EZ surfaces i.e. the barrier hypersurface, where starting
points exist for which escape occurs, capture occurs, and for which the outcome is neutral.

To address our desiderata, we must settle upon how best should 𝑃 pursue 𝐸. Here, at every time
instant, 𝑃 possesses knowledge of his own and that of 𝐸’s position so that 𝑃 knows how to regulate
its various controlling variables with respect to 𝐸’s motion in an optimal fashion. The task is to assay
the game of kind for the envelope of the capturable states i.e. we are not so much as seeking a game’s
outcome as we are seeking the conditions under which capture can occur. This introduces the barrier
hypersurface which separates, in the initial conditions space, the hypersurface of capture from those
of escape. In this game of kind postulation, all optimal strategies are not unique, but rather are a
legion. Ergo, we are concerned with the set of initial positions on the vectogram where the capture
zone (CZ) exists i.e. where game termination occurs; and the nature of escape zones (EZ) i.e. zones
where termination or escape does not occur – after playing the differential game.

Author’s address: Lekan Molu, lekanmolu@microsoft.com, Microsoft Research, 300 Lafayette Street, New York, NY, USA,
10012.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
© 2025 Association for Computing Machinery.
0004-5411/2025/0-ART000 $15.00
https://doi.org/XXXXXXX.XXXXXXX

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

HTTPS://ORCID.ORG/0000-0003-3716-3543
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0003-3716-3543
https://doi.org/XXXXXXX.XXXXXXX

000:2 Molu, Lekan

The rest of this section introduces different representative examples where real-world problems are
adopted and amended to HJ PDE forms and whose solution we seek to numerically recover. Space
here has limited us to four illustrative examples: First, we present two rockets in a pursuit-evasion
game where the goal is for the evader to guard a territory and the pursuer’s goal is to penetrate the
boundary of the territory being guarded. Second, we describe a double integral dynamical system:
the double integral plant is a simplified abstraction of many real-world force-control system e.g.
those that obey Newton’s second law of motion or the torque-inertia dynamics of a body with rotary
dynamics. We provide the numerical enumeration of the solution to the analytical time to reach
problem. Third, we describe a collective behavior system in natural starlings and we provide a
mathematical abstraction that allows the computation of the collision-avoidance safety envelope that
may then be used in e.g. runtime assurance (RTA) safety-critical controller. Fourth, we compare
the resolution of the (approximately) capturable sets in Dubins’ game of two identical vehicles
with the levelsets toolbox’s solution. RTA controllers act intelligently as a safety system between a
real-world controller and the system to be controlled by providing a state monitoring scheme useful
in intervening in the real-world where vulnerabilities to danger is a constant factor to be mitigated
against. All the examples presented in this section can be found in the examples folder of our
online library.

1.1 Two Rockets in a Pursuit-Evasion Terminal Value Differential Game
We adopt the rocket launch problem of Dreyfus [15] and amend it to a differential game between two
identical rockets, 𝑃 and 𝐸, on an (𝑥, 𝑧) cross-section of a Cartesian plane. We set out to compute
the usable part of the boundary of the approximate terminal surface of a predefined target set over a
time horizon (i.e. the target tube). The usable part entails the regions of the state-space for which
the min-max operation over either strategy of 𝑃 and 𝐸 is below 0. The boundary of the usable part
(BUP) constitute where the variational HJI PDE is exactly zero.

The BUP, target tube, or in modern parlance backward reachable tube (BRT) shall be implicitly
constructed with our LevelSetPy library as the zero-level set of an implicitly defined function over
the entire state space. At the zero level set, resolving the kinematic equation of the rockets in relative
coordinates helps us understand the nature of the barrier hypersurface. Specifically, the target tube is
a terminal surface that enunciates the set of initial starting points for which termination (capture or
C), no termination (escape or E) of a game does occur, or analyzing the barrier separating C or E
after playing the differential game.

A single rocket’s motion is dictated by the following system of differential equations (under
Dreyfus’ assumptions):

�̇�1 = 𝑥3, 𝑥1(𝑡0) = 0; (1a)

�̇�2 = 𝑥4, 𝑥2(𝑡0) = 0; (1b)

�̇�3 = 𝑎 cos𝑢, 𝑥3(𝑡0) = 0; (1c)

�̇�4 = 𝑎 sin𝑢− 𝑔, 𝑥4(𝑡0) = 0; (1d)

where, (𝑥1, 𝑥2) are respectively the horizontal and vertical range of the rocket (in feet); (𝑥3, 𝑥4) are
respectively the horizontal and vertical velocities of the rocket (in feet per second); and 𝑎 and 𝑔 are
respectively the acceleration and gravitational accelerations (in feet per square second).

We now make the problem amenable to a two-player differential game. Let rockets 𝑃 and 𝐸
share identical dynamics in a general sense. The coordinates of 𝑃 are freely chosen; however, the
coordinates of 𝐸 are chosen a distance 𝜑 away from (𝑥, 𝑧) at the origin of the plane (as illustrated in
Fig. 1) so that the 𝑃𝐸 vector’s inclination measured counterclockwise from the 𝑥 axis is 𝜃.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

https://github.com/robotsorcerer/levelSetPy/tree/cupy/levelsetpy/examples

Examples and Evaluations 000:3

g

Evader

Pursuer

x

z

Origin

Fig. 1. Motion of two rockets on a Cartesian 𝑥𝑧-plane with a thrust inclination in relative coordinates
given by 𝜃 := 𝑢𝑝 − 𝑢𝑒.

Being a free endpoint problem, let the states of 𝑃 and 𝐸 be denoted by (𝑥𝑝,𝑥𝑒). Furthermore,
let the rockets be driven by their thrusts, denoted by (𝑢𝑝, 𝑢𝑒) for 𝑃 and 𝐸 respectively (see Figure
1). Fix the range of the rockets so that what is left of the motion of either 𝑃 or 𝐸’s is restricted to
orientation on the (𝑥, 𝑧) plane as illustrated in Fig. 1. Whence, the relevant kinematic equations (KE)
from equation (1) are

�̇�2𝑒 = 𝑥4𝑒; �̇�2𝑝 = 𝑥4𝑝, (2a)
�̇�4𝑒 = 𝑎 sin𝑢𝑒 − 𝑔; �̇�4𝑝 = 𝑎 sin𝑢𝑝 − 𝑔 (2b)

where 𝑎 and 𝑔 are respectively the acceleration and gravitational accelerations (in feet per square
second) 1.

We want to determine the outcome of a simulated game between the two agents over a time
interval. In the process of this protracted simulation, the nature of the barrier surface (henceforth
called the backward reachable tube [37] or BRT2) will change.

Our desideratum is determining if capture can be achieved at all in a “yes-or-no” fashion. Therefore,
we pose the game over a finite range over outcomes so that the game at hand assumes Isaac’s [26]
description of a game of kind. 𝑃 can achieve as much proximity to a given target set as much
as possible while 𝐸 is set up to protect the target set. For example, one may take 𝑃 as seeking
to penetrate a (closed) territory (called target) under guard by player 𝐸; and 𝑃 ’s goal may be to
maximize the time of play so as to penetrate the barrier surface of the target. 𝐸 seeks to protect
a given target’s surface. As long as 𝐸 remains within this backward reachable tube (or BRT), 𝑃

1We set 𝑎 = 1𝑓𝑡/𝑠𝑒𝑐2 and 𝑔 = 32𝑓𝑡/𝑠𝑒𝑐2 in our simulation.
2It is called backward because the game is simulated backward in time.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

000:4 Molu, Lekan

cannot cause damage or exercise an action of deleterious consequence on, say, the territory being
guarded by 𝐸.

Setting up 𝐸 to maximize the payoff quantity (4) with the largest possible margin or at least
frustrate the efforts of 𝑃 with minimal collateral damage while the pursuer minimizes the payoff
quantity constitutes a terminal value optimal differential game: there is no optimal pursuit without
an optimal evasion since 𝑃 and 𝐸 are both executing motions as they see fit within the problem
parameters.

Therefore, we rewrite (1) with 𝑃 ’s motion relative to 𝐸’s along the (𝑥, 𝑧) plane so that the relative
orientation as shown in Fig. 1 is 𝜃 = 𝑢𝑝 − 𝑢𝑒 – this shall serve as the control input. Following the
conventions in Fig. 1, the game’s relative equations of motion in reduced space [26, §2.2] i.e. is
𝑥 = (𝑥, 𝑧, 𝜃) where 𝜃 ∈

[︀
−𝜋

2 ,
𝜋
2

)︀
and (𝑥, 𝑧) ∈ R2 are

�̇� =

⎧⎪⎨⎪⎩
�̇� = 𝑎𝑝 cos 𝜃 + 𝑢𝑒𝑥,

�̇� = 𝑎𝑝 sin 𝜃 + 𝑎𝑒 + 𝑢𝑒𝑥− 𝑔,

𝜃 = 𝑢𝑝 − 𝑢𝑒.

(3)

The boundary of the usable part of the origin-centered circle of radius 𝜑 (we have set 𝜑 = 1.5
feet in our evaluations) is ‖𝑃𝐸‖2 so that

𝜑2 = 𝑥2 + 𝑧2. (4)

All capture points are specified by the variational HJ PDE [37]:

𝜕𝜑

𝜕𝑡
(𝑥, 𝑡) + min

[︂
0,𝐻(𝑥,

𝜕𝜑(𝑥, 𝑡)

𝜕𝑥
)

]︂
≤ 0, (5)

with Hamiltonian given by

𝐻(𝑥, 𝑝) = − max
𝑢𝑒∈[𝑢𝑒,�̄�𝑒]

min
𝑢𝑝∈[𝑢𝑝,�̄�𝑝].

[︀
𝑝1 𝑝2 𝑝3

]︀ ⎡⎣ 𝑎𝑝 cos 𝜃 + 𝑢𝑒𝑥
𝑎𝑝 sin 𝜃 + 𝑎𝑒 + 𝑢𝑝𝑥− 𝑔

𝑢𝑝 − 𝑢𝑒

⎤⎦ (6)

Here, the co-states 𝑝 is defined with a strict corresponding property, and [𝑢𝑒, �̄�𝑒] denotes the extremals
that the evader must choose as input in response to the extremal controls that the pursuer plays i.e.
[𝑢𝑝, �̄�𝑝].

We must consider the possibilities of behavior by either agent in an all-encompassing fashion
in order to know what an outcome may be in the future should either agent execute different
controls. Rather than resort to analytical geometric reasoning, we may analyze this game via a
principled numerical simulation. This is what we present next. From (6), set 𝑢𝑒 = 𝑢𝑝 = 𝑢 ≜ −1 and
�̄�𝑝 = �̄�𝑒 = �̄� ≜ +1 so that

𝐻(𝑥, 𝑝) = − max
𝑢𝑒∈[𝑢𝑒,�̄�𝑒]

min
𝑢𝑝∈[𝑢𝑝,�̄�𝑝]

[︀
𝑝1(𝑎𝑝 cos 𝜃 + 𝑢𝑒𝑥) + 𝑝2(𝑎𝑝 sin 𝜃 + 𝑎𝑒 + 𝑢𝑝𝑥− 𝑔) + 𝑝3(𝑢𝑝 − 𝑢𝑒)

]︀
,

= −𝑎𝑝𝑝1 cos 𝜃 − 𝑎𝑝2 sin 𝜃 − 𝑎𝑝2 + 𝑔𝑝2 − max
𝑢𝑒∈[𝑢𝑒,�̄�𝑒]

min
𝑢𝑝∈[𝑢𝑝,�̄�𝑝]

(𝑝1𝑢𝑒 + 𝑝2𝑢𝑝𝑥+ 𝑝3(𝑢𝑝 − 𝑢𝑒)) ,

= −𝑎𝑝𝑝1 cos 𝜃 − 𝑎𝑝2 sin 𝜃 − 𝑎𝑝2 + 𝑔𝑝2 − �̄�|𝑝1𝑥+ 𝑝3|+ 𝑢|𝑝2𝑥+ 𝑝3|,

≜ −𝑎𝑝1 cos 𝜃 − 𝑝2(𝑔 − 𝑎− 𝑎 sin 𝜃)− �̄�|𝑝1𝑥+ 𝑝3|+ 𝑢|𝑝2𝑥+ 𝑝3|, (7)

where the last line in (7) follows from setting 𝑎𝑒 = 𝑎𝑝 ≜ 𝑎.
For the target set being guarded by 𝐸, we choose an implicit representation with a cylindrical

mesh on a three-dimensional grid as our representation. The grid’s nodes are uniformly spaced apart
at a resolution of 100 points per dimension over the interval [−64, 64]. In numerically solving for
the Hamiltonian (7), a TVD-RK discretization scheme [42] based on fluxes is used in choosing

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

Examples and Evaluations 000:5

Fig. 2. (Left to Right): Backward reachable tubes (capture surfaces) for the rocket system (cf. Fig. 1) optimized for
the paths of slowest-quickest descent in equation (6) at various time steps during the differential game. In all, the
BRTs were computed using the method outlined in [9, 36, 39]. We set 𝑎𝑒 = 𝑎𝑝 = 1𝑓𝑡/𝑠𝑒𝑐2 and 𝑔 = 32𝑓𝑡/𝑠𝑒𝑐2 as
in Dreyfus’ original example.

smooth nonoscillatory results. Denote by (𝑥, 𝑦, 𝑧) a generic point in R3 so that given mesh sizes
∆𝑥, ∆𝑦, ∆𝑧, ∆𝑡 > 0, letters 𝑢, 𝑣, 𝑤 represent functions on the 𝑥, 𝑦, 𝑧 lattice: ∆ = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) :

𝑖, 𝑗, 𝑘 ∈ Z}. We define the numerical monotone flux �̂�(𝑥, 𝑝), of 𝐻(𝑥, 𝑝) as

�̂�(𝑢+, 𝑢−, 𝑣+, 𝑣−, 𝑤+, 𝑤−) = 𝐻

(︂
𝑢+ + 𝑢−

2
,
𝑣+ + 𝑣−

2
,
𝑤+ + 𝑤−

2

)︂
,

= −1

2

[︁
𝛼(𝑖)𝑗
𝑥

(︀
𝑢+ − 𝑢−)︀+ 𝛼(𝑖)𝑗

𝑦

(︀
𝑣+ − 𝑣−

)︀
+ 𝛼(𝑖)𝑗

𝑧

(︀
𝑤+ − 𝑤−)︀]︁ ,

(8)

where

𝛼𝑥 = max
𝑎≤𝑢≤𝑏
𝑐≤𝑣≤𝑑
𝑒≤𝑤≤𝑓

|𝐻𝑢(·)|, 𝛼𝑦 = max
𝑎≤𝑢≤𝑏
𝑐≤𝑣≤𝑑
𝑒≤𝑤≤𝑓

|𝐻𝑣(·)|, and 𝛼𝑧 = max
𝑎≤𝑢≤𝑏
𝑐≤𝑣≤𝑑
𝑒≤𝑤≤𝑓

|𝐻𝑤(·)| (9)

are the dissipation coefficients, controlling the level of numerical viscosity in order to realize a stable
solution that is physically realistic [11]. Here, the subscripts of 𝐻 are the partial derivatives w.r.t the
subscript variable, and the flux, �̂�(·) is monotone for 𝑎 ≤ 𝑢± ≤ 𝑏, 𝑐 ≤ 𝑣± ≤ 𝑑, 𝑒 ≤ 𝑤± ≤ 𝑓 . It is
easy to very from (7) that

𝛼𝑥 = |𝑎 cos 𝜃|+ 𝑢|𝑥|, 𝛼𝑦 = |𝑔 − 𝑎− 𝑎 sin 𝜃|+ 𝑢|𝑥|, and 𝛼𝑧 = |�̄�|+ |𝑢. (10)

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

000:6 Molu, Lekan

1 finite_diff_data = {"innerFunc": termLaxFriedrichs,

2 "innerData": {"grid": g, "hamFunc": rocket_rel.ham,

3 "partialFunc": rocket_rel.dissipation,

4 "dissFunc": artificialDissipationGLF,

5 "CoStateCalc": upwindFirstENO2},

6 "positive": True} // direction of approx. growth

Listing 1. HJ ENO2 computational scheme for the rockets.

The Hamiltonian, upwinding scheme, flux dissipation method, and the overapproximation parame-
ter for the essentially non-oscillatory polynomial interpolatory data used in geometrically reasoning
about the target set is set up as seen in Listing 1. The data structure finite diff data con-
tains all the routines needed for adding dynamics to the original implicit surface representation of
𝑣(𝑥, 𝑡). The monotone spatial upwinding scheme used (here termLaxFriedrichs) is passed
into the innerFunc query field. The explicit form of the Hamiltonian (see (7)) is passed to the
hamFunc query field and the grid described in the foregoing is passed to the grid field. We adopted
a second-order accurate upwinding scheme together with the Lax-Friedrichs approximator. To
indicate that we intend to overapproximate the value function, we specify a True parameter for the
positive query field.

Safety is engendered by having the evader respond optimally to the pursuer at various times during
the game. We are thus interested in the entire safety set over the time interval of play (i.e. the safety
tube). The backward reachable tube (BRT) [37], under the control strategies of 𝑃 or 𝐸, is a part
of the phase space that constitutes Ω × 𝑇 . We would like the BRT to cover as much of the entire
phase space as possible. Thus, we overapproximate it. Using our GPU-accelerated levelset toolbox,
we compute the overapproximated BRT of the game over a time span of [−2.5, 0] seconds over 11
global optimization time steps. The BRTs at representative time steps in the optimization procedure
is depicted in Fig. 2.

The initial value function (leftmost inset of Fig. 2) is represented as a (closed) dynamic implicit
surface over all point sets in the state space (using a signed distance function) for a coordinate-aligned
cylinder whose vertical axes runs parallel to the orientation of the rockets depicted in Fig. 1. This
closed and bounded assumption of the target set is a prerequisite of the backward reachable analysis
(see [37]). It allows us to include all limiting velocities The two middle capture surfaces indicate the
evolution of the capture surface (here the zero levelset) of the target set upon the optimal response
of the evader to the pursuer. We reach convergence at the eleventh global optimization timestep
(rightmost inset of Fig. 2).

Reachability theory thus affords us an ability to numerically reason about the behavior of these
two rockets aforetime in a principled manner. To do this, we have passed relevant parameters to the
package as shown in Listing 1 and run a CFL constrained optimization scheme for a finite number
of global optimization timesteps. It is global because internally, there are other local spatial and
temporal finite differencing scheme that occurs “under the hood”.

1.2 Time Optimal Control: The Double Integral Plant
Here, we analyze a time-optimal control problem to determine what admissible control3 can “trans-
port” the system under consideration to a desired “origin” in the shortest possible time. We consider
the double integral plant [5, 46] as an illustrative example of our objective, which is to compute the
points in the state space that can reach the origin in finite-time under the influence of a time-optimal
controller.

We shall leverage standard necessary conditions from the principle of optimality [4] to obtain a
time-optimal feedback control design; introduce the notion of isochrones and switching surfaces;
3A control law is admissible when its range belongs in the admissible input set where it is bounded.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

Examples and Evaluations 000:7

and discuss the analytic and approximate solutions (with our library) to the time-optimal control
problem for a double integrator. We shall conclude the section by comparing the analytic and the
overapproximated numerical solution (using the LevelSetPy toolbox) to the time to reach the origin
problem.

1.2.1 Dynamics and Problem Setup. The double integrator is controllable, so that open-loop
strategies may be employed in driving specific states to the origin in finite time [46]. The plant has
the following second-order dynamics

�̈�(𝑡) = 𝑢(𝑡) (11)

and admits bounded control signals | 𝑢(𝑡) |≤ 1 for all time 𝑡. After a change of variables,we have
the following system of first-order differential equations

�̇�1(𝑡) = 𝑥2(𝑡),

�̇�2(𝑡) = 𝑢(𝑡), | 𝑢(𝑡) |≤ 1. (12)

The reachability problem that we consider is to address the question of what states can reach a
certain point (here, the origin) in a transient manner. That is, we would like to find point sets on the
state space, at a particular time step, such that we can bring the system to the equilibrium, (0, 0).

1.2.2 Time-optimal control scheme. This is an 𝐻-minimal control problem whereupon we must
find the control law that minimizes the Hamiltonian

𝐻(𝑥, 𝑝) = 𝑝1�̇�1 + 𝑝2�̇�2. (13)

The necessary optimality condition stipulates that the minimizing control law be

𝑢(𝑡) = − sign (𝑝2(𝑡)) ≜ ±1. (14)

For the co-states in question, suppose that their initial values (for constants 𝑘1 and 𝑘2) are
𝑝1(𝑡0) = 𝑘1 and 𝑝2(𝑡0) = 𝑘2, only four candidates can serve as time-optimal control sequences i.e.
{[+1], [−1], [+1,−1], [−1,+1]}. On a finite time interval, 𝑡 ∈ [𝑡0, 𝑡𝑓], the time-optimal 𝑢(𝑡) is a
constant 𝑘 ≡ ±1 so that for initial conditions 𝑥1(𝑡0) = 𝜉1 and 𝑥2(𝑡0) = 𝜉2, it can be verified that
the state trajectories obey the relation

𝑥1(𝑡) = 𝜉1 +
1

2
𝑘
(︀
𝑥2
2 − 𝜉22

)︀
, for 𝑡 = 𝑘 (𝑥2(𝑡)− 𝜉2) . (15)

The trajectories of (15) traced out over a finite time horizon 𝑡 = [−1, 1] with piecewise constant
control laws, 𝑢 = ±1 on a state space and under the control laws 𝑢(𝑡) = ±1 is depicted in Fig. 3.
Curves with arrows that point upwards denote trajectories under the control law 𝑢 = +1; call these
trajectories 𝛾+; while the trajectories marked by dashed arrows pointing downward on the curves
were executed under 𝑢 = −1; call these trajectories 𝛾−.

1.2.3 Analytic Time to Reach the Origin. The time to reach the origin (0, 0) from any other pair
(𝑥1, 𝑥2) on the state plane of Fig. 3 in the shortest possible time is our approximation problem. This
minimum time admits an analytical solution given by [1]

𝑡⋆(𝑥1,𝑥2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑥2 +

√︀
4𝑥1 + 2𝑥2

2 if 𝑥1 >
1

2
𝑥2|𝑥2|

−𝑥2 +
√︀

−4𝑥1 + 2𝑥2
2 if 𝑥1 < −1

2
𝑥2|𝑥2|

|𝑥2| if 𝑥1 =
1

2
𝑥2|𝑥2|.

(16)

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

000:8 Molu, Lekan

Fig. 3. State trajectories of the double integral plant. The solid curves are trajectories generated for
𝑢 = +1 while the dashed curves are trajectories for 𝑢 = −1.

Fig. 4. Analytical time to reach the origin on the state grid, (R× R); the switching curve, 𝛾 = 𝛾− ∪ 𝛾+, passes
through states on (0, 0).

The geometry (phase portrait) of (16) is shown in Fig. 4. Let us define 𝛾+ as the locus of all points
(𝑥1, 𝑥2) which can be forced to the origin by 𝑢 = +1 i.e.

𝛾+ = {(𝑥1, 𝑥2) : 𝑥1 =
1

2
𝑥2
2; 𝑥2 ≤ 0} (17)

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

Examples and Evaluations 000:9

(a) Isochrones above 𝛾 (b) Isochrones below 𝛾

Fig. 5. (a) Isochrones for states above the switching curve, (b) states below the switching curve.

and let 𝛾− be the locus of all points (𝑥1, 𝑥2) which can be forced to the origin by 𝑢 = −1 i.e.

𝛾− = {(𝑥1, 𝑥2) : 𝑥1 =
1

2
𝑥2
2; 𝑥2 ≥ 0}. (18)

The confluence of the locus of points on 𝛾+ and 𝛾− is the switching curve, depicted in bright
orange in Fig. 4, is

𝛾 ≜ 𝛾+ ∪ 𝛾− =

{︂
(𝑥1,𝑥2) : 𝑥1 =

1

2
𝑥2|𝑥2|

}︂
. (19)

The unique time-optimal control law, 𝑢⋆, that solves this problem can be determined to be

𝑢⋆ = 𝑢⋆(𝑥1,𝑥2) = +1 ∀ (𝑥1,𝑥2) ∈ 𝛾+ ∪ R+,

𝑢⋆ = 𝑢⋆(𝑥1,𝑥2) = −1 ∀ (𝑥1,𝑥2) ∈ 𝛾− ∪ R−, (20)

𝑢⋆ = −sgn {𝑥2} ∀ (𝑥1,𝑥2) ∈ 𝛾.

The minimum cost for this problem is equivalent to the minimum time for states (𝑥1,𝑥2) to reach
the origin (0, 0). This is given as

Φ⋆(𝑥, 𝑡) ≜ 𝑡⋆(𝑥1,𝑥2) (21)

with the associated terminal value

−𝜕Φ⋆(𝑥, 𝑡)

𝜕𝑡
= 𝐻

(︂
𝑡,𝑥,

𝜕Φ⋆(𝑥, 𝑡)

𝜕𝑡
,𝑢

)︂ ⃒⃒⃒⃒
𝑥=𝑥⋆

𝑢=𝑢⋆

with 𝐻(𝑡;𝑥,𝑢, 𝑝1, 𝑝2) = 𝑥2(𝑡)𝑝1(𝑡) + 𝑢(𝑡)𝑝2(𝑡)

(22)

and

𝑝1 =
𝜕𝑡⋆

𝜕𝑥1
, 𝑝2 =

𝜕𝑡⋆

𝜕𝑥2
. (23)

The HJ equation is given by

𝜕Φ⋆

𝜕𝑡
+ 𝑥2

𝜕Φ⋆

𝜕𝑥1
− 𝜕Φ⋆

𝜕𝑥2
= 0 if 𝑥1 > −1

2
𝑥2|𝑥2|,

𝜕Φ⋆

𝜕𝑡
+ 𝑥2

𝜕Φ⋆

𝜕𝑥1
+

𝜕Φ⋆

𝜕𝑥2
= 0 if 𝑥1 < −1

2
𝑥2|𝑥2|,

𝜕Φ⋆

𝜕𝑡
+ 𝑥2

𝜕Φ⋆

𝜕𝑥1
− sgn{𝑥2}

𝜕Φ⋆

𝜕𝑥2
= 0 if 𝑥1 = −1

2
𝑥2|𝑥2|. (24)

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

000:10 Molu, Lekan

The set of states (𝑥1, 𝑥2) that can be forced to reach the origin in the same minimum time 𝑡⋆ ≡ Φ⋆

are the system’s isochrones which are illustrated in Fig. 5. A point (𝑥1,𝑥2) on the state grid belongs
to the set of states 𝑆(𝑡⋆) from which it can be forced to the origin (0, 0) in the same minimum time
𝑡⋆. We call the set 𝑆(𝑡⋆) the minimum isochrone. These are the isochrones of the system – akin to
the isochrone map used in geography, hydrology, and transportation planning for depicting areas of
equal travel time to a goal state. The level sets of (24) correspond to the isochrones of the system as
illustrated in Fig. 5.

1.2.4 Approximate Time to Reach the Origin. We compare the analytical solution to the time to
reach (TTR) the origin problem (see Fig. 5) against the approximated TTR solution using a dynamic
implicit surface representation of the approximate value function. An ellipsoid with a radius of 1.0
along its major axis was chosen to represent the initial time to reach interface (see Fig. 6a, right
inset). We then choose a controller with values ±1 depending on which side of the switch surface
Fig. 5 we are on in generating the system’s phase portrait illustrated in Fig. 3.

The closed-form solution to the time-to-reach the origin problem on a 2-D grid with 𝑥/𝑦 axis
limits [[−1, 1], [−1, 1]] is shown in the left inset of Fig. 3a. We set out to investigate the result of
adding dynamics (with levelsets) to the elliptic implicit representation of the analytical TTR and
evaluate the efficacy of our computational scheme. We proceed as shown in Listing 3.

1 finite_diff_data = {"innerFunc": termLaxFriedrichs,

2 "innerData": {"grid": g, "hamFunc": dint.ham,

3 "partialFunc": dint.dissipation,

4 "dissFunc": artificialDissipationGLF,

5 "CoStateCalc": upwindFirstENO2},

6 "positive": False} // direction of approx. growth

Listing 2. Overapproximation setup for the double integrator TTR problem.

As a custom, a separate class (see DoubleIntegrator in the folder DynamicalSystems)
holds all the dynamics (cref. equations 11 and 12), switching surface (cref. equations 17, 18, and 19),
Hamiltonian (cref. equation 13), dissipation, and costates (cref. 23) of the double integrator plant.
Over a twenty-step timespan ranging from 0 to 20, we integrate the right-hand-side of (24) forward
in time by the Courant-Friedrichs-Lewy constrained second-order accurate integrator i.e. odeCFL2
in our library:

1 t, y, ˜ = odeCFL2(termRestrictUpdate, t_span, y0, options, finite_diff_data)

Listing 3. Overapproximation setup for the double integrator TTR problem.

where y0 is the initial elliptic function that represents Φ in (24), options are the set of integration
parameters such as the number of actual timesteps to take in the adaptive integration scheme, the
maximum step size and so on. The routine termRestrictUpdate restricts the sign of the update
of the HJ approximation by either increasing or decreasing the levelset.

A side-by-side comparison of the level sets is shown in Fig. 6a. The approximation to the isochrones
by our integration scheme is an overapproximation of the analytical TTR problem. This is illustrated
in the right inset of Fig. 6a. Because we are not concerned with the safe set (unlike the example
in 1.1), we do not overapproximate the time-to-reach solution. On the overall, we obtain similar
isochrones to the analytical result, hence validating our hypothesis.

1.3 Reach-Avoid Games: Flocks within Starling Murmurations
Here, we will borrow inspiration from natural swarms, particularly the murmuration [21] of European
starlings – the sturnus vulgaris – in our problem construction and solution concept. We are concerned
with reach-avoid games in multiagent systems, whereupon agents must safely navigate a phase
space (e.g. in achieving an attitude convergence goal), whilst avoiding collision with one another

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

https://github.com/robotsorcerer/LevelSetPy/blob/cupy/DynamicalSystems/double_integrator.py
https://github.com/robotsorcerer/LevelSetPy/tree/cupy/DynamicalSystems

Examples and Evaluations 000:11

(a) Analytical and Initial BRS (with implicit ellipsoids).

(b) Overapproximated BRS at time 𝑡 = 0.25 secs

Fig. 6. Time to reach the origin at different integration time steps. Top-left: Closed-form Solution to the time
to reach the origin problem. Top-right: Implicit representation of the initial TTR solution. Bottom: Lax-Friedrichs
Approximation to the TTR the origin problem.

and capture by an external predator. A natural environment where this problem occurs is in the
murmuration of European Starlings. The problem that we study is of importance in multiagent
systems such as the safe control of quadcopters, safe interaction among distributed agents on a
computing network where local nearest neighbor rules apply. In what follows, we formulate the
problem mathematically and pose the collision avoidance for a local set of birds as a reachable
differential game.

1.3.1 Problem Description. Consider a group of starlings moving on a space-time continuum
Ω × 𝑇 4 as illustrated in Fig. 7. Recent field studies [8] suggest that emergent collective motion
observed among these birds is as a result of local nearest neighbor interactions among separable
subsets of bird groups on Ω × 𝑇 . There is evidence with justifiable confidence [27] suggesting
that when density varies among the birds (henceforth called agents), the relationship among agents
in local groups is not determined by the metric distance among nearest neighbors but rather by a
topological notion of distance (defined as the number of intermediate birds between one agent from
another [2]).

Starlings exhibit complex formation patterns that are effective in avoiding capture – mostly by
peregrine Falcons in the wild [20]. We will leverage this notion of topological distance between
agents in developing a target or safe set [24] for a subset of agents within the murmuration. If we can
compute this safe set, it can serve as e.g. a safety filter for multiagent systems (to be controlled) and
their actual controller whilst respecting state constraints [24] and the control constraints (admissible
inputs, dynamic update frequency of input control laws e.t.c.). An illustration of the problem

4Here Ω is the open set that contains all states of the birds and 𝑇 is the length of time over the real line.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

000:12 Molu, Lekan

Fig. 7. Starlings murmurations. From the top-left and clockwise. (i) A starlings flock rises into the air, in a dense
structure (Reuters/Amir Cohen). (ii) Starlings migrating over an Israeli village (AP Photo/Oded Balilty). (iii) Starlings
feeding on laid seeds in the ground in Romania. (iv) Two flocks of migrating starlings (Menahem Kahana/AFP/Getty
Images). (v) A concentric conical formation of starlings (Courtesy of The Gathering Site.). (vi) Splitting and joining
of a flock of starlings.

setup is illustrated in Fig. 7. For a comprehensive understanding of the intuition that guides our
mathematical formulation here, we refer agents to the works of Ballerini et al. [2], Cavagna et al. [8],
and Cardaliaguet [7].

1.3.2 Mathematical abstractions. Individual agents self-organize into phases or regions 𝒮 which
are in turn members of a union of multiple regions 𝒞. Every 𝒮 ⊆ 𝒞 and all members of 𝒞 are disjoint
from one another i.e. 𝒮𝑖 ∪ 𝒮𝑗 = ∅ for any 𝑖 ̸= 𝑗. The total number of elements in 𝒮 is denoted [𝒮],
and we denote by int Ω the interior of Ω. The closure of Ω is Ω̄. We let 𝛿Ω (:= Ω̄∖int Ω) be the
boundary of Ω.

An evading agent in a region 𝒮𝑖 has a state notation 𝑥𝑖
𝑎 (read: the state of agent 𝑎 in region

𝑖). A state 𝑥𝑖
𝑎 has linear velocity components, 𝑥𝑖

𝑎1
,𝑥𝑖

𝑎2
, and heading 𝑥𝑖

𝑎3
:= 𝑤𝑖

𝑎. When we must
distinguish an agent 𝑥𝑖

𝑎 ∈ 𝒞𝑥 from some other agent e.g. in another multiphase 𝒞𝑦, we shall write
𝑥𝑥𝑖

𝑎 and 𝑦𝑥𝑖
𝑎 respectively.

The set of players in a game shall be denoted by 𝒩 = {𝑖, 𝑗, . . .} with the subscript index indicating
players e.g. 𝒩𝑖 for player 𝑖. The set of neighbors of player 𝑖 is 𝒩 (𝑖) ⊆ 𝒩 . Player 𝑖 moves dynamically
with a control 𝑢𝑖 ∈ 𝜋𝑖 (i.e. 𝑢𝑖 belongs to a policy class 𝜋𝑖) that is both (a) optimal with respect
to its own objective 𝒥𝑖; and (b) optimal with respect to its neighboring players’ current policy
𝜋−𝑖 ∈ Π𝑗∈𝑁,𝑗 ̸=𝑖. Neighbors of agent 𝑖 at time 𝑡 are those which are either within, or on a circle
specified by a fixed topological range, 𝑟𝑐. This topological range is given by the difference in the
numerical label of individuals (see Definition 3), and is consistent with findings in collective swarm
behaviors as it reinforces group cohesion [2].

The topological metric is given by the label of an agent and it quantifies the number of intermediate
agents that separate two agents. This is consistent with collective animal behaviors where individuals’
bookkeeping on their neighbors’ positions help maintain the strength of an interaction when density
varies or when they need to reorient a control input, given by the average of its own orientation and

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

http://www.thegatheringsite.net/qcgems/2014/1/24/murmuration

Examples and Evaluations 000:13

that of its neighbors. Instead of metric distance interaction rules that make agents very vulnerable to
predation [2], we resort to a topological interaction rule5. Let us set forth with a few definitions first.

DEFINITION 1. Every agent within a flock has similar dynamics to that of its neighbor(s). Further-
more, agents travel at the same linear speed, 𝑣; the angular headings, 𝑤, however, may be different
between agents, seeing we are dealing with a many-bodied system. Each agent’s continuous-time
dynamics, �̇�(𝑖)(𝑡), evolves as⎡⎢⎣�̇�

(𝑖)
1 (𝑡)

�̇�
(𝑖)
2 (𝑡)

�̇�
(𝑖)
3 (𝑡)

⎤⎥⎦ =

⎡⎢⎣𝑣(𝑡) cos𝑥(𝑖)
3 (𝑡)

𝑣(𝑡) sin𝑥
(𝑖)
3 (𝑡)

⟨𝑤(𝑖)(𝑡)⟩𝑟

⎤⎥⎦ , ⟨𝑤(𝑖)(𝑡)⟩𝑟 =
1

1 + 𝑛𝑖(𝑡)

⎛⎝𝑤(𝑖)(𝑡) +
∑︁

𝑗∈𝒩𝑖(𝑡)

𝑤𝑗(𝑡)

⎞⎠ (25)

for agents 𝑖 = {1, 2, 3, ..., 𝑛𝑎}, where 𝑡 is the continuous-time index, 𝑛𝑖(𝑡) is the number of agent
𝑖’s neighbors at time 𝑡, 𝒩𝑖(𝑡) denotes the sets of labels of agent 𝑖’s neighbors at time 𝑡, and ⟨𝑤(𝑖)(𝑡)⟩𝑟
is the average orientation of agent 𝑖 and its neighbors at time 𝑡. Note that for a game where all agents
share the same constant linear speed and heading, (25) reduces to the dynamics of a Dubins’ vehicle
in absolute coordinates with −𝜋 ≤ 𝑤(𝑖)(𝑡) < 𝜋. The averaging over the degrees of freedom of other
agents in (25) is consistent with the mean field theory, whereby the effect of all other agents on any
one agent is an approximation of a single averaged influence.

DEFINITION 2 (NEIGHBORS OF AN AGENT). We define the neighbors 𝒩𝑖(𝑡) of agent 𝑖 at time 𝑡
as the set of all agents that lie within a predefined radius, 𝑟𝑖.

DEFINITION 3. We define a flock, 𝐹 , consisting of agents labeled {1, 2, · · · , 𝑛𝑎} as a collection
of agents within a phase space (Ω×𝑇) such that all agents within the flock interact with their nearest
neighbors in a topological sense.

REMARK 1. Note that for a game where all agents share the same constant linear speed and
heading, (25) reduces to the dynamics of a Dubins’ vehicle in absolute coordinates with −𝜋 ≤
𝑤(𝑖)(𝑡) < 𝜋. The averaging over the degrees of freedom of other agents in (25) is consistent with
mean field theory, whereby the effect of all other agents on any one agent is an approximation of a
single averaged influence.

DEFINITION 4 (PAYOFF OF A FLOCK). To every flock 𝐹𝑗 (with a finite number of agents 𝑛𝑎)
within a murmuration, 𝑗 = {1, 2, · · · , 𝑛𝑓} , we associate a payoff, Φ𝑗 , that is the union of all
respective agent’s payoffs for expressing the outcome of a desired kinematic behavior.

1.3.3 Flock Motion as Differential Games. We restrict our analysis to a single local flock within
a murmuration. We must find a mathematical way to replicate the collision-avoidance scheme that
agents execute structural homogeneity of movement in every region 𝒮𝑖 ∈ 𝒞 for 𝑖 = 1, · · · , [𝒞]
as observed in natural systems. We will locally synthesize the kinematics of agents in a manner
amenable to state representation by resolving local payoff extremals, {𝜑1, · · · ,𝜑𝑛𝑓

}. This is a state
space partition induced by an aggregation of desired collective behavior from local flocks’ values
{𝑣1, · · · ,𝑣𝑛𝑓

}. Let the cursory reader understand that we use the concept of a flock loosely. The
value function could represent a palette of composed value functions whose extremals resolve local
behaviors we would like to emerge over separated local regions of the state space of dexterous drone
acrobatics [29], a robot balls juggling task [6], or any parallel task domain verification problem.

5With metric distance rules, we will have to formulate the breaking apart of value functions that encode a consensus heading
problem in order to resolve the extrema of multiple payoffs; which is typically what we want to mitigate against during
real-world autonomous tasks.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

000:14 Molu, Lekan

1.3.4 Framework for Separated Payoffs. Suppose that a murmuration’s global heading is given
and that each agent 𝑖 within each flock, 𝐹𝑗 , (𝑗 = {1, · · · , 𝑛𝑓}) in the murmuration has a constant
linear velocity, 𝑣𝑖. An agent’s orientation is its control input, given by the average of its own
orientation and that of its neighbors. What constitutes an agent’s neighbors are computed based on
empirical findings and studies from the lateral vision of birds and fishes [2, 23, 27] that provide
insights into their anisotropic kinematic density and structure. Importantly, starlings’ lateral visual
axes and their lack of a rear sector reinforces their lack of nearest neighbors in the front-rear direction.
As such, this enables them to maintain a tight density and robust heading during formation and flight.

Each agent within flock 𝐹𝑗 interacts with a fixed number of neighbors, 𝑛𝑐, within a fixed topological
range, 𝑟𝑐. The range is chosen as the difference between the numerical labels of agents in a flock.
This is consistent with findings in collective swarm behaviors in that it reinforces group cohesion [2].
Since in starlings behavior, flying performance is often spurred by a predator, we emulate this by
introducing an external disturbance on the zeroth-index agent within the flock of interest (this aids
compactness of the zero levelset of flock 𝒮𝑖 as the theory of HJ Reachability recommends [37]).
However, we are interested in robust group cohesion. Ergo, we let a pursuer, 𝑃 , with a worst-possible
disturbance attack the flock. Here, flocks constitute an evading player, 𝐸.

The delineation of an agent’s nearest neighbors is given in Algorithm 1. On lines 3 and 7 of
Algorithm 1, cohesion is reinforced by leveraging the observations above. While the neighbor
updates for an agent involve an 𝑂(𝑛2) algorithm in Algorithm 1, we are merely dealing with 6− 7
agents at a time in a local flock – making the computational cost measly.

1.3.5 Global Isotropy via Local Anisotropy. Isotropy of motion fields is a natural characteristic
in Starlings motion. The global isotropy of murmurations where group cohesion is maintained in
highly uncertain environments with limited or noisy information is often stimulated by Peregrine
Falcon attacks. Local birds maintain structural anisotroby via nearest neighbor rules, and a collection
of multiple local groups in the entire collection results in the global isotroby that is observed.
However, structural anisotropy is not merely an effect of a preferential velocity in animal flocking
kinematics but rather an explicit effect of the anisotropic interaction character itself: agents choose a
mutual position on the state space in order to maximize the sensitivity to changes in heading and
speed of neighbors; the neighbors’ anisotropy is optimized via vision-based collision avoidance
characteristically unrelated to the eye’s structure [2].

To reinforce robust group cohesion in local flocks, we let a pursuer 𝑃𝑗 play attack an evading
agent 𝐸𝑗 in a flock 𝐹𝑗 so that one agent within 𝐹𝑗 is always in relative coordinates with 𝑃 𝑗 . By
averaging the heading of individual agents’ orientations with its neighbors (cf. (25)), a flock can
achieve fast response to danger when a pursuer is nearby. In this specialized case, 𝐸 and 𝑃 ’s speeds
and maximum turn radii are equal: if both players start the game with the same initial velocity and
orientation, the relative equations of motion show that 𝐸 can mimic 𝑃 ’s strategy by forever keeping
the starting radial separation. As such, the barrier is closed and the central theme in this game of
kind is to determine the surface of the boundary [33]. We defer a thorough analysis of the nature of
the surface to a future work. Owing to the high-dimensionality of the state space, we cannot resolve
this barrier analytically, hence we resort to our HJ PDE numerical approximation.

For agent 𝑖 within a flock with index 𝑗 in a murmuration, the equations of motion under attack
from a predator 𝑝 in relative coordinates is⎡⎢⎣ �̇�

(𝑖)𝑗
1 (𝑡)

�̇�
(𝑖)𝑗
2 (𝑡)

�̇�
(𝑖)𝑗
3 (𝑡)

⎤⎥⎦ =

⎡⎢⎣−𝑣
(𝑖)𝑗
𝑒 (𝑡) + 𝑣

(𝑗)
𝑝 cos𝑥

(𝑖)𝑗
3 (𝑡) + ⟨𝑤(𝑖)𝑗

𝑒 ⟩𝑟𝑥
(𝑖)𝑗
2 (𝑡)

𝑣
(𝑖)𝑗
𝑝 (𝑡) sin𝑥

(𝑖)𝑗
3 (𝑡)− ⟨𝑤(𝑖)𝑗

𝑒 ⟩𝑟𝑥
(𝑖)𝑗
1 (𝑡)

𝑤
(𝑗)
𝑝 (𝑡)− ⟨𝑤(𝑖)𝑗

𝑒 (𝑡)⟩𝑟

⎤⎥⎦ for 𝑖 = 1, · · · , 𝑛𝑎 (26)

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

Examples and Evaluations 000:15

Algorithm 1 Nearest Neighbors For Agents in a Flock.

1: Given a set of agents 𝑎 = {𝑎1, 𝑎2, · · · , 𝑎𝑛𝑎
| [𝑎] = 𝑛𝑎} ◁ 𝑛𝑎 agents in a flock 𝐹𝑘.

2: function UpdateNeighbor(𝑛)
3: for 𝑖 in 1, . . . , 𝑛 do ◁ Look to the right and update neighbors.
4: for 𝑗 in 𝑖+ 1, . . . , 𝑛 do
5: COMPARE NEIGHBOR(𝑎[𝑖], 𝑎[𝑗])
6: end for
7: for 𝑗 in 𝑖− 1 down to 0 do ◁ Look to the left and update neighbors.
8: COMPARE NEIGHBOR(𝑎[𝑖], 𝑎[𝑗])
9: end for

10: end for
11: for each 𝑎𝑖 ∈ 𝐹𝑘, 𝑖 = 1, · · ·𝑛𝑎 do ◁ Recursively update agents’ headings.
12: Update headings according to (25).
13: end for
14: end function

1: function Compare Neighbor(𝑎1, 𝑎2) ◁ (𝑎1, 𝑎2): distinct instances of AGENT.
2: if |𝑎1.label - 𝑎2.label| < 𝑎1.𝑟

1
𝑐 ◁ 𝑟𝑛𝑐 : agent 𝑛’s capture radius, 𝑟𝑐.

3: 𝑎1.UPDATE NEIGHBORS(𝑎2) then
4: end if
5: end function
1: procedure Agent(𝑎𝑖, Neighbors={}) ◁ Neighbors: Set of neighbors of this agent.
2: ◁ Agent 𝑎𝑖 with attributes label ∈ N, avoid and capture radii, 𝑟𝑎, 𝑟𝑐.
3: function UPDATE NEIGHBORS(neigh)
4: if length(neigh)> 1 then ◁ Multiple neighbors.
5: for each neighbor of neigh do
6: UPDATE NEIGHBORS(neighbor) ◁ Recursive updates.
7: end for
8: end if
9: Add neigh to Neighbors

10: end function
11: end procedure

where 𝑛𝑎 is the number of agents within a flock,
(︁
𝑥
(𝑖)𝑗
1 (𝑡),𝑥

(𝑖)𝑗
2 (𝑡)

)︁
∈ R2, and we have 𝑥

(𝑖)𝑗
3 (𝑡) ∈

[−𝜋,+𝜋). We have multiplied the dynamics by −1 so that the extremal’s resolution evolves back-
wards in time. Read 𝑥

(𝑖)𝑗
1 (𝑡): the first component of the state of agent 𝑖 for flock 𝑗 at time 𝑡. In

absolute coordinates, the equation of motion for free agents is⎡⎢⎣ �̇�
(𝑖)𝑗
1 (𝑡)

�̇�
(𝑖)𝑗
2 (𝑡)

�̇�
(𝑖)𝑗
3 (𝑡)

⎤⎥⎦ =

⎡⎢⎣𝑣
(𝑖)𝑗
𝑒 (𝑡) cos𝑥

(𝑖)𝑗
3 (𝑡)

𝑣
(𝑖)𝑗
𝑒 (𝑡) sin𝑥

(𝑖)𝑗
3 (𝑡)

⟨𝑤(𝑖)𝑗
𝑒 (𝑡)⟩𝑟

⎤⎥⎦ . (27)

1.3.6 Flock Motion from Aggregated Value Functions. We introduce the union operator i.e.
∪ below as an aggregation symbol since the respective payoffs of each agent in a flock may be
implicitly or explicitly constructed. In resolving the zero-level sets of HJ value functions, it is typical
to represent the payoff’s surface as the isocontour of some function (usually a signed distance

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

000:16 Molu, Lekan

function). In these instances, we shall aggregate the payoff of agents 1 and 2, for example, as

∪{𝜑1(𝑥, 𝑡),𝜑2(𝑥, 𝑡)} ≡ 𝜑1(𝑥, 𝑡) ∪ 𝜑2(𝑥, 𝑡) = min(𝜑1(𝑥, 𝑡),𝜑2(𝑥, 𝑡)). (28)

Standard assumptions about the existence of a flock’s value applies. And by an extension of
Hamilton’s principle of least action, the terminal motion of a flock coincide with the extremal of the
payoff functional i.e. ,

𝑣(𝑥, 𝑡) = inf
𝛽(1)∈ℬ(1)

sup
𝑢(1)∈𝒰(1)

∪
[︁
𝑔(1)(𝑥(𝑇))

]︁
∪ · · · ∪ inf

𝛽(𝑛𝑓)∈ℬ(𝑛𝑓)
sup

𝑢(𝑛𝑓)∈𝒰(𝑛𝑓)

[︁
𝑔(𝑛𝑓)(𝑥(𝑇))

]︁
where 𝑛𝑓 is the total number of distinct flocks in a murmuration. The resolution of this equation
admits a viscosity solution to the following variational terminal HJI PDE [37]

∪𝑛𝑓

𝑗=1

[︂
∪𝑛𝑎
𝑖=1

(︂
𝜕𝑣𝑖

𝜕𝑡
(𝑥, 𝑡) + min

[︁
0,𝐻(𝑖)(𝑥(𝑖),𝑣𝑥(𝑥, 𝑡))

]︁)︂]︂
= 0. (29)

with Hamiltonian,

𝐻(𝑖)(𝑡;𝑥(𝑖),𝑢(𝑖),𝑣(𝑖), 𝑝(𝑖)) = max
𝑢(𝑖)∈𝒰(𝑖)

min
𝑣(𝑖)∈𝒱(𝑖)

⟨𝑓 (𝑖)(𝑡;𝑥,𝑢(𝑖),𝑣(𝑖)), 𝑝(𝑖)⟩. (30)

In swarms’ collective motion, when e.g. a Peregrine Falcon attacks, immediate nearest agents
change direction almost instantaneously. And because of the interdependence of the orientations
of individual agents with respect to one another, all other agents respond instantaneously. Thus,
we only simulate a single attack against a flock within the murmuration to realize robust cohesion.
Throughout the game, we assume that the roles of 𝑃 and 𝐸 do not change, so that when capture
can occur, a necessary condition to be satisfied by the saddle-point controls of the players is the
Hamiltonian, 𝐻𝑖(𝑥, 𝑝).

THEOREM 1. For a flock, 𝐹𝑗 , the Hamiltonian is the total energy given by a summation of the
exerted energy by each agent 𝑖 so that we can write the main equation or total Hamiltonian of a
murmuration as

𝐻(𝑥, 𝑝) = max
𝑤

(𝑘)𝑗
𝑒 ∈[𝑤𝑗

𝑒,�̄�
𝑗
𝑒]

min
𝑤

(𝑘)𝑗
𝑝 ∈[𝑤𝑗

𝑝,�̄�
𝑗
𝑝]

∪𝑛𝑓

𝑗=1

[︁
𝐻(𝑘)𝑗

𝑎 (𝑥, 𝑝) ∪
(︁
∪𝑛𝑎−1
𝑖=1 𝐻

(𝑖)𝑗
𝑓 (𝑥, 𝑝)

)︁]︁
(31)

≜ ∪𝑛𝑓

𝑗=1

(︁
∪𝑛𝑎−1
𝑖=1

[︁
𝑝
(𝑖)𝑗
1 𝑣(𝑖)𝑗 cos𝑥3 + 𝑝

(𝑖)𝑗
2 𝑣(𝑖)𝑗 sin𝑥3 + 𝑝

(𝑖)𝑗
3 ⟨𝑤(𝑖)𝑗

𝑒 ⟩𝑟
]︁

∪
[︁
𝑝
(𝑘)𝑗
1

(︁
𝑣(𝑘)𝑗 − 𝑣(𝑘)𝑗 cos𝑥

(𝑘)𝑗
3

)︁
− 𝑝

(𝑘)𝑗
2 𝑣(𝑘)𝑗 sin𝑥

(𝑘)𝑗
3 − 𝑤𝑗

𝑝|𝑝
(𝑘)𝑗
3 |

+�̄�𝑗
𝑒

⃒⃒⃒⃒
𝑝
(𝑘)𝑗
2 𝑥

(𝑘)𝑗
1 − 𝑝

(𝑘)𝑗
1 𝑥

(𝑘)𝑗
2 + 𝑝

(𝑘)𝑗
3

⃒⃒⃒⃒]︂)︂
. (32)

where 𝐻
(𝑘)𝑗
𝑎 (𝑥, 𝑝) is the Hamiltonian of the individual under attack by a pursuing agent, 𝑃 , and

𝐻
(𝑖)𝑗
𝑓 (𝑥, 𝑝) are the respective Hamiltonians of the free agents, 𝑖 = {1, · · · , 𝑛𝑓}, within an evading

flock, and not under the direct influence of capture or attack by 𝑃 . We denote by 𝑤
(𝑖)𝑗
𝑒 the heading

of an evader 𝑖 within a flock 𝑗 and 𝑤
(𝑗)
𝑝 the heading of a pursuer aimed at flock 𝑗; 𝑤(𝑘)𝑗

𝑒 is the
orientation that corresponds to the orientation of the agent with minimum turn radius among all
the neighbors of agent 𝑘, inclusive of agent 𝑘 at time 𝑡; similarly, �̄�(𝑘)𝑗

𝑒 is the maximum orientation
among all of the orientation of agent 𝑘’s neighbors.

PROOF. The proof to this theorem is given in Appendix A. □

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

Examples and Evaluations 000:17

Fig. 8. Left column: Initial zero-level set for various flocks at different initial conditions. Right column: Evading
flock’s interface under a pursuer’s attack after specific Lax-Friedrichs’ integration. (Metric reach radius=0.2𝑚, Avoid
Radius=0.2𝑚).

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

000:18 Molu, Lekan

COROLLARY 2. For the special case where the linear speeds of the evading agents and pursuer
are equal i.e. 𝑣(𝑖)𝑗𝑒 (𝑡) = 𝑣𝑝(𝑡) = +1𝑚/𝑠, we have the Hamiltonian as

𝐻(𝑥, 𝑝) = ∪𝑛𝑓

𝑗=1

(︁
∪𝑛𝑎−1
𝑖=1

[︁
𝑝
(𝑖)𝑗
1 cos𝑥3 + 𝑝

(𝑖)𝑗
2 sin𝑥3 + 𝑝

(𝑖)𝑗
3 ⟨𝑤(𝑖)𝑗

𝑒 ⟩𝑟
]︁

∪
[︁
𝑝
(𝑘)𝑗
1

(︁
1− cos𝑥

(𝑘)𝑗
3

)︁
− 𝑝

(𝑘)𝑗
2 sin𝑥

(𝑘)𝑗
3 − 𝑤𝑗

𝑝|𝑝
(𝑘)𝑗
3 |

+�̄�𝑗
𝑒

⃒⃒⃒⃒
𝑝
(𝑘)𝑗
2 𝑥

(𝑘)𝑗
1 − 𝑝

(𝑘)𝑗
1 𝑥

(𝑘)𝑗
2 + 𝑝

(𝑘)𝑗
3

⃒⃒⃒⃒]︂)︂
. (33)

We adopt the essentially non-oscillatory Lax-Friedrichs scheme of [42] in resolving (33). Denote
by (𝑥, 𝑦, 𝑧) a generic point in R3 so that given mesh sizes ∆𝑥, ∆𝑦, ∆𝑧, ∆𝑡 > 0, letters 𝑢, 𝑣, 𝑤 will
represent functions on the 𝑥, 𝑦, 𝑧 lattice ∆ = {(𝑥𝑖, 𝑦𝑗 , 𝑧𝑘) : 𝑖, 𝑗, 𝑘 ∈ Z}. We define the numerical
monotone flux, �̂�(𝑖)𝑗 (·), of 𝐻(𝑖)

𝑗 (·) as

�̂�(𝑖)𝑗 (𝑢+, 𝑢−, 𝑣+, 𝑣−, 𝑤+, 𝑤−) = 𝐻(𝑖)𝑗

(︂
𝑢+ + 𝑢−

2
,
𝑣+ + 𝑣−

2
,
𝑤+ + 𝑤−

2

)︂
−1

2

[︁
𝛼(𝑖)𝑗
𝑥

(︀
𝑢+ − 𝑢−)︀+ 𝛼(𝑖)𝑗

𝑦

(︀
𝑣+ − 𝑣−

)︀
+ 𝛼(𝑖)𝑗

𝑧

(︀
𝑤+ − 𝑤−)︀]︁ (34)

where

𝛼(𝑖)𝑗
𝑥 = max

𝑎≤𝑢≤𝑏
𝑐≤𝑣≤𝑑
𝑒≤𝑤≤𝑓

|𝐻(𝑖)𝑗
𝑢 (·)|, 𝛼(𝑖)𝑗

𝑦 = max
𝑎≤𝑢≤𝑏
𝑐≤𝑣≤𝑑
𝑒≤𝑤≤𝑓

|𝐻(𝑖)𝑗
𝑣 (·)|, 𝛼(𝑖)𝑗

𝑧 = max
𝑎≤𝑢≤𝑏
𝑐≤𝑣≤𝑑
𝑒≤𝑤≤𝑓

|𝐻(𝑖)𝑗
𝑤 (·)| (35)

are the dissipation coefficients, controlling the level of numerical viscosity in order to realize a stable
solution that is physically realistic [12]. Here, the subscripts of 𝐻 are the partial derivatives w.r.t the
grid dimension variable, and the flux, �̂�(·) is monotone for 𝑎 ≤ 𝑢± ≤ 𝑏, 𝑐 ≤ 𝑣± ≤ 𝑑, 𝑒 ≤ 𝑤± ≤ 𝑓 .
We adopt the total variation diminishing Runge-Kutta scheme of [41, 45] in efficiently calculating
essentially non-oscillating upwinding finite difference gradients of 𝐻(·).

The computed safe sets are as shown in Figure 8. Note that the symmetry between non-consecutive
flock labels e.g. flock 1 and flock 3’s RCBRAT is because the we multiplied the initial position of a
flock’s state by −1.

1.4 Dubins’ Game of Two Identical Vehicles
This example was originally proposed by Merz [33] as an iteration upon Isaacs [26]’s homicidal
chauffeur game, whereupon a pursuit-evasion game between two players with similar speeds and
minimum turn radii, is thoroughly analyzed. In Mitchell [36], this problem was established as a
benchmark for testing the solubility of capturable set of states (the backward reachable tube) in
Merz’s classical pursuit-evasion game. In this example, we solve the problem with our LevelSetPy
toolbox and establish that the approximated barrier surface to the two-player game conforms with
standard results.

The game is that of two cars sharing similar Dubins dynamics [16]: 𝑃 and 𝐸 both have a positive
minimum turn radii, 𝑤, and constant speeds 𝑣 – with motion restricted to a plane as we have for
the rocket launch differential game above. In relative coordinates, the diagrammatic structure of the
motion is as depicted in Fig. 9. Choosing the Cartesian coordinate for motion representation, the
state vector of the game with 𝐸 at the origin can be characterized by its 𝑥1, 𝑥2 position relative to 𝑃
and the angle 𝜃 between the two vehicles. Capture occurs when the distance ‖𝑃𝐸‖2 between the
pursuer and the evader becomes less than a specified radius.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

Examples and Evaluations 000:19

x1

x2

ve

�e

evader vehicle

vp

�p

x3

pursuer vehicle

Fig. 9. Two Dubins’ vehicles in relative Cartesian coordinates. Reprinted from Mitchell [36].

The relative equations of motion, going by Fig. 9, is⎛⎝ �̇�1

�̇�2

�̇�3

⎞⎠ =

⎛⎝ −𝑣𝑒 + 𝑣𝑝 cos𝑥3 + 𝑤𝑒𝑥2

𝑣𝑝 sin𝑥3 − 𝑤𝑒𝑥1

𝑤𝑝 − 𝑤𝑒

⎞⎠ . (36)

We adopt specialization to a case where the two vehicles only possess a unit velocity and unit
maximum turn rates. Here, as Merz notes, if the initial velocities are parallel such as 𝑥3 = 0, then
the equations of relative motion imply that 𝐸 can be separated from 𝑃 forever by the initial radial
separation if it replicates 𝑃 ’s strategy. Whence, the barrier surface is closed and we are presented
with Isaacs [26]’s game of kind where we must determine the nature of the surface. This terminal
surface possesses a closed-form solution and we refer readers to the treatment by Merz [33]. In
this example, our chief concern is to judge the efficacy of our toolbox with respect to the analytical
solution of the barrier surface.

The the backward reachable tube that consists of the paths taken by the trajectories of either player
is defined as in the rockets pursuit evasion game so that we have

Φ(0, 𝑥) = {𝑥 ∈ 𝒳 |𝑥2
1 + 𝑥2

2 ≤ 𝑟2}, (37)

where again 𝑟 is the capture radius. The target set is a cylinder as Φ above excludes the heading, 𝑥3.
It is represented as shown in Fig. 10.

For a detailed treatment of the barrier surface, we refer readers to a proper analysis as elucidated
in [36]. Here, we focus on the construction of the BUP. The set of states that constitute the useable
part and its boundary are respectively a function of the implicit surface function representation
Φ : [−𝑇, 0]×𝒳 → R so that for a 𝑡 ∈ [0, 𝑇], where 𝑇 > 0 is

𝒯 = {𝑥 ∈ 𝒳 |Φ(0, 𝑥) ≤ 0} (38)

𝑅([−𝑡, 0], 𝒯) = {𝑥 ∈ 𝒳 |Φ(𝑡, 𝑥) ≤ 0}, (39)

When 𝑡 > 0, the implicit surface representation is the following HJI PDE
𝜕

𝜕𝑡
Φ(𝑡, 𝑥) + min (0,𝐻(𝑥,∇𝑥Φ(𝑡, 𝑥))) = 0. (40)

It is easy to verify that the Hamiltonian is

𝐻(𝑥, 𝑝) = 𝑝1(𝑣𝑒 − 𝑣𝑝 cos𝑥3)− 𝑝2(𝑣𝑝 sin𝑥3)− 𝑤|𝑝1𝑥2 − 𝑝2𝑥1 − 𝑝3|+ 𝑤|𝑝3|. (41)

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

000:20 Molu, Lekan

Fig. 10. The target set (left) and the boundary of the useable part of the state space after the differential game
between 𝑃 and 𝐸.

Since we are concerned with the special case that the linear and angular speeds are equal, we set
𝑣𝑒 = 𝑣𝑝 = 𝑤 ≜ +1 in the foregoing so that the Hamiltonian, in the final analysis is

𝐻(𝑥, 𝑝) = 𝑝1(1− cos𝑥3)− 𝑝2(sin𝑥3)− |𝑝1𝑥2 − 𝑝2𝑥1 − 𝑝3|+ |𝑝3|. (42)

As before, we set up the differential game as in Listing 4
1 finite_diff_data = {"innerFunc": termLaxFriedrichs,

2 "innerData": {"grid": g, "hamFunc": dubins_rel.ham,

3 "partialFunc": dubins_rel.dissipation,

4 "dissFunc": artificialDissipationGLF,

5 "CoStateCalc": upwindFirstENO2},

6 "positive": True} // direction of approx. growth

Listing 4. HJ ENO2 computational scheme for the rockets.

The BRTs at various time steps for the approximation of the differential game is shown in Fig. 11.
Compared to the standardized benchmark of the analytical solution [33] to the differential game
problem and the approximated solutions [36, 37], our results jibe.

1.5 Computational Time Comparison with LevelSet Toolbox
In this subsection, we will compare the solution for recovering the zero level set of the systems
presented in the previous examples against Mitchell [35]’s LevelSet Toolbox in MATLAB®.
In all, we compare the efficacy of running various computational problems using our library on a
CPU – running with Numpy and its fast arithmetic libraries – versus on a CPU with MATLAB®– as
originally written in Mitchell [35]’s library. In addition, we compare the efficacy of running these
computational problems on a single GPU.

For the CPU tests, we run the computation on an Intel Core™i9-10885H 16 cores-processor with
a 2.4GHz clock frequency, and 62.4GB memory. We employed an NVIDIA Quadro RTX 4000
with 8.192 GiB memory running on a mobile workstation with the CPU specifications mentioned
erstwhile in all of our GPU library accelerations.

Table 1 depicts the time it takes to process a full global optimization and the average time for
the Lax-Friedrichs internal computational optimization algorithm for the reachable sets/tubes and
time-to-reach sets for the examples we have considered. The column Avg. local depicts the

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

Examples and Evaluations 000:21

Fig. 11. BRTs for the differential game until termination time (2.25 secs).

average time the employed method of lines for resolving the HJ PDE takes per optimization step.
The column Global denotes the average time it takes to compute the numerical solution to the
HJ PDE . Each time query field represents an average over 20 experiments. We compare results of
running the algorithm on a GPU, and CPU (both in Numpy and MATLAB). In all our evaluations,
we aggressively free up GPU memory between and during computations in order to make GPU data
streaming and memory computations more efficient.

Across the GPU experiments for the examples presented, we see that computation is significantly
faster across all categories save the low-dimensional double integral plant experiment. We attribute
this to the little amount of data points used in the overapproximated stacked levelsets. For the Air3D
game of two vehicles on a plane problem and the two rockets differential game problem, the average
local time for computing the solutions to the stagewise HJ PDE ’s using the method of lines for
Air3D is a gain of ∼ 76%; the global time is a gain of 76.09%. Similarly, we notice substantial

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

000:22 Molu, Lekan

Table 1. Time to Resolve HJ PDE ’s.

PPPPPPPPExpt
Lib levelsetpy GPU Time (secs) levelsetpy CPU Time (secs) MATLAB CPU (secs)

Global Avg. local Global Avg. local Global Avg. local

Rockets 11.5153± 0.038 1.1833 107.84± 0.42 10.4023 138.50 13.850
Doub. Integ. 14.7657± 0.2643 1.5441 3.4535± 0.34 0.4317 5.23 0.65375
Air 3D 30.8654± 0.1351 3.0881 129.1165± 0.13 12.6373 134.77 16.8462
Starlings 8.6889± 0.8323 0.42853 15.2693± 0.167 7.4387 N/A N/A

computational gains for the two rockets differential game problem: 89% faster global optimization
time and 88.62% average local computational time compared to our CPU implementations in Numpy.
For this rockets game problem, compared against Mitchell [35] library, we notice a speedup of almost
92% in global optimization using our GPU-calibrated library versus an 89.32% gain using our
CPU-calibrated library.

Notice the exception with the Double Integrator experiment, however: local and global
computations take a little longer compared to deployments on the CPU – both on our Harris et al.
[22]’s implementation and using Mitchell [35]’s native MATLAB®toolbox. We attribute this to the
little size of the arrays of interest in this problem. The entire target set of the double integral
plant exists on a two-dimensional grid whose analytic and approximate time-to-reach-the-origin
computational time involves little computational gain in passing data onto the GPU. Neverthe-
less, we still see noticeable gains in using our CPU implementation as opposed to Mitchell [35]’s
native MATLAB®toolbox.

On a CPU, owing to efficient arrays arithmetic native to Harris et al. [22]’s Numpy library, the
average time to compute the zero levelsets per optimization step for the odeCFLx functions is faster
with our Numpy implementation compared against Mitchell [35] LevelSets MATLAB® Toolbox
library computations across all experiments. The inefficiencies of MATLAB®’s array processing
routine in the longer time to resolve stagewise BRTs and the effective time to finish the overall HJ
PDE resolution per experiment manifests in all of our experimental categories. For CPU processing
of HJ PDE ’s, it is reasonable, based on these presented data to expect that users would find our
library far more useful for everyday computations in matters relating to the numerical resolution of
HJ PDE ’s.

In all, there is conclusive evidence that our implementations are faster, extensible to modern
libraries, and scalable for modern complex system design and verification problems that arise.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

Examples and Evaluations 000:23

REFERENCES
[1] Michael Athans and Peter L Falb. 2013. Optimal Control: An Introduction to the Theory and its Applications. Courier

Corporation.
[2] M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A.

Procaccini, M. Viale, and V. Zdravkovic. 2008. interaction Ruling Animal Collective Behavior Depends On Topological
Rather Than Metric Distance: Evidence From A Field Study. Proceedings of the National Academy of Sciences 105, 4
(2008), 1232–1237. https://doi.org/10.1073/pnas.0711437105 arXiv:https://www.pnas.org/content/105/4/1232.full.pdf

[3] Tamer Basar and Geert Jan Olsder. 1999. Dynamic Noncooperative Game Theory. Vol. 23. Society for Industrial and
Applied Mathematics.

[4] Richard Bellman. 1957. Dynamic programming. Princeton University Press.
[5] Sanjay P Bhat and Dennis S Bernstein. 1998. Continuous finite-time stabilization of the translational and rotational

double integrators. IEEE Transactions on automatic control 43, 5 (1998), 678–682.
[6] Burridge, R R and Rizzi, A A and Koditschek, D E. 1999. Sequential Composition of Dynamically Dexterous Robot

Behaviors. Technical Report 6. 534–555 pages.
[7] P Cardaliaguet. 1997. Nonsmooth Semipermeable Barriers, Isaacs’ Equation, And Application to a Differential Game

with One Target and Two Players. Applied Mathematics and Optimization 36, 2 (1997), 125–146.
[8] Andrea Cavagna, Alessio Cimarelli, Irene Giardina, Giorgio Parisi, Raffaele Santagati, Fabio Stefanini, and Massimiliano

Viale. 2010. Scale-fFee Correlations In Starling Flocks. Proceedings of the National Academy of Sciences 107, 26
(2010), 11865–11870.

[9] M. G. Crandall, L. C. Evans, and P. L. Lions. 1984. Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations.
Trans. Amer. Math. Soc. 282, 2 (1984), 487.

[10] Michael G Crandall and Pierre-Louis Lions. 1983. Viscosity solutions of Hamilton-Jacobi equations. Transactions of
the American mathematical society 277, 1 (1983), 1–42.

[11] Michael G Crandall and P-L Lions. 1984. Two Approximations of Solutions of Hamilton-Jacobi Equations. Mathematics
of Computation 43, 167 (1984), 1–19.

[12] Michael G Crandall and Andrew Majda. 1980. Monotone Difference Approximations For Scalar Conservation Laws.
Math. Comp. 34, 149 (1980), 1–21.

[13] Defense Acquisition University. 2023. Validation. https://www.dau.edu/tools/se-brainbook/Pages/Technical%
20Processes/validation.aspx Accessed April 5, 2023.

[14] Defense Acquisition University. 2023. Verification. https://www.dau.edu/tools/se-brainbook/Pages/Technical%
20Processes/verification.aspx Accessed April 5, 2023.

[15] Stuart E Dreyfus. 1966. Control Problems With Linear Dynamics, Quadratic Criterion, and Linear Terminal Constraints.
Technical Report. Rand Corp, Santa Monica Calif.

[16] Lester E Dubins. 1957. On curves of minimal length with a constraint on average curvature, and with prescribed initial
and terminal positions and tangents. American Journal of mathematics 79, 3 (1957), 497–516.

[17] L.C. Evans and Panagiotis E. Souganidis. 1984. Differential Games And Representation Formulas For Solutions Of
Hamilton-Jacobi-Isaacs Equations. Indiana Univ. Math. J 33, 5 (1984), 773–797.

[18] L.C. Evans and Panagiotis E. Souganidis. 1984. Differential games and representation formulas for solutions of
Hamilton-Jacobi-Isaacs equations. Indiana Univ. Math. J 33, 5 (1984), 773–797.

[19] Lawrence C Evans. 2022. Partial Differential Equations. Vol. 19. American Mathematical Society.
[20] Melanie Haiken. 2021. Starling murmurations are dazzling, ubiquitous, and puzzling. https://tinyurl.com/4973byey

Accessed April 5, 2023.
[21] Melanie Haiken. 2021. These birds flock in mesmerizing swarms of thousands—but why is still a mystery. https:

//tinyurl.com/4973byey Accessed April 5, 2023.
[22] Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric

Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. 2020. Array programming with NumPy. Nature 585,
7825 (2020), 357–362.

[23] Dirk Helbing, Illés Farkas, and Tamas Vicsek. 2000. Simulating dynamical features of escape panic. Nature 407, 6803
(2000), 487–490.

[24] Kerianne L. Hobbs, Mark L. Mote, Matthew C.L. Abate, Samuel D. Coogan, and Eric M. Feron. 2023. Runtime
Assurance for Safety-Critical Systems. IEEE Control Systems Magazine 43 (2023), 28–65. Issue 2.

[25] Eberhard Hopf. 1950. The Partial Differential Equation 𝑢𝑡 + 𝑢𝑢𝑥 = 𝜇⋆
𝑥𝑥. (1950).

[26] R Isaacs. 1999. Differential Games: A Mathematical Theory with Applications to Warfare and Pursuit, Control and
Optimization. Kreiger, Huntigton, NY.

[27] Ali Jadbabaie, Jie Lin, and A Stephen Morse. 2003. Coordination of groups of mobile autonomous agents using nearest
neighbor rules. IEEE Transactions on automatic control 48, 6 (2003), 988–1001.

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

https://doi.org/10.1073/pnas.0711437105
https://arxiv.org/abs/https://www.pnas.org/content/105/4/1232.full.pdf
https://www.dau.edu/tools/se-brainbook/Pages/Technical%20Processes/validation.aspx
https://www.dau.edu/tools/se-brainbook/Pages/Technical%20Processes/validation.aspx
https://www.dau.edu/tools/se-brainbook/Pages/Technical%20Processes/verification.aspx
https://www.dau.edu/tools/se-brainbook/Pages/Technical%20Processes/verification.aspx
https://tinyurl.com/4973byey
https://tinyurl.com/4973byey
https://tinyurl.com/4973byey

000:24 Molu, Lekan

[28] Guang-Shan Jiang and Danping Peng. 2000. Weighted ENO schemes for Hamilton–Jacobi equations. SIAM Journal on
Scientific computing 21, 6 (2000), 2126–2143.

[29] Elia Kaufmann, Antonio Loquercio, René Ranftl, Matthias Müller, Vladlen Koltun, and Davide Scaramuzza. 2020. Deep
Drone Acrobatics. arXiv preprint arXiv:2006.05768 (2020).

[30] S.N. Kruzkov. 1970. First Order Quasilinear Equations In Several Independent Variables. Mathematics of the USSR-
Sbornik (1970).

[31] Pierre-Louis Lions. 1982. Generalized solutions of Hamilton-Jacobi equations. Vol. 69. London Pitman.
[32] John Lygeros. 2004. On reachability and minimum cost optimal control. Automatica 40, 6 (2004), 917–927.
[33] AW Merz. 1972. The game of two identical cars. Journal of Optimization Theory and Applications 9, 5 (1972), 324–343.
[34] Ian Mitchell. 2001. Games of two identical vehicles. Dept. Aeronautics and Astronautics, Stanford Univ. July (2001),

1–29.
[35] Ian Mitchell. 2004. A Toolbox of Level Set Methods, version 1.0. The University of British Columbia, UBC CS

TR-2004-09 (July 2004), 1–94.
[36] Ian Mitchell. 2020. A Robust Controlled Backward Reach Tube with (Almost) Analytic Solution for Two Dubins Cars.

EPiC Series in Computing 74 (2020), 242–258.
[37] Ian M. Mitchell, Alexandre M. Bayen, and Claire J. Tomlin. 2005. A Time-Dependent Hamilton-Jacobi Formulation of

Reachable Sets for Continuous Dynamic Games. IEEE Trans. Automat. Control 50, 7 (2005), 947–957.
[38] Ryosuke Okuta, Yuya Unno, Daisuke Nishino, Shohei Hido, and Crissman Loomis. 2017. CuPy: A NumPy-Compatible

Library for NVIDIA GPU Calculations. In Proceedings of Workshop on Machine Learning Systems (LearningSys) in
The Thirty-first Annual Conference on Neural Information Processing Systems (NIPS).

[39] S Osher and R Fedkiw. 2004. Level Set Methods and Dynamic Implicit Surfaces. Applied Mechanics Reviews 57, 3
(2004), B15–B15.

[40] Stanley Osher and James A. Sethian. 1988. Fronts Propagating with Curvature-Dependent Speed: Algorithms based on
Hamilton-Jacobi Formulations. Journal of Computational Physics 79, 1 (1988), 12–49.

[41] Stanley Osher and Chi-Wang Shu. 1988. Efficient Implementation of Essentially Non-oscillatory Shock-capturing
Schemes. Technical Report 2. Hampton, Virginia. 439–471 pages.

[42] Stanley Osher and Chi-Wang Shu. 1991. High-Order Essentially Nonoscillatory Schemes for Hamilton-Jacobi Equations.
SIAM Journal of Numerical Analysis 28, 4 (1991), 907–922.

[43] James A Sethian. 1996. A Fast Marching Level Set Method For Monotonically Advancing Fronts. Proceedings of the
National Academy of Sciences 93, 4 (1996), 1591–1595.

[44] James A. Sethian. 2000. Level Set Methods And Fast Marching Methods: Evolving Interfaces In Computational
Geometry, Fluid Mechanics, Computer Vision, And Materials Science. Robotica 18, 1 (2000), 89–92.

[45] Chi-Wang Shu and Stanley Osher. 1989. Efficient Implementation of Essentially Non-oscillatory Shock-capturing
Schemes, II. Journal of computational physics 83, 1 (1989), 32–78.

[46] W Murray Wonham. 1985. Linear Multivariable Control: A Geometric Approach. Applications of Mathematics 10
(1985).

A HAMILTONIAN OF A MURMURATION.
In this appendix, we provide a derivation for the overall Hamiltonian of a flock as elucidated in
Theorem 1.

PROOF OF THEOREM 1. We write the free agents’ Hamiltonians in absolute coordinates and that
of the agent under attack in relative coordinates with the pursuer. Henceforth, we drop the templated
time arguments for ease of readability. The overall flock’s Hamiltonian is

∪𝑛𝑎−1
𝑖=1 𝐻

(𝑖)𝑗
𝑓 (𝑥, 𝑝) = ∪𝑛𝑎−1

𝑖=1

[︁
𝑝
(𝑖)𝑗
1 𝑝

(𝑖)𝑗
2 𝑝

(𝑖)𝑗
3

]︁⎡⎣𝑣(𝑖)𝑗 cos𝑥3

𝑣(𝑖)𝑗 sin𝑥3

⟨𝑤(𝑖)𝑗
𝑒 ⟩𝑟

⎤⎦ . (43)

It follows that

∪𝑛𝑎−1
𝑖=1 𝐻

(𝑖)𝑗
𝑓 (𝑥, 𝑝) = ∪𝑛𝑎−1

𝑖=1

[︁
𝑝
(𝑖)𝑗
1 𝑣(𝑖)𝑗 cos𝑥3 + 𝑝

(𝑖)𝑗
2 𝑣(𝑖)𝑗 sin𝑥3 + 𝑝

(𝑖)𝑗
3 ⟨𝑤(𝑖)𝑗

𝑒 ⟩𝑟
]︁
. (44)

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

Examples and Evaluations 000:25

Equation (32) can be re-written as

𝐻(𝑘)𝑗
𝑎 (𝑥, 𝑝) = −

(︃
max

𝑤
(𝑘)𝑗
𝑒 ∈[𝑤𝑗

𝑒,�̄�
𝑗
𝑒]

min
𝑤

(𝑘)𝑗
𝑝 ∈[𝑤𝑗

𝑝,�̄�
𝑗
𝑝]

[︁
𝑝
(𝑘)𝑗
1 (𝑡) 𝑝

(𝑘)𝑗
2 (𝑡) 𝑝

(𝑘)𝑗
3 (𝑡)

]︁
⎡⎢⎣−𝑣

(𝑘)𝑗
𝑒 (𝑡) + 𝑣

(𝑗)
𝑝 cos𝑥

(𝑘)𝑗
3 (𝑡) + ⟨𝑤(𝑘)𝑗

𝑒 ⟩𝑟(𝑡)𝑥
(𝑘)𝑗
2 (𝑡)

𝑣𝑗𝑝(𝑡) sin𝑥
(𝑘)𝑗
3 (𝑡)− ⟨𝑤(𝑘)𝑗

𝑒 ⟩𝑟(𝑡)𝑥
(𝑘)𝑗
1 (𝑡)

𝑤𝑗
𝑝(𝑡)− ⟨𝑤(𝑘)𝑗

𝑒 (𝑡)⟩𝑟

⎤⎥⎦
⎞⎟⎠ , (45)

where 𝑝
(𝑘)𝑗
𝑙 (𝑡) |𝑙=1,2,3 are the adjoint or co-state vectors [33]. For the pursuer, its minimum and

maximum turn rates are fixed so that we have 𝑤𝑗
𝑝 as the minimum turn bound of the pursuing vehicle,

and �̄�𝑗
𝑝 is the maximum turn bound of the pursuing vehicle. Rewriting (44), we find that

𝐻(𝑘)𝑗
𝑎 (𝑥, 𝑝) = −

(︃
max

𝑤
(𝑘)𝑗
𝑒 ∈[𝑤𝑗

𝑒,�̄�
𝑗
𝑒]

min
𝑤

(𝑘)𝑗
𝑝 ∈[𝑤𝑗

𝑝,�̄�
𝑗
𝑝]

[︁
−𝑝

(𝑘)𝑗
1 𝑣(𝑘)𝑗𝑒 + 𝑝

(𝑘)𝑗
1 𝑣𝑗𝑝 cos𝑥

(𝑘)𝑗
3

+𝑝
(𝑘)𝑗
1 ⟨𝑤(𝑘)𝑗

𝑒 ⟩𝑟𝑥
(𝑘)𝑗
2 + 𝑝

(𝑘)𝑗
2 𝑣𝑗𝑝 sin𝑥

(𝑘)𝑗
3 − 𝑝

(𝑘)𝑗
2 ⟨𝑤(𝑘)𝑗

𝑒 ⟩𝑟𝑥
(𝑖)𝑗
1 + 𝑝

(𝑘)𝑗
3

(︁
𝑤𝑗

𝑝 − ⟨𝑤(𝑘)
𝑒 ⟩𝑟

)︁]︁)︁
,

= 𝑝
(𝑘)𝑗
1

(︁
𝑣(𝑘)𝑗𝑒 − 𝑣𝑗𝑝 cos𝑥

(𝑘)𝑗
3

)︁
− 𝑝

(𝑘)𝑗
2 𝑣𝑗𝑝 sin𝑥

(𝑘)𝑗
3

+

(︃
max

⟨𝑤
(𝑘)𝑗
𝑒 ⟩𝑟∈[𝑤𝑗

𝑒,�̄�
𝑗
𝑒]

min
𝑤𝑗

𝑝∈[𝑤𝑗
𝑝,�̄�

𝑗
𝑝]

[︁
⟨𝑤(𝑘)𝑗

𝑒 ⟩𝑟
(︁
𝑝
(𝑘)𝑗
2 𝑥

(𝑘)𝑗
1 − 𝑝

(𝑘)𝑗
1 𝑥

(𝑘)𝑗
2 + 𝑝

(𝑘)𝑗
3

)︁
− 𝑝

(𝑘)𝑗
3 𝑤𝑗

𝑝

]︁)︃
.

(46)

It follows that we have from (46) that

𝐻(𝑘)𝑗
𝑎 (𝑥, 𝑝) = 𝑝

(𝑘)𝑗
1

(︁
𝑣(𝑘)𝑗𝑒 − 𝑣𝑗𝑝 cos𝑥

(𝑘)𝑗
3

)︁
− 𝑝

(𝑘)𝑗
2 𝑣𝑗𝑝 sin𝑥

(𝑘)𝑗
3 − 𝑤𝑗

𝑝|𝑝
(𝑘)𝑗
3 |

+ �̄�𝑗
𝑒

⃒⃒⃒⃒
𝑝
(𝑘)𝑗
2 𝑥

(𝑘)𝑗
1 − 𝑝

(𝑘)𝑗
1 𝑥

(𝑘)𝑗
2 + 𝑝

(𝑘)𝑗
3

⃒⃒⃒⃒
(47)

and that

𝐻
(𝑖)𝑗
𝑓 (𝑥, 𝑝) =

[︁
𝑝
(𝑖)𝑗
1 𝑣(𝑖)𝑗 cos𝑥3 + 𝑝

(𝑖)𝑗
3 𝑣(𝑖)𝑗 sin𝑥3 + 𝑝

(𝑖)𝑗
3 ⟨𝑤(𝑖)𝑗

𝑒 ⟩𝑟
]︁
. (48)

A fortiori the main equation (32) becomes

𝐻(𝑥, 𝑝) = ∪𝑛𝑓

𝑗=1

(︁
∪𝑛𝑎−1
𝑖=1

[︁
𝑝
(𝑖)𝑗
1 𝑣(𝑖)𝑗 cos𝑥3 + 𝑝

(𝑖)𝑗
2 𝑣(𝑖)𝑗 sin𝑥3 + 𝑝

(𝑖)𝑗
3 ⟨𝑤(𝑖)𝑗

𝑒 ⟩𝑟
]︁

∪
[︁
𝑝
(𝑘)𝑗
1

(︁
𝑣(𝑘)𝑗 − 𝑣(𝑘)𝑗 cos𝑥

(𝑘)𝑗
3

)︁
− 𝑝

(𝑘)𝑗
2 𝑣(𝑘)𝑗 sin𝑥

(𝑘)𝑗
3 − 𝑤𝑗

𝑝|𝑝
(𝑘)𝑗
3 |

+�̄�𝑗
𝑒

⃒⃒⃒⃒
𝑝
(𝑘)𝑗
2 𝑥

(𝑘)𝑗
1 − 𝑝

(𝑘)𝑗
1 𝑥

(𝑘)𝑗
2 + 𝑝

(𝑘)𝑗
3

⃒⃒⃒⃒]︂)︂
. (49)

For the special case where the linear speeds of the evading agents and pursuer are equal i.e.
𝑣
(𝑖)𝑗
𝑒 (𝑡) = 𝑣𝑝(𝑡) = +1𝑚/𝑠, we have a murmuration’s Hamiltonian as

𝐻(𝑥, 𝑝) = ∪𝑛𝑓

𝑗=1

(︁
∪𝑛𝑎−1
𝑖=1

[︁
𝑝
(𝑖)𝑗
1 cos𝑥3 + 𝑝

(𝑖)𝑗
2 sin𝑥3 + 𝑝

(𝑖)𝑗
3 ⟨𝑤(𝑖)𝑗

𝑒 ⟩𝑟
]︁

∪
[︁
𝑝
(𝑘)𝑗
1

(︁
1− cos𝑥

(𝑘)𝑗
3

)︁
− 𝑝

(𝑘)𝑗
2 sin𝑥

(𝑘)𝑗
3 − 𝑤𝑗

𝑝|𝑝
(𝑘)𝑗
3 |

+�̄�𝑗
𝑒

⃒⃒⃒⃒
𝑝
(𝑘)𝑗
2 𝑥

(𝑘)𝑗
1 − 𝑝

(𝑘)𝑗
1 𝑥

(𝑘)𝑗
2 + 𝑝

(𝑘)𝑗
3

⃒⃒⃒⃒]︂)︂
. (50)

□

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

000:26 Molu, Lekan

Received 30 April 2024

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 2025.

	1 Examples and Numerical Experiments
	1.1 Two Rockets in a Pursuit-Evasion Terminal Value Differential Game
	1.2 Time Optimal Control: The Double Integral Plant
	1.3 Reach-Avoid Games: Flocks within Starling Murmurations
	1.4 Dubins' Game of Two Identical Vehicles
	1.5 Computational Time Comparison with LevelSet Toolbox

	References
	A Hamiltonian of a Murmuration.

