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Robust Policy Optimization in Continuous-time
Mixed H2/H∞ Stochastic Control

Leilei Cui and Lekan Molu (Member, IEEE)

Abstract—This paper considers a continuous-time infinite-
dimensional stochastic optimal control problem for systems
possessing additive Brownian motion. We optimize the policy on a
cost that is an exponent of the quadratic form of the state, input,
and disturbance terms. We lay out a model-based and model-
free algorithm for RL-based stochastic PO. For the model-based
algorithm, we establish rigorous convergence guarantees. For the
sampling-based algorithm, the cost of trajectories that emanate
from the phase space are parameterized by the Hamilton-Jacobi
Bellman equation. This results in a discrete-time (input and state-
based) sampling scheme accompanied by unknown nonlinear
dynamics with continuous-time policy iterates. The need for
known dynamics operators is thus circumvented and we arrive at
a reinforced PO algorithm (via policy iteration) where an upper
bound on the H2 norm is minimized (to guarantee stability)
and a robustness metric is enforced by maximizing the cost with
respect to a controller that includes the level of noise attenuation
specified by the system’s H∞ norm. Rigorous robustness analyses
is prescribed in an input-to-state stability formalism.

Index Terms—Optimal control, Robust control, H∞ control,
Iterative learning control, Machine learning.

I. INTRODUCTION

Lately, various system-theoretic results analyzing the global
convergence [1] and computational complexity [2] of non-
convex, constrained [3] gradient-based [4] and derivative-
free [5] policy optimization in sampling-based reinforcement
learning (RL) when the complete set of decision (or state
feedback) variables are not previously known have appeared
as control benchmarks [6], [7]. The most basic setting consists
in optimizing over a decision variable K which must be
determined from a (restricted) class of controllers K i.e.
minK∈K J(K) where J(K) is an objective (e.g. tracking error,
safety assurance, goal-reaching measure of performance e.t.c.)
required to be satisfied. In principle, K can be realized as a
linear controller, a linear-in-the-parameters polynomial, or as
a nonlinear kernel in the form of a radial basis function, or
neural network.

These policy optimization (PO) schemes apply to a broad
range of problems and have enjoyed wide success in complex
systems where analytic models are difficult to derive [8]. While
they have become a popular tool for modern learning-based
control [9], the theoretical underpinning of their convergence,
sample complexity, and robustness guarantees are little un-
derstood in the large. Only recently have rigorous analyses
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tools emerged [6], [10] for benchmarking RL with determin-
istic and additive Gaussian disturbance linear quadratic (LQ)
controllers [11], [1].

Tools for analyzing the convergence, sample complexity, or
robustness of RL-based PO largely fall into one of infinite-
horizon (i) discrete-time LQ regulator (LQR) settings i.e.

min
K∈K

E
∞∑
t=0

(x⊤
t Qxt+u⊤

t Rut) s.t. xt+1 = Axt+But, x0 ∼ P0

where A,B,Q, and R are standard LQR matrices for state xt,
control input ut and x0 is drawn from a random distribution
P0 [1]; (ii) discrete-time LQ problems under multiplica-
tive noise i.e. minπ∈Π Ex0,{δi},{γi}}

∑∞
t=0(x

⊤
t Qxt + u⊤

t Rut)
subject to xt+1 = (A+

∑p
i=1 δtiAi)xt+(B+

∑q
i=1 γtiBi)ut

with covariance Ex0
[x0x

T
0 ] and A,B,Q,R are the standard

LQR matrices with δti and γtj serving as the i.i.d zero-
mean and mutually independent multiplicative noise terms
[4]; or (iii) Risk-sensitive H∞-control [12] and discrete- and
continuous-time mixed H2/H∞ design [13], [3] where the up-
per bound on the H2 cost is minimized subject to satisfying a
set of risk-sensitive (often H∞) constraints that attenuate [14]
an unknown disturbance. i.e. minK∈K J(K) := Tr(PKDD⊤)
subject to K := {K|ρ(A − BK) < 1, ∥Tzw(K)∥∞ < γ}
where PK is the solution to the generalized algebraic Riccati
equation (GARE), A,B,D,K are standard closed-loop system
matrices, ∥Tzw(K)∥∞ denotes the H∞-norm of the closed-
loop transfer function from a disturbance input w to its output
z, and γ > 0, Here, γ > 0, upper-bounded by γ⋆, a scalar
measure of system risk-sensitivity [15].

We focus on continuous-time linear systems in which dis-
turbances enter additively as random stochastic Wiener pro-
cesses following recent efforts on policy optimization for
LQ regulator problems [1]; these systems may be modeled
more accurately with uncertain additive Brownian noise where
diffusion processes modeled with Îto’s stochastic calculus
are the theoretical machinery for analysis. Prominent systems
featuring such additive Wiener processes occur in economics
and finance [16], stock options trading [17], protein kinetics,
population growth models, and models involving computations
with round-off error in floating point arithmetic calculations
such as over-parameterized neural network dynamics.

Our goal is to keep a controlled process, z, small in
an infinite-horizon constrained optimization setting under a
minimizing policy u(x(t)) ∈ U ⊆ Rm in spite of unforeseen
additive vector-valued stochastic Brownian process w(t) ∈
W ⊆ Rq — which may be of large noise intensity. In terms
of the L2 norm, we can write ∥z∥2 =

(∫
|z(t)|2dt

)1/2
. The
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associated performance criteria can be realized as minimizing
the expected value of the risk-sensitive linear exponential
functions of positive definite quadratic forms state and control
variables

min
u∈U
Jexp(x0, u, w) :=E

∣∣∣∣
x0∈P0

exp

[
α

2

∫ ∞

0

z⊤(t)z(t)dt

]
,

subject to dx(t) = Ax(t)dt+Bu(t)dt+Ddw(t),

z(t) = Cx(t) + Eu(t), α > 0 (1)

with state process x ∈ Rn, output process z ∈ Rp to be
controlled, and control input u ∈ Rm. The derivative of
w(t) ∈ Rv i.e. dw/dt is a zero-mean Gaussian white noise
with variance Σ, and x(0) is a zero-mean Gaussian random
vector independent of w(t), z(0) = 0, and A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rp×n, D ∈ Rn×q , and E ∈ Rp×m are
constant matrix functions. The random signal x(0) and the
process w(t) are defined over a complete probability space
(Ω,F ,P). Suppose that we carry out a Taylor series expansion
about α = 0 in (1), the variance term, α2var(

∫∞
0

z⊤z),
will be small after minimization. Thus, α can be seen as a
measure of risk-aversion if α > 0. It is important to note that
in this paper, we only consider state feedback when α > 0.
In particular when noise is present in the system, the value
of α signifies the level of noise attenuation that penalizes the
covariance matrix of the system’s noise.

We adopt an adaptive policy optimization policy iteration
(PI) method in a continuous PO scheme. This can be seen as
an instance of the actor-critic (AC) configuration in RL-based
online policy optimization schemes. Without explicit access to
internal dynamics (system matrices), we iterate between steps
of policy evaluation and policy improvement. Mimicking the
actor in an RL AC setting, a parameterized controller must be
evaluated relative to a parameterized cost function (the critic).
The new policy is then used to improve the erstwhile (actor)
policy by aiming to drive the cost to an extremal on the overall.

Contributions: We focus on the more sophisticated case of
optimizing an unknown stochastic linear policy class K in an
infinite-horizon LQ cost setting such that optimization iterates
enjoy the implicit regularization (IR) property [7]—satisfying
H∞ robustness constraints. We place PO for continuous-time
linear stochastic controllers on a rigorous global convergence
and robustness footing. This is a distinguishing feature of our
work. Our contributions are stated below.

• We propose a two-loop iterative alternating best-response
procedure for computing the optimal mixed-design pol-
icy parameterized by continuous time linear quadratic
stochastic control;

• Rigorous convergence analyses follow for the model-
based loop updates;

• In the absence of exact system models, we provide a
robust PO scheme as a hybrid system with discrete-time
samples from a nonlinear dynamical system. Its robust-
ness is analyzed in an input-to-state (ISS) framework
for robustness to perturbations and uncertainties for loop
updates.

• Lastly, we compare our results against the natural policy
gradient [18] in the spirit of recent system-theoretic

analysis works [1], [19], [20], [3].
Notations: The set of all symmetric matrices with di-

mension n is Sn and R (respectively N+) is the set of real
numbers (resp. positive integers). The Kronecker product is
denoted by ⊗. The Euclidean (Frobenius) norm of a vector
or the spectral norm of a matrix is ∥·∥ (∥·∥F ). Let ∥·∥∞
denote the supremum norm of a matrix-valued signals, i.e.
∥∆∥∞ = sups∈Z+

∥∆s∥F . The open ball of radius δ is
Bδ(X) = {Y ∈ Rm×n|∥Y − X∥F < δ}. The maximum
and minimum singular values (eigenvalues) of a matrix A are
respectively denoted by σ̄(A) (λ̄(A)) and σmin(A) (λmin(A)).
The eigenvalues of A ∈ Rn×n are λi(A) for i = 1, 2, · · · , n.
For the transfer function G(s), its H∞ norm is ∥G∥H∞ =
supω∈R σ̄(G(jω)).

The n-dimensional identity matrix is In. The
full vectorization of X ∈ Rm×n is vec(X) =
[x11, x21, · · · , xm1, x12, · · · , xm2, · · · , xmn]

⊤. Let P ∈ Sn;
the half-vectorization of P is the n(n + 1)/2 column
vectorization of the upper-triangular part of P : svec(P ) =
[p11,

√
2p12, · · · ,

√
2p1n, p22, · · · ,

√
2pn−1,n, pnn]

⊤. The
vectorization of the dot product ⟨x, x⊤⟩, where x ∈ Rn, is
vecv(x) = [x2

1, · · · , x1xn, x
2
2, x2x3, · · · , x2

n]
⊤.

Paper Structure: A linear exponential quadratic Gaussian
(LEQG) stochastic optimal control connection to dynamic
games is first established in Section II. In §III, we present
a nested double-loop procedure for robust policy recovery
in a mixed H2/H∞ PO (in model-free and model-based)
settings; this is followed by a rigorous analysis of their
convergence and robustness properties. We demonstrate the
efficacy of our proposed algorithm on numerical examples,
and discuss findings in §IV. To maintain coherency and adhere
to paper length constraints, detailed proofs are deferred to the
appendix.

II. PO: DYNAMIC GAMES CONNECTION

In this section, we connect PO under linear controllers to
the theory of two-person dynamic games.

Assumption 1 : We take C⊤C = Q ≻ 0, ET (C, E) =
(0, R) for some matrix-valued function R ≻ 0. Seeking a
linear feedback controller for (1), we require that the pair
(A,B) be stabilizable. We expect to compute solutions via an
optimization process, therefore we require that unstable modes
of A must be observable through Q. Whence (

√
Q,A) must be

detectable. As is common with many linear stochastic system
with Brownian motion, D is taken to be identity [21], [22].

Given Assumption 1, the LEQG cost functional now be-
comes

Jexp(x0, u) =E
∣∣∣∣
x0∈P0

exp

{
α

2

∫ ∞

0

[
x⊤(t)Qx(t)+

u⊤(t)Ru(t)
]
dt
}
. (2)

For a fixed α > 0 and the closed-loop transfer function is

Tzw(K) = (C − EK) (sI −A+BK)−1D. (3)

The set of all suboptimal controllers that robustly stabilizes the
linear system against all (finite gain) stable perturbations Σ,
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interconnected to the system by w = Σz, such that ∥Σ∥∞ ≤
1/γ is

K = {K : λi(A−B1K) < 0, ∥Tzw(K)∥∞ < γ}. (4)

Proposition 1 : [23, Th. II.1] The optimal control to the LEQG
optimization problem (1) and cost functional (2) under u in
the infinite-horizon setting is of a linear-in-the-data form i.e.
u⋆(t) = −K⋆

leqgx̂(t) where gain K⋆
leqg = R−1B⊤Pτ , and

Pτ is the unique, symmetric, positive definite solution to the
algebraic Riccati equation (ARE)

A⊤Pτ + PτA− Pτ (BR−1B⊤ − α−2DD⊤)Pτ = −Q. (5)

Corollary 1 : In the infinite-horizon time-invariant case with
constant system matrices and a stabilizable (A,B), by the
theorem on “limit of monotonic operators” [24] and [15,
Theorem 9.7], we find that P ⋆ ≜ P∞ = limτ→∞ Pτ , and
K⋆

leqg ≜ K∞ = limτ→∞ Kτ .

Remark 1 : It is well-known that directly solving the LEQG
problem (1) in policy-gradient frameworks incurs biased gra-
dient estimates during iterations; this may affect the preserva-
tion of risk-sensitivity in infinite-horizon LTI settings (see [5],
[7]). As such, we introduce a workaround with an equivalent
dynamic game formulation to the stochastic LQ PO control
problem.

Lemma 1 (Closed-loop Two-Player Game Connection):
Consider the parameterized soft-constrained upper value, with
a stochastic perturbed noise process w(t), which enters the
system dynamics as an additive bounded Gaussian with known
statistics1,

min
u∈U

max
ξ∈W
J̄ γ(x0, u,ξ) := E

∣∣∣∣
x0∼P0, ξ(t)

∫ ∞

0

[
x⊤(t)Qx(t)+

u⊤(t)Ru(t)− γ2ξ⊤(t)ξ(t)
]
dt

subject to dx(t) = Ax(t)dt+Bu(t)dt+Dξ(t),

z(t) = Cx(t) + Eu(t) (6)

with ξ(≡ dw) as the zero-mean Gaussian noise with variance
Σ, scalar γ > 0 denoting the level of disturbance attenuation,
and x0 an arbitrary initial state. Suppose that there exists a
non-negative definite (nnd) solution of (5) (with α replaced
by γ), then its minimal realization, P ⋆, exists. If (A,Q

1
2 )

is observable, then every nnd solution P ⋆ of (5) is positive
definite. For a nnd P ⋆, there exists a common upper and lower
value for the game and if J̄γ is finite for some γ = γ̂ > 0, then
J̄γ is bounded (if and only if the pair (A,B) is stabilizable)
and equivalent to the lower value J γ

2. In addition, for a
bounded J̄γ for some γ = γ̂ and for optimal gain matrices,
K⋆ = R−1B⊤PK,L, L⋆ = γ−2D⊤PK,L, J̄γ admits the
following Hurwitz feedback matrices for all γ > γ̂

A⋆
K = A−BK⋆, A⋆

K,L = A⋆
K +DL⋆ (7)

1Since the time derivative of a Brownian process w(t) is dw(t), we
maximize over the Gaussian dw(t), rather than the unbounded stochastic
noise w(t).

2The lower value is constructed by reversing the order of play in the value
defined in (6).

where the nnd PK,L is the unique solution of (5) for γ > γ̂ in
the class of nnd matrices if it renders A⋆

K,L Hurwitz. Whence,
the saddle-point optimal controllers are

u⋆(x(t)) = −K⋆x(t), ξ⋆(x(t)) = L⋆x(t). (8)

Proof. The proof follows that in [15, Th. 9.7] exactly if we
preserve the γ−1 term in the ARE of equation 9.31 in [15]
and replace it by γ−2 as we have here.

For any stabilizing control pair (K,L), if (8) is applied
to the system in (6), the resulting cost from (6) is J̄γ =
(x⊤

0 PK,Lx0) [25]. In what follows, we present a double-loop
iterative solver for the gains K and L in (8) – in model-based
and model-free settings.

III. POLICY OPTIMIZATION VIA POLICY ITERATION
We now present a special case to Kleinman’s policy iteration

(PI) algorithm [25] in a PO setting via a nested double loop PI
scheme when (i) exact models are known; this will provide a
barometer for our later analysis when (ii) exact system models
are unknown.

Let p and q be indices of nested iterations between updating
the closed-loop minimizing player’s controller Kp (in an outer
loop) and the maximizing player’s controller Lq(Kp) (in an
inner-loop) for p = {1, 2, . . . , p̄} and q = {1, 2, . . . , q̄} for
(p̄, q̄) ∈ N+. Furthermore, define the identities

Ap
K = A−BKp, Ap,q

K,L = Ap
K +DLq(Kp),

Qp
K = Q+K⊤

p RKp, Aγ
K = Ap

K + γ−2DD⊤P p
K . (9)

For the soft-constrained value functional (6) at the p’th iterate
of the minimizing controller K we have the following value
iteration form for (5),

Ap⊤
K P p

K + P p
KAp

K +Qp
K + γ−2P p

KDD⊤P p
K = 0, (10a)

Kp+1 = R−1B⊤P p
K (10b)

where P p
K is the p’th iterate’s solution to (10). Similarly, for

the maximizing controller, Lq(Kp), the following closed-loop
continuous-time ARE (CARE) iteration applies

A
(p,q)⊤

K,L P p,q
K,L + P p,q

K,LA
p,q
K,L +Qp

K − γ2L⊤
q (Kp)Lq(Kp) = 0

(11a)

Kp+1 = R−1B⊤P p,q
K , Lq+1(Kp) = γ−2D⊤P p,q

K,L (11b)

where P p,q
K,L is the solution to (11) for gains [Kp, Lq(Kp)].

Choosing a stabilizing minimizing player control gain, Kp

we first evaluate u’s performance by solving (10). This is the
policy evaluation step in PI. The policy is then improved in
a following iteration by solving for the cost matrix in (11b) –
this is the policy improvement step. The process can thus be
seen as a policy iteration algorithm where the performance
of an initial control gain Kp is first evaluated against a cost
function. A newer evaluation of the cost matrix P p,q

K,L is then
used to improve the controller gain Kp+1 in the outer loop.

Problem 1 (Model-Based Policy Iteration): Given system
matrices A,B,C,D,E, find the optimal controller gains Kp,
Lq(Kp) that robustly stabilizes (1) such that the controller



MANUSCRIPT SUBMISSION TO TRANSACTIONS ON AUTOMATIC CONTROL, JUNE 2023 4

Algorithm 1: (Model-Based) PO via Policy Iteration
Input: Max. outer iteration p̄, q = 0, and an ϵ > 0;
Input: Desired risk attenuation level γ > 0;
Input: Minimizing player’s control matrix R ≻ 0.

1 Compute (K0, L0) ∈ K; ▷ From [26, Alg. 1];
2 Set P 0,0

K,L = Q0
K ; ▷ See equation (9);

3 for p = 0, . . . , p̄ do
4 Compute Qp

K and Ap
K ▷ See equation (9);

5 Obtain P p
K by evaluating Kp on (10);

6 while ∥P p
K − P p,q

K,L∥F ≤ ϵ do
7 Compute Lq+1(Kp) := γ−2D⊤P p,q

K,L;
8 Solve (11) until ∥P p

K − P p,q
K,L∥F ≤ ϵ;

9 q̄ ← q + 1
10 end
11 Compute Kp+1 = R−1B⊤P p,q̄

K,L ▷ See (11b) ;
12 end

gains do not leave the set of all suboptimal controllers denoted
by

K̆ = {(Kp, Lq(Kp)) : λi(A
p
K) < 0, λi(A

p,q
K,L) < 0,

∥Tzw(Kp, Lq(Kp))∥∞ < γ for all (p, q) ∈ N}. (12)

The procedure for obtaining the optimal P ⋆ in Problem 1 is
described in Algorithm 1. It finds a global Nash Equilibrium
(NE) (or equivalently a saddle-point equilibrium) [19] of the
LQ zero-sum game (6) by solving the nonlinear ARE (11) in
a nested two-loop policy iteration (PI) scheme.

A. Outer Loop Stability, Optimality, and Convergence
We now discuss the convergence guarantees of the iterations

under perfect dynamics. Let us first introduce the preliminary
results.

Lemma 2 : Under Assumption 1 and for the ARE (10), if
K0 ∈ K3, then for any p ∈ N+, we must have the following
conditions for the optimal K⋆ and P ⋆,
(1) Kp ∈ K;
(2) P 0

K ⪰ P 1
K ⪰ · · ·P

p
K ⪰ · · · ⪰ P ⋆;

(3) limp→∞∥Kp −K∗∥F = 0, limp→∞∥P p
K − P ∗∥F = 0.

Remark 2 : Lemma 2 is inspired by [25]. The proof to the
first statement is given in the appendix while the remaining
statements’ proofs follow from [25].

In [7, Theorem A.7 and A.8], the authors showed that
the controller update phase in the outer-loop has a global
sub-linear and local quadratic convergence rates. We now
demonstrate that the outer-loop iteration has a global linear
convergence rate. Let us first establish a few preliminary
results that we will need in the proof of our main result.

Lemma 3 : Let Ψ = (Kp+1 − Kp)
⊤R(Kp+1 − Kp); and

Ψ = Ψ⊤ ⪰ 0. Furthermore, let Φ ∈ Rn×n be Hurwitz so that
Θ =

∫∞
0

e(Φ
⊤t)Ψe(Φt)dt and define c(Φ) = log(5/4)∥Φ∥−1.

Then, ∥Θ∥ ≥ 1
2c(Φ)∥Ψ∥.

3The K defined here refers to the one defined in (4).

Proof. Define S(t) =
∑∞

k=1(Φt)
k/k! so that eΦt = In +∑∞

k=1(Φt)
k/k! ≜ In + S(t) after a Taylor series expansion.

Whence ∥S(t)∥ =
∑∞

k=1(∥Φ∥t)k/k! or ∥S(t)∥ ≥ e∥Φ∥t − 1.
For x0 ̸= 0 satisfying x⊤

0 Ψx0 = ∥Ψ∥∥x0∥2, it can be verified
that

x⊤
0 Θx0 =

∫ ∞

0

x⊤
0 e

Φ⊤
ΨeΦx0dt ≥

∫ c(Φ)

0

x⊤
0 e

Φ⊤
ΨeΦx0dt,

≥
∫ c(Φ)

0

1

2
∥Ψ∥∥x0∥2dt ≥

1

2
c(Φ)∥Ψ∥∥x0∥2. (13)

A fortiori, Lemma 3’s proof follows from (13).

Remark 3 : For AK = A−BK, we know from the bounded
real Lemma [7, Lemma A.1] that the Riccati equation

A⊤
KPK + PKAK +QK + γ−2PKDD⊤PK = 0 (14)

admits a unique positive definite solution PK ≻ 0 with a
Hurwitz (AK + γ−2DD⊤PK).

Lemma 4 (Optimality of the iteration): Consider any K ∈
K, let K ′ = R−1B⊤PK (where PK is the solution to (14),
and ΨK = (K−K ′)⊤R(K−K ′). If ΨK = 0, then K = K⋆.

Lemma 5 (Bound on Cost Difference Matrix): For any h >
0, define Kh := {K ∈ K|Tr(P p

K − P ⋆) ≤ h}. For any K ∈
Kh, let K ′ := R−1B⊤P p

K , where P p
K is the p’th iterate’s

solution to (14), and ΨKp
= (Kp−K ′

p)
⊤R(Kp−K ′

p). Then,
there exists b(h) > 0, such that ∥P p

K−P ⋆∥F ≤ b(h)∥ΨKp∥F .

Theorem 1 : For any h > 0 and K0 ∈ Kh, there exists
α(h) ∈ R such that Tr(P p+1

K − P ⋆) ≤ α(h)Tr(P p
K − P ⋆).

That is, P ⋆ is an exponentially stable equilibrium.

Proof. It can be verified that [P p
K − P p+1

K ] satisfies the
Lyapunov equation,

A
(p+1)⊤

K

[
P p
K − P p+1

K

]
+
[
P p
K − P p+1

K

]
A

(p+1)
K +

+ (Kp+1 −Kp)
⊤R(Kp+1 −Kp) = 0, (15)

so that (Kp+1−Kp)
⊤R(Kp+1−Kp) ≥ 0 implies that P p

K −
P p+1
K ⪰ 0 by Lemma 14. Hence A

(p+1)
K must be Hurwitz go-

ing by Lemma 15. Define Hp
K =

∫∞
0

eA
(p+1)⊤
K tΨpe

A
(p+1)
K tdt

where Ψp is as defined in Lemma 3. Thus, we have by the
second statement of Lemma 15 that the cost matrix admits the
form (see statement 1 of Lemma 14)

P p
K − P p+1

K ⪰ Hp
K . (16)

From Lemma 2, we have for a p > 0 that P 0
K ⪰ P p

K so that
for an h ≥ 0, we find that

∥Ap+1
K ∥ ≤ ∥A∥+ (∥BR−1B⊤∥+ γ−2∥DD⊤∥)h. (17)
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Set c(h) = log(5/4)/∥A∥+ (∥BR−1B⊤∥+ γ−2∥DD⊤∥)h
so that we have ∥Hp

K∥ ≥
1
2c(h)∥Ψp∥ from Lemma 3. Using

Lemmas 5 and 13, and taking the trace of (16) we find that

Tr(P p+1
K − P ⋆) ≤ Tr(P p

K − P ⋆)− Tr(Hp
K),

≤ Tr(P p
K − P ⋆)− c(h)∥Ψp∥/2,

≤ Tr(P p
K − P ⋆)−

√
nc(h)

2n
∥Ψp∥F ,

≤ Tr(P p
K − P ⋆)− c(h)

2
√
nb(h)

∥P p
K − P ⋆∥F ,

≤
(
1− c(h)

2nb(h)

)
Tr(P p

K − P ⋆). (18)

The proof follows if we set α(h) = 1− c(h)/2nb(h).

B. Inner Loop Stability, Optimality, and Convergence
We now analyze the monotonic convergence rate of the

inner loop. Given arbitrary gains Kp ∈ K and Lq(Kp),
let P p,q

K,L be the positive definite solution of the associated
Lyapunov equation (11). The following lemma shows that the
cost matrix P p,q

K,L monotonically converges to (11)’s solution.

Lemma 6 : Suppose that L0(K0) is stabilizing, then for any
q ∈ N+ (with P p,q̄

K,L as the solution to (11)),
1) Ap,q

K,L is Hurwitz;

2) P p,q̄
K,L ⪰ · · · ⪰ P

(p,q+1)
K ⪰ P p,q

K ⪰ · · · ⪰ P p,0
K,L; and

3) limq→∞∥P p,q
K,L − P p,q̄

K,L∥F = 0.

A proof is provided in the Appendix. We next analyze the
monotonic convergence of the inner loop of the nested double
loop algorithm. Let us first discuss a preliminary result.

Lemma 7 (Monotonic Convergence of the Inner-Loop): For
any K ∈ K, let L(K) be the control gain for the player w
such that AK +DL(K) is Hurwitz. Let PL

K be the solution of

(AK +DL(K))
⊤
PL
K + PL

K (AK +DL(K)) +QK

− γ2L(K)⊤L(K) = 0. (19)

Let L′(K) = γ−2D⊤PL
K and ΨL

K = γ−2(L′(K) −
L(K))⊤(L′(K) − L(K)). Then, for a c(K) =

Tr
(∫∞

0
e(AK+DL(K⋆))te(AK+DL(K⋆))⊤tdt

)
, the following

inequality holds Tr(PK − PL
K) ≤ ∥ΨL

K∥c(K).

Theorem 2 : For a K ∈ K̆, and for any (p, q) ∈ N+, there
exists β(K) ∈ R such that

Tr(P p
K − P p,q+1

K,L ) ≤ β(K)Tr(P p
K − P p,q

K,L). (20)

Proof. Define Ψq
K = γ2 [Lq+1 − Lq]

⊤
[Lq+1 − Lq] in (A.15)

and F q
K =

∫∞
0

e(A
(p,q+1)⊤
K,L )tΨq

KeA
(p,q+1)t
K,L dt. By Lemma 6,

Ap,q+1
K,L is Hurwitz in (A.15) so that from Lemma 14 we have

P p,q+1
K,L − P p,q

K,L = F q
K . (21)

By Lemma 6, P p,q+1
K,L ⪰ P p,q

K,L so that

∥A(p,q+1)
K,L ∥ ≤ ∥A−BKp∥+ γ−2∥DD⊤∥∥P p

K∥. (22)

Let d(K) = log(5/4)/
(
∥AK∥+ γ−2∥DD⊤∥∥P p

K∥
)
, (23)

so that subtracting both sides of (21) from P p
K and taking the

trace of the resulting expression, we find that

Tr(P p
K−P

p,q+1
K,L ) = Tr(P p

K − P p,q
K,L)− Tr(F q

K), (24a)

≤ Tr(P p
K − P p,q

K,L)− ∥F
q
K∥, (24b)

≤ Tr(P p
K − P p,q

K,L)−
1

2
d(K)∥Ψq

K∥, (24c)

where we have used Lemma 13 to arrive at the inequality in
(24b), and extended Lemma 3 to arrive at (24c) since Ψq

K =

Ψq⊤

K . Furthermore, from Lemma 7

Tr(P p
K − P p,q

K,L) ≤
(
1− d(K)

2c(K)

)
Tr(P p

K − P p,q
K,L). (25)

The proof follows if we set β(K) = 1− d(K)/2c(K).

Remark 4 : As seen from Lemma 6, P p
K − P p,q

K,L ⪰ 0.
From Lemma 13 and the result of Theorem 2, we have
∥PK−P p,q

K,L∥F ≤ Tr(PK−P p,q
K,L) ≤ β(K)Tr(PK), i.e. P p,q

K,L

exponentially converges to PK in the Frobenius norm.

Lemma 8 (Uniform Convergence of Iterates): For any h >
0, K ∈ Kh, and ϵ > 0, there exists q′(h) ∈ N+ independent
of K, such that if q ≥ q′(h), ∥P p,q

K,L − PK∥F ≤ ϵ.

Proof of Lemma 8. This Lemma is an immediate outcome of
Theorems 1 and 2.

C. Sampling-based PO on Hybrid Discrete-Time Nonlinear
System

The exact knowledge of the system matrices A,B,C,D,E
are often unavailable so that the policy evaluation step will
result in biased estimates. When errors are present from using
I/O or state data for the PO procedure in Alg. 1, residuals from
early termination of numerically solving Line 8 in Alg. 1, or
using an approximate cost function owing to inexact values of
Q and R, the algorithm may fail to converge.

Problem 2 (Sampling-based Policy Optimization): If
A,B,C,D,E, P are all replaced by approximate matri-
ces Â, B̂, Ĉ, D̂, Ê, P̂ , under what conditions will the se-
quences {P̂ p,q

K,L}
(p,q)=∞
(p,q)=1 , {K̂p}∞p=0, {L̂q}∞q=0 converge to a

small neighborhood of the optimal values {P ⋆
K,L}

(p,q)=∞
(p,q)=0 ,

{K⋆
p}∞p=0, and {L⋆

q}∞q=0.

1) Discrete-Time Nonlinear System Interpretation

From Assumption 1, a P 0
K ∈ Sn exists such that when

applied to find K0 i.e. K0 = R−1B⊤P 0
K , such a K0 will be

stabilizing. Now, factoring in approximation errors between
the policy evaluation and improvement steps, we end up with
a hybrid system consisting of a continuous-time policy gain
pair (K̂p, L̂q(K̂p)) and a learning algorithm that is essentially
a discrete sampled data from a nonlinear system (owing to
errors from various sources). We will leverage Lemmas 2
and 6 to show that under inexact loop updates and lumping
gain iterate estimate errors as system inputs to the online PO
scheme, it converges to the optimal solution and closed-loop
dynamic stability is guaranteed in an input-to-state stability
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framework (ISS) [27]. Hence the loops are discrete-time
nonlinear systems.

2) Online (Model-Free) Nested Loop Reparameterization

Consider (10b) and suppose that P̂ 0
K ∈ Sn is chosen

following Assumption 1. It follows that a K̂1
k = R−1B⊤P̂ 0

K

will be stabilizing since K̃1
k = K̂1

k − K1
k ≜ 0. The same

argument applies for L̂1. For (p, q) > 0, we must show that
for K̃p

k = K̂p
k −Kp

k ≜ 0 so that the sequence {P p,q
K,L}∞(p,q)=0

will converge to the locally exponentially stable P̂ ⋆
K,L going by

Lemmas 2 and 6. We proceed by lumping the estimate errors
as an input into the gain terms to be computed in the PO
algorithm. Under inexact outer loop update, the iterate Kp+1

becomes inaccurate so that the inexact outer-loop GARE value
iteration involves the recursions

Âp⊤
K P̂ p

K + P̂ p
KÂp

K + Q̂p
K + γ−2P̂ p

KDD⊤P̂ p
K = 0, (26a)

K̂p+1 = R−1B⊤P̂ p
K + K̃p+1 ≜ K̄p+1 + K̃p+1, (26b)

where Âp
K = A − BK̂p and Q̂p

K = Q + K̂⊤
p RK̂p. Similar

argument applies to the inner loop updates so that the inexact
inner loop update is

Âp,q⊤
K,L P̂ p,q

K,L + P̂ p,q
K,LÂ

p,q
K,L + Q̂p

K − γ2L̂⊤
q L̂q(K̂p) = 0 (27a)

K̂p+1 = R−1B⊤P̂ p,q
K + K̃p, (27b)

L̂q+1(K̂p) = γ−2D⊤P̂ p,q
K,L + L̃q+1(K̃p) (27c)

≜ L̄q+1(K̄p) + L̃q+1(K̃p). (27d)

The infinite-dimensional stochastic differential equation (1)
in light of the identities (9) under inexact updates for (p, q) >
0, becomes the discrete-time system

dx = [Âp,q
K,Lx+B(K̂px−DL̂q(Kp) + u)]dt+Ddw. (28)

On a time interval [s, s+ δs], it follows from Itô’s stochastic
calculus and the Hamilton-Jacobi-Bellman equation that

d
[
x⊤(s+ δs)P̂ p,q

K,Lx(s+ δs)− x⊤(s)P̂ p,q
K,Lx(s)

]
=

(dx)⊤P̂ p,q
K,Lx+ x⊤P̂ p,q

K,Ldx+ (dx)⊤P̂ p,q
K,L(dx). (29)

Along the trajectories of equation (28) and using the gains in
(11), the r.h.s. in in (29) becomes

x⊤
[
Âp,q⊤

K,L P̂ p,q
K,L + P̂ p,q

K,LÂ
p,q
K,L

]
xdt+ 2x⊤P̂ p,q

K,LDdw (30)

+ 2x⊤P̂ p,q
K,LB(Kpx−DL̂q(Kp) + u)dt+ Tr(D⊤PD),

so that x⊤(s+ δs)P̂ p,q
K,L(s+ δs)− x⊤(s)P̂ p,q

K,Lx(s)

=

∫ s+δs

s

[
(−x⊤Q̂p

Kx− γ2w⊤w)dt+ 2γ2x⊤L̂⊤
q+1(Kp)dw

]
+

∫ s+δs

s

2x⊤K̂⊤
p+1R

[
K̂px−DL̂q(K̂p) + u

]
dt

+

∫ s+δs

s

Tr(D⊤P̂ p,q
K,LD)dt. (31)

Observe: The system dependent matrices Âp,q
K,L, B,C,D from

equation (30) are now replaced by input and state terms
including Q̂p

K , K̂p+1, and L̂q+1 which are all retrievable via

online measurements. We essentially end up with an input-to-
state system. The price we pay is that the noise feedthrough
matrix D must be known precisely. In this article, as is
common in many linear stochastic system with Brownian
motion, D is taken to be identity [21], [22].

3) Sampling-based PO Scheme

Our goal is to explore the system model until exact equality
of Âp,q

K,L, P̂
p,q
K,L and K̂p+1, L̂q+1(Kp) to the corresponding

terms in (11) occur. To this end, (31) allows us to explore
with the controls u = −K0x+ ηp and w = −L0x+ ηq where
(ηp, ηq) is drawn uniformly at random over matrices with a
Frobenium norm r similar to [4], [1]. Let us now introduce
the following identities,

x⊤Q̂p
Kx = (x⊤ ⊗ x⊤)vec(Q̂p

K),

γ2w⊤w = γ2(w⊤ ⊗ w⊤) vec(Iv),

2γ2x⊤L̂⊤
q+1(K̂p)dw = 2γ2(In ⊗ x⊤)dw vec(L̂⊤

q+1(K̂p)),

2x⊤K̂⊤
p+1RK̂px = 2(x⊤ ⊗ x⊤)(In ⊗ K̂⊤

p )vec(K̂⊤
p+1R),

2x⊤K̂⊤
p+1RDL̂q(K̂p) = 2(L̂⊤

q (K̂p)D
⊤ ⊗ x⊤)vec(K̂⊤

p+1R),

2x⊤K̂⊤
p+1Ru = 2(u⊤ ⊗ x⊤)vec(K̂⊤

p+1R),

T r(D⊤P̂ p,q
K,LD) = vec⊤(D)vec(P̂ p,q

K,LD). (32)

Furthermore, consider the matrices ∆xx ∈ R
n(n+1)

2 l, ∆ww ∈
R

v(v+1)
2 l, Ixx ∈ Rl×n2

, and Iux ∈ Rl×mn for l ∈ N+ so that

∆xx = [vecv(x1), . . . ,vecv(xl)]
⊤
, xl = xl+1 − xl,

∆ww = [vecv(w1), . . . ,vecv(wl)]
⊤
, wl = wl+1 − wl,

Ixx =

[∫ s1

s0

x⊗ x dt, . . . ,

∫ sl

sl−1

x⊗ xdt

]⊤
,

Iww =

[∫ s1

s0

w ⊗ w dt, . . . ,

∫ sl

sl−1

w ⊗ w dt

]⊤
,

Ixw =

[∫ s1

s0

(In ⊗ x)dw, . . . ,

∫ sl

sl−1

(In ⊗ x)dw

]⊤
,

Iux =

[∫ s1

s0

u⊗ xdt, . . . ,

∫ sl

sl−1

u⊗ xdt

]⊤
. (33)

Next, set

Θp,q
K,L =

[
∆xx,−2Ixx(In ⊗ K̂⊤

p ) + 2(L̂⊤
q (K̂p)D

⊤ ⊗ x⊤)

−2Iux,−2γ2Ixw,−vec⊤(D)vec(P̂ p,q
K,LD)

]
, (34a)

Υp,q
K,L =

[
−Ixxvec(Q̂p

K), −γ2Iwwvec(Iv)
]
. (34b)

Define 1q2 as one-vector with dimension q2. Thus,

Θp,q
K,L

[
svec(P p,q

K,L) vec(K̂⊤
p+1R) vec(L̂⊤

q+1(K̂p)) 1q2

]⊤
= Υp,q

K,L. (35)
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Fig. 1: Flowchart for Sampling-based PO in Continuous-time
Mixed H2/H∞ Stochastic Control.

Suppose that Θp,q
K,L is of full rank, then we can retrieve the

unknown matrices via least squares estimation i.e.
svec(P p,q

K,L)

vec(K̂⊤
p+1R)

vec(L̂⊤
q+1(K̂p))dw
1q2

 = (Θp,q⊤
K,L Θp,q

K,L)
−1Θp,q⊤

K,L Υp,q
K,L. (36)

We thus end up with a scheme for retrieving the system
matrices provided that the algorithm is robust to perturbations
upon iterating through (36) for each (p, q). The full scheme
is summarized in the flowchart of Fig. 1. We next state the
condition under which Θp,q

K,L is of full rank.

Lemma 9 : [28, Lemma 6] If there exists an integer l0 > 0
such that for all l ≥ l0, rank(Ixx, Iux, Ixw,1q2) = n(n+1)+
mn+nq+ q2, then Θp,q

K,L has full rank for all (p, q) ∈ (p̄, q̄).

Remark 5 : Lemma 9 allows the convergence assurance of
Fig. 1 under the condition that the rank condition be fulfilled.

4) Robustness of Minimizing Controller to Perturbations

We now analyze the robustness of the sampling-based
scheme as a hybrid nonlinear discrete time system gains with
continuous-time dynamics. Let P̃ = PK−P̂K and K̃ = K−K̂
denote errors arising from the inexact updates.

Lemma 10 (Outer-Loop Robustness to Perturbations): For
any K ∈ K, there exists an e(K) > 0 such that for a
perturbation K̃, K + K̃ ∈ K, as long as ∥K̃∥ < e(K).

As long as K̃ is small, if we start with a robustly stabilizing
K ∈ K, we can guarantee the feasibility of the iterates. Let
us first introduce the following preliminary result.

Lemma 11 : For any h > 0 and K ∈ Kh, let K ′ =
R−1B⊤PK , where PK is the solution of (14), and K̂ ′ =
K ′ + K̃. Then, there exists f(h) > 0, such that K̂ ′ ∈ Kh as
long as ∥K̃∥ < f(h).

Theorem 3 : The inexact outer loop is small-disturbance ISS.
That is, for any h > 0 and K̂0 ∈ Kh, if ∥K̃∥ < f(h), there
exist a KL-function β1(·, ·) and a K∞-function γ1(·) such that

∥P p

K̂
− P ⋆∥ ≤ β1(∥P 0

K̂
− P ∗∥, p) + γ1(∥K̃∥). (37)

Proof. From Lemma 11, K̂p
K ∈ Kh for any p ∈ N+. From

(A.27), at the p’th iteration, we have

Tr(P p

K̂
− P ⋆) ≤ (1− f

1
(h))Tr(P p−1

K̂
− P ⋆)

+ f̄2(h)∥R∥∥K̃p
K∥

2.
(38)

Repeating (38) for p, p− 1, · · · , 1,

Tr[P p

K̂
− P ⋆] ≤ (1− f

1
)pTr(P 1

K̂
− P ⋆) +

f̄2∥R∥∥K̃∥2∞
f
1
(h)

.

(39)

It follows from (39) and [29, Theorem 2] that

∥P p

K̂
− P ⋆∥F ≤ (1− f

1
)p
√
n∥P 1

K̂
− P ⋆∥F +

f̄2∥R∥∥K̃∥2∞
f
1

.

(40)

As p → ∞, P p

K̂
→ P ⋆. The radius of the neighbor of P ⋆ is

proportional to ∥K̃∥2∞. Thus, the proof follows.

5) Robustness of Maximizing Controller to Perturbations

The perturbed inner-loop iteration (27) has inexact matrix
Âp,q

K,L, and sequences {L̂q+1(Kp)}∞q=0, and {P̂ p,q
K,L}∞q=0. We

next analyze its robustness to perturbations when it differs
from the exact loop matrices and sequences.

Lemma 12 (Stability of the Inner-Loop’s System Ma-
trix): Given K ∈ K̆, there exists a g ∈ R+, such that if
∥L̃q+1(Kp)∥F ≤ g, Âp,q

K,L is Hurwitz for all q ∈ N+.

Theorem 4 : Assume ∥L̃q(Kp)∥ < e for all q ∈ N+. There
exists β̂(K) ∈ [0, 1), and λ(·) ∈ K̆∞, such that

∥P̂ p,q
K,L − P p,q

K,L∥F ≤ β̂q−1(K)Tr(P p,q
K,L) + λ(∥L̃∥∞). (41)

From Theorem 4, as q → ∞, P̂ p,q
K,L approaches the so-

lution PK and enters the ball centered at P p,q
K,L with radius

proportional to ∥L̃∥∞. Hence, the proposed inner-loop iterative
algorithm well approximates P p,q

K,L.

IV. NUMERICAL EXPERIMENTS

We consider a humanoid robot model [30], [31] in the form
of a three-link kinematic chain; and a standard double pen-
dulum. The humanoid is non-minimum phase, underactuated,
and possesses badly damped poles. Its passive joint can be
modeled as a Wiener process noise that additively perturbs its
dynamics.

This model has three states: two upper hinge (the hip and
knee) actuated joints and a lower hinge (the ankle) passive
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TABLE I: Computational Time: Model-based PO vs. Model-
free PO vs. NPG.

Policy Optimization Computational time (secs)
Double Inverted Pendulum Triple Inverted Pendulum

Model-based Model-free NPG Model-based Model-free NPG
0.0901 0.3061 2.1649 0.1455 0.7829 2.3209

5 10 15 20
0

0.5

1

5 10 15 20
0

0.5

5 10 15 20

4.8

5

Fig. 2: Model-based design: ∥K̃∥∞ = 0.15.

joint. The dynamics is x = [θ1, θ2, θ3, θ̇1, θ̇2, θ̇3]
⊤, where θ1,

θ2, and θ3 are the angles of the ankle, hip, and knee respec-
tively. The linearized model of the triple inverted pendulum
admits a form of the infinite dimensional linear PDE in (1),
where A ∈ R6×6 and B ∈ R6×2(see [32, Section 3]), and D =[
03×3, I3

]⊤
. We impose an H∞ norm bound of γ = 5 on the

robot, set the initial state to x(0) = [0,−5, 10, 10,−10, 10]⊤
and set C =

[
I6, 02×6

]⊤
, E =

[
06×2, I2

]⊤
. Throughout,

w(t) is set to a Wiener process such that its time derivative
dw is drawn from a zero-mean Gaussian distribution with
variance X 2. We chose a step size, dt = 0.0001. We next
report our findings for the model-based, model-free algorithm,
and the natural policy gradient algorithm (NPG) [18]. For other
numerical experiment reports, we refer readers to our recent
conference paper [26].

A. Model-based Mixed Design vs. NPG
Let us describe numerical experiments on the algorithms

described so far. At each iteration, K̃p is sampled from a
uniform Gaussian distribution whose Frobenius norm is 0.15.
We found

K̂0 =

[
−203.3 −74.2 −31.4 −67.7 −28.4 −16.5
−529.5 −198.8 −77.8 −175.5 −78.7 −39.0

]
.

The results for running the model-based and NPD algorithms
are shown in Figures 2 and 4. The robust mixed design PO
scheme approaches the optimal solution after the 5’th iteration
(See Fig. 2). At the last iteration, the deviation from the
optimal cost matrix4 is 2.9%, while the gain error5 is 2.6%. In
contrast, NPG exhibits cost matrix and controller gain errors
that are unbounded as the iteration lengthens.

We compared the time it takes to compute the optimal
policies in model-based nested algorithm against NPG in
Table I. For the double and triple inverted pendulums, the
computational time of our algorithm is much less than that
of NPG by around 90%. This is a validation of our superior
convergence rate compared to NPG’s sublinear convergence
rate.

B. Sampling-based Mixed Design vs. NPG
For the model-based algorithm, we set p̄ = 20 and found

the maximum data collection time before attaining the full

4Calculated as ∥P̂ 20
K − P ⋆∥/∥P ⋆∥F .

5Calculated as ∥K̂20
K −K⋆∥F /∥K⋆∥F .

5 10 15 20

0.5

1

5 10 15 20

0.5

1

5 10 15 20

4.8

5

Fig. 3: Sampling-based scheme results.
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Fig. 4: Model-based design vs. NPG with ∥K̃∥∞ = 0.1.

rank condition of Lemma 9 to be tl = 1500s. The system
parameters A and B are unknown but the initial controller
K̂0 ∈ K is searched for following [26, Alg. 1].

We run the sampling-based algorithm on (1). From the
charts of Fig. 3, the controller K̂p found at each iteration
converges after 5 iterations alongside P̂ p

K . At the 20’th it-
eration, the relative error ||K̂20 −K∗||/||K∗|| = 31.5% and
||P̂K20

− P∗||/||P∗|| = 31.6%. These demonstrate that the
proposed algorithm does find an approximate optimal solution
from the noisy data.

Comparing our algorithm under an additive Wiener process
noise against the natural policy gradient, we find that the
relative errors in gain and cost matrix errors are not well-
behaved. The same disruption applies to the H∞-norm plot.
These further demonstrates the need for a robust PO scheme
such as the one we have presented in this work for problems
that fall into the class of systems (1).

V. CONCLUSIONS

We have proposed an iterative nested-loop reinforced PO
scheme for the robust optimal control of linear plants with
additive Wiener process. Rigorous convergence results is first
established in model-based settings. For unknown model pa-
rameters, system trajectories’ costs are expanded to obtain
Riccati solution estimates for loops gains’ computations. These
gains may be biased owing to inexact knowledge of system
dynamics; thus, we robustly bound deviations from known
stable gain iterates in a small-disturbance input-to-state sta-
bility formalism. The learning pipeline’s efficacy has been
numerically tested with benchmarks against the natural policy
gradient [18]. Our evaluations suggest recovery of stabilizing
policies in the two problems we had set out to solve. We
hope that our proposal guides researchers and practitioners the
robust recovery of optimal policies for the stochastic infinite-
dimensional linear PDEs with additive Wiener processes.
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APPENDIX A: LEMMAS AND PROOFS

In this appendix, we introduce a series of lemmas to guide
our problem description and proposed solution.

Proof of Lemma 2. When p = 0, K0 ∈ K, and it satisfies (1)
(See [26, Alg. 1].) For p > 0, introduce the identities,

RKp+1 = B⊤P p
K , K⊤

p+1R = P p
KB, (A.1a)

Ap⊤

K P p
K = A

(p+1)⊤

K P p
K + (Kp+1 −Kp)

⊤B⊤P p
K , (A.1b)

P p
KAp

K = P p
KA

(p+1)
K + P p

KB(Kp+1 −Kp). (A.1c)

Therefore, equation (10) becomes

A
(p+1)⊤

K P p
K + P p

KA
(p+1)
K + γ−2P p

KDD⊤P p
K + C⊤C (A.2)

+K⊤
p+1RKp+1 + (Kp+1 −Kp)

⊤R(Kp+1 −Kp) = 0.

Thus, for a stabilizing Kp+1(̸= Kp) we must have (Kp+1 −
Kp)

⊤R(Kp+1 −Kp) ≻ 0 so that

A
(p+1)⊤

K P p
K + P p

KA
(p+1)
K + γ−2P p

KDD⊤P p
K +Qp+1

K ≺ 0.
(A.3)

If (read: since) the inequality (A.3) holds, the bounded real
Lemma [7, Lemma A.1, statement 3] stipulates that a P p

K ≻ 0
exists; by [7, Lemma A.1, statement 1], ∥Tzw(Kp)∥∞ < γ

given that λi(A
(p+1)
K ) < 0 in (A.3). A fortiori, Kp ∈ K for p >

0 by the bounded real Lemma. This proves the first statement.
The proofs of statements (2) and (3) follows from [25].

Proof of Lemma 4. Since R ≻ 0, ΨK = 0 implies K = K ′.
Therefore at ΨK = 0, we must have K = K ′ which implies
that PK = P ′

K . If K = K ′ and PK = P ′
K , it suffices to

conclude that K ′ = K ≜ K⋆ where K⋆ = R−1B⊤P ⋆.
Hence, ΨK = 0 is tantamount to PK = P ⋆ and K = K⋆.
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Proof of Lemma 5. Define A⋆ = A − BR−1B⊤P ⋆ +
γ−2DD⊤P ⋆ so that (14) becomes

A⋆⊤P p
K + P p

KA⋆ +QKp
+ (K⋆ −Kp)

⊤RK ′
p

+K ′⊤
p R(K⋆ −Kp)− γ−2P ⋆DD⊤P p

K − γ−2P p
KDD⊤P ⋆

+ γ−2P p
KDD⊤P p

K = 0. (A.4)

In addition, (5) can be rewritten (replacing α with γ) as

A⋆⊤P ⋆ + P ⋆A⋆ +Q+K⋆⊤RK⋆ − γ−2P ⋆DD⊤P ⋆ = 0.
(A.5)

Subtracting (A.5) from (A.4) and completing squares, we have

A⋆⊤(P p
K − P ⋆) + (P p

K − P ⋆)A⋆ +ΨKp

+ γ−2(P p
K − P ⋆)DD⊤(P p

K − P ⋆)

− (K ′
p −K⋆)⊤R(K ′

p −K⋆) = 0.

(A.6)

Let P̃ p
K := P p

K − P ⋆. It follows from K⋆
p = R−1B⊤P ⋆ and

(A.6) that

A⋆⊤P̃ p
K + P̃ p

K(A−BR−1B⊤P p
K + γ−2DD⊤P p

K)

+ ΨKp
= 0,

(A.7)

whereupon A(Kp)vec(P̃
p
K) = −vec(ΨK) with A(Kp)

being

In ⊗A⋆⊤ + (A−BR−1B⊤P p
K + γ−2DD⊤P p

K)⊤ ⊗ In.
(A.8)

From (14) and the implicit function theorem, P p
K is a con-

tinuously differentiable function of Kp ∈ K. Since A⋆ is Hur-
witz, there exists a ball Bδ(K⋆) := {K ∈ K|∥K−K⋆∥F ≤ δ},
such that A(K) is invertible for any K ∈ Kh ∩ Bδ(K⋆).
Therefore, for any K ∈ Kh ∩ Bδ(K⋆), it follows that

∥P̃ p
K∥F ≤ σ−1(A(Kp))∥ΨKp

∥F . (A.9)

On the other hand, for any K ∈ Kh ∩ Bc
δ(K

⋆), where Bc
is a complement of B, ΨKp

̸= 0 and there exists a constant
b1 > 0 such that ∥ΨKp∥ ≥ b1. Thus, by Lemma 13, we have

∥P̃ p
K∥F ≤ Tr(P p

K) ≤ h+ Tr(P ⋆)

b1
∥ΨKp

∥F . (A.10)

Suppose that b2 = maxK∈Kh∩Bδ(K⋆) σ
−1(A(K)) and b(h) =

max{b2, h+Tr(P⋆)
b1

}, then the proof follows from (A.9) and
the foregoing.

Proof of Lemma 6. To prove the first statement, we proceed
by induction. For a p ≥ 0 we have Kp ∈ K̆ by Theorem 1.
Subtracting (11) from (10) yields

0 = Ap⊤
K (P p

K − P p,q
K,L) + (P p

K − P p,q
K,L)A

p
K+

γ2 [Lq+1(Kp)− Lq(Kp)]
⊤
[Lq+1(Kp)− Lq(Kp)] . (A.11)

In equation (A.11), we have that
[Lq+1(Kp)− Lq(Kp)]

⊤
[Lq+1(Kp)− Lq(Kp)] ⪰ 0 so

that (A.11) admits a Lyapunov equation form. Following
statement 2 of Lemma 14, we must have (P p

K−P p,q
K,L) ⪰ 0. A

fortiori, we must have A
(p,q)
K,L as Hurwitz in (A.11) following

statement 2 of Lemma 14. This proves the first statement.

To prove the second statement, we abuse notation by drop-
ping the templated argument in Lq(Kp). Let us consider the
identities,

A
(p,q)⊤

K,L P p,q
K,L = A

(p,q+1)⊤

K,L P p,q
K,L − γ2 [Lq+1 − Lq]

⊤
Lq+1

P p,q
K,LA

(p,q)
K,L = P p,q

K,LA
(p,q+1)
K,L − γ2L⊤

q+1 [Lq+1 − Lq] .

(A.12)

We now rewrite (11) in light of (A.12) as

A
(p,q+1)⊤

K,L P p,q
K,L + P p,q

K,LA
(p,q+1)
K,L − γ2 [Lq+1 − Lq]

⊤
Lq+1

+QK − γ2L⊤
q+1 [Lq+1 − Lq]− γ2(L⊤

q Lq) = 0. (A.13)

At the (q + 1)’st iteration, we have (11) as

A
(p,q+1)⊤

K,L P p,q+1
K,L + P p,q+1

K,L A
(p,q+1)
K,L +QK

− γ2L⊤
q+1(Kp)Lq+1(Kp) = 0. (A.14)

Subtracting (A.13) from (A.14), we have

A
(p,q+1)⊤

K,L

[
P p,q+1
K,L − P p,q

K,L

]
+
[
P p,q+1
K,L − P p,q

K,L

]
A

(p,q+1)
K,L +

+ γ2 [Lq+1 − Lq]
⊤
[Lq+1 − Lq] = 0. (A.15)

Since [Lq+1 − Lq]
⊤
[Lq+1 − Lq] ⪰ 0, (A.15) is indeed a

Lyapunov equation so that P p,q+1
K,L ⪰ P p,q

K,L holds following
Lemma 14. Whence, we must have A

(p,q+1)⊤
K,L Hurwitz. Fol-

lowing the argument for all (q, q′) ∈ q̄ with q ̸= q′, statement
2) holds.

Observe: P p,q
K,L is self-adjoint by reason of (10). By the

theorem on the “limit of monotonically decreasing opera-
tors” [24, pp. 190], statement 2) implies that the sequence
{P p,q̄

K,L, · · · , P
p,q=0
K,L } is monotonically decreasing and bounded

from above by P p,q̄
K,L ≡ P ⋆

K,L. That is, P p,q
K,L exists and is the

solution of (10) and P p,q̄
K,L is the unique positive definite solu-

tion to (11). A fortiori, we must have limq→∞ P p,q
K,L = P p,∞

K,L .
This establishes the third statement.

Proof of Lemma 7. Subtracting (19) from (14), and using
L(K⋆) = γ−2D⊤PK , we find that

(AK +DL(K⋆))⊤(PK − PL
K) + (PK − PL

K)(AK+ (A.16)

DL(K⋆)) + ΨL
K − γ−2(PL

K − PK)DD⊤(PL
K − PK) = 0.

Since AK +DL(K⋆) is Hurwitz, it follows from statements
(1) and (3) of Lemma 14 that we must have

PK − PL
K ⪯

∫ ∞

0

e(AK+DL(K⋆))⊤tΨL
Ke(AK+DL(K⋆))tdt.

(A.17)

Taking the trace of the lhs, using [29, Theorem 2], and em-
ploying the cyclic property of the trace, the proof follows.

Proof of Lemma 10. Let F (P̃, K̃) be

(AK + γ−2DD⊤PK)⊤P̃ + P̃ (AK + γ−2DD⊤PK)

− K̃⊤B⊤(PK + P̃ )− (PK + P̃ )BK̃ + K̃⊤RK +K⊤RK̃

+ K̃⊤RK̃ + γ−2P̃DD⊤P̃. (A.18)

Observe: the pair (PK + P̃,K + K̃) satisfies (14) iff
F (P̃, K̃) = 0 and that F (P̃, K̃) = 0 implies an implicit
function of P̃ with respect to K̃ since if P̃ ∈ Sn exists, K̃ must
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exist under the controllability and observability assumptions of
Ass 1. Let F(P̃, K̃) = vec(F (P̃, K̃)) so that,

F(P̃, K̃) =
[
In ⊗ (AK + γ−2DD⊤PK)⊤

+ (AK + γ−2DD⊤PK)⊤ ⊗ In
]
vec(P̃ )

− (PKB ⊗ In)vec(K̃
⊤)− (In ⊗ PKB)vec(K̃)

− (In ⊗ K̃⊤B⊤ + K̃⊤B⊤ ⊗ In)vec(P̃ )

+ (K⊤R⊗ In)vec(K̃
⊤) + (In ⊗K⊤R)vec(K̃)

+ vec(K̃⊤RK̃) + γ−2vec(P̃DD⊤P̃ ).

(A.19)

Thus,

∂F(P̃, K̃)

∂vec(P̃ )
= In ⊗ [(AK + γ−2DD⊤PK)−BK̃]⊤ (A.20)

+ [(AK + γ−2DD⊤PK)−BK̃]⊤ ⊗ In + P̃DD⊤ ⊗ In

+ In ⊗ P̃DD⊤ − (PKB ⊗ In)vec(K̃
⊤)− (In ⊗ PKB)

vec(K̃) + (K⊤R⊗ In)vec(K̃
⊤) + (In ⊗K⊤R)vec(K̃),

where we have used [33, Theorem 9], to obtain
∂vec(P̃DD⊤P̃ )/∂vec(P̃ ) = P̃DD⊤ ⊗ In + In ⊗ P̃DD⊤.
Since F(0, 0) = 0, (AK + γ−2DD⊤PK) is Hurwitz, hence
∂F(P̃, K̃)/∂vec(P̃ )|P̃=0,K̃=0 is invertible. From the implicit
function theorem, there must exist an e1(K) > 0, such that
P̃ is continuously differentiable with respect to K̃ for any
K̃ ∈ Be1(K)(0). Thus, ∥P̃∥ → 0 as ∥K̃∥ → 0. Since K ∈ K
by [7, Lemma A.1], we must have PK ≻ 0. Therefore,
there exists e(K) > 0, such that σmax(P̃ ) < σmin(PK), i.e.
PK − P̃ ≻ 0, as long as ∥K̃∥ < e(K).

Since P̃ and K̃ satisfy F (P̃, K̃) = 0, we have

(A−BK −BK̃)T (PK + P̃ ) + (PK + P̃ ) +Q+ (A.21)

(K + K̃)TR(K + K̃) + γ−2(PK + P̃ )DDT (PK + P̃ ) = 0

Since PK + P̃ ≻ 0 when ∥K̃∥ < e(K), by [7, Lemma A.1],
K + K̃ ∈ K. That is, if K̃ is small, if we start the PI with a
robustly stabilizing K ∈ K, we can guarantee the feasibility
of the iterates.

Proof of Lemma 12. Define L̃⊤
q (Kp) = L⊤

q (Kp) − L̂⊤
q (Kp)

and P̃ p,q
K,L = P p,q

K,L − P̂ p,q
K,L. Further, assume Âp,q

K,L is Hurwitz.
From (11),

Âp,q⊤
K,L P p,q

K,L + P p,q
K,LÂ

p,q+1
K,L +QK − γ−2P̂ p,q

K,LDD⊤P̂ p,q
K,L+

γ−2(P p,q
K,L − P̂ p,q

K,L)DD⊤(P p,q
K,L − P̂ p,q

K,L)− L̃⊤
q (Kp)D

⊤P p,q
K,L

− P p,q
K,LDL̃q(Kp) = 0. (A.22)

Set ∥L̃⊤
q (Kp)∥ < σmin(QK − γ−2P p,q

K,LDD⊤P p,q
K,L)/

2∥D⊤P p,q
K,L∥ ≜ e. It follows from (A.14) that

Q ⪰ γ2L⊤
q+1(Kp)Lq+1(Kp) by reason of it being admissible

as a Lyapunov equation. The inequality P p,q
K,L ⪰ P̂ p,q

K,L so that

− γ−2P̂ p,q
K,LDD⊤P̂ p,q

K,L + γ−2(P p,q
K,L − P̂ p,q

K,L)DD⊤(P p,q
K,L

− P̂ p,q
K,L)− (L̃j

K)⊤D⊤P p,q
K,L − P p,q

K,LDL̃q(Kp) +QK ⪰ 0.

Consequently, Âp,q+1
K,L is Hurwitz. Since L̂q(K0) = 0 and K ∈

K̆, Âp,0
K,L = A−BK is Hurwitz. Hence, Âp,q

K,L is Hurwitz for
all q ∈ N+ as long as ∥L̃q(Kp)∥F ≤ e.

Proof of Lemma 11. Since Kh is compact, it follows from
Lemma 10 that e(h) := infK∈Kh

e(K) > 0. In addition, K̂ ′ ∈
K when ∥K̃∥ < e(h). By [7, Lemma A.1], PK̂′ = P⊤

K̂′ ≻ 0
is the solution of

A⊤
K̂′PK̂′ + PK̂′AK̂′ +QK̂′ + γ−2PK̂′DD⊤PK̂′ = 0,

(A.23)

where AK̂′ = A − BK̂ ′ and QK̂′ = Q + (K̂ ′)⊤RK̂ ′. Let
A⋆

K̂′ = A−BK̂ ′+γ−2DDTPK̂′ . It follows from [7, Lemma
A.1] that A⋆

K̂′ is Hurwitz. Subtracting (A.23) from (14), using
K ′ = R−1BTPK , and completing the squares,

A⋆⊤
K̂′ (PK − PK̂′) + (PK − PK̂′)A

⋆
K̂′

+ (K ′ −K)⊤R(K ′ −K)− K̃⊤RK̃

+ γ−2(PK − PK̂′)DD⊤(PK − PK̂′) = 0.

(A.24)

From Lemma 14, we have (PK − PK̂′) ⪰∫ ∞

0

eA
⋆⊤
K̂′ tEKeA

⋆
K̂′ tdt−

∫ ∞

0

eA
⋆⊤
K̂′ tK̃TRK̃eA

⋆
K̂′ tdt,

(A.25)

so that taking the trace, using Lemma 3 and [29, Theorem 2],

Tr(PK − PK̂′) ≥
log(5/4)

2∥A⋆
K̂′∥
∥EK∥

− Tr

(∫ ∞

0

eA
⋆⊤
K̂′ teA

⋆
K̂′ tdt

)
∥R∥∥K̃∥2.

(A.26)

It follows from Lemmas 5 and 13 that

Tr(PK̂′ − P ⋆) ≤

(
1− log(5/4)b(h)

2n∥A⋆
K̂′∥

)
Tr(PK − P ⋆)

+ Tr

(∫ ∞

0

eA
⋆⊤
K̂′ teA

⋆
K̂′ tdt

)
∥R∥∥K̃∥2. (A.27)

Let

f1(K̂
′) =

log(5/4)b(h)

2n∥A⋆
K̂′∥

, f2(K̂
′) = Tr

(∫ ∞

0

eA
⋆⊤t
K̂′ eA

⋆t
K̂′dt

)
.

Since f1(K̂
′) and f2(K̂

′) are continuous with respect to
K̂ ′,

f
1
(h) = inf

K̂′∈Kh

f1(K̂
′) > 0, f̄2(h) = sup

K̂′∈Kh

f2(K̂
′) <∞.

(A.28)

It follows from (A.27) that if ∥K̃∥ <

√
f
1
(h)h

f̄2(h)∥R∥ , then

Tr(PK̂′ − P ⋆) < h. In summary, if

∥K̃∥ < min

{
e(h),

√
f
1
(h)h

f̄2(h)∥R∥

}
=: f(h), (A.29)

we have K̂ ′ ∈ Kh.

Lemma 13 : Norm of a Matrix Trace [34, Theorem 4.2.2] For
any positive semi-definite matrix P ∈ Sn, ∥P∥F ≤ Tr(P ) ≤√
n∥P∥F , and ∥P∥ ≤ Tr(P ) ≤ n∥P∥. For any x ∈ Rn,

x⊤Px ≥ λ(P )∥x∥2.

Lemma 14 : Assume A ∈ Rn×n is Hurwitz and satisfies
A⊤P + PA+Q = 0. Then, the following properties hold
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(1) P =
∫∞
0

eA
⊤tQeAtdt;

(2) P ≻ 0 if Q ≻ 0, and P ⪰ 0 if Q ⪰ 0;
(3) If Q ⪰ 0, then (Q,A) is observable iff P ≻ 0;
(4) For a P ′ ∈ Sn satisfying A⊤P ′ + P ′A + Q′ = 0, where

Q′ ⪯ Q, we have P ′ ⪯ P .

Proof of Lemma 14. The first three statements are proven in
[35, Lemma 3.18]. From the expression in the fourth statement
above, P ′ can be expressed as

P ′ =

∫ ∞

0

eA
⊤tQ′eAtdt (A.30)

owing to statement (1) above. If Q′ ⪯ Q, then comparing
statement (1) with (A.30), we must have P ′ ⪯ P .

Lemma 15 : [35, Lemma 3.19] Suppose that P satisfies
A⊤P + PA+Q = 0, then the following statements hold:

1) A is Hurwitz if P ≻ 0 and Q ≻ 0.
2) A is Hurwitz if P ⪰ 0, Q ⪰ 0 and (Q,A) is detectable.

Proof of Theorem 4. When ∥L̃q(Kp)∥ < e, we have an
Hurwitz Âp,q

K,L going by Lemma 12. Rewriting (27) for the
(p+ 1)’th iteration and subtracting it from (27), we have

Â
(p,q+1)⊤
K,L (P̂

(p,q+1)
K,L − P̂ p,q

K,L) + (P̂
(p,q+1)
K,L − P̂ p,q

K,L)Â
(p,q+1)⊤
K,L

+ γ−2(γ2L̂q(Kp)−D⊤P̂ p,q
K,L)

⊤(γ2L̂q(Kp)−D⊤P̂ p,q
K,L)

− γ2L̃⊤
q (Kp)L̃q(Kp) = 0. (A.31)

Suppose that Ψ̂p,q
K,L = γ−2(γ2L̂q(Kp) −

D⊤P̂ p,q
K,L)

⊤(γ2L̂q(Kp) − D⊤P̂ j
K). It follows that since

Âp,q+1
K,L is Hurwitz, P̂ (p,q+1)

K,L − P̂ p,q
K,L becomes∫ ∞

0

eÂ
(p,q+1)⊤
K,L t

[
Ψ̂p,q

K,L − γ2L̃⊤
q (Kp)L̃

⊤
q (Kp)

]
eÂ

(p,q+1)
K,L tdt.

(A.32)

Now let F̂ q
K =

∫∞
0

eÂ
(p,q+1)⊤
K,L tΨ̂p,q

K,Le
Â

(p,q+1)
K,L tdt so that

P p,q+1
K,L − P̂ p,q+1

K,L = PK,L − P̂ p
K,L − F̂ q

K

+

∫ ∞

0

eÂ
(p,q+1)⊤
K,L t

(
γ2L̃⊤

q (Kp)L̃q(Kp)
)
eÂ

p,q+1
K,L tdt.

(A.33)

Let fK = supq∈N+
∥Âp,q+1

K,L ∥. From Lemma 7, we can write
−∥F̂ q

K∥ ≤ −
log(5/4)

2fK
∥Ψ̂p,q

K,L∥. Furthermore, by Lemma 7,
we can write −∥Ψ̂p,q

K,L∥ ≤ −
1

c(K)Tr(P
p,q
K,L − P̂ p,q

K,L), where

c(K) = Tr(
∫∞
0

e(AK+DLq(Kp))te(AK+DLq(Kp))
⊤tdt). There-

fore, the trace of (A.33) becomes

Tr(P p,q
K,L − P̂ p,q+1

K,L ) ≤
(
1− log(5/4)

2fKc(K)

)
Tr(PK − P̂ p,q

K,L)

+ Tr

(∫ ∞

0

e(Â
p,q+1
K,L )te(Â

p,q+1
K,L )⊤tdt

)
γ2∥L̃q(Kp)∥2. (A.34)

Let g = sup
q∈N+

Tr

(∫ ∞

0

e(Â
p,q+1
K,L )te(Â

p,q+1
K,L )⊤tdt

)
, (A.35)

and β̂(K) = 1− log(5/4)
2fKc(K) , so that

Tr(P p,q
K,L − P̂ p,q

K,L) ≤ β̂q−1(K)Tr(P p,q
K,L) + λ(∥L̃∥∞),

(A.36)

where λ(∥L̃∥∞) := 1
1−β̂(K)

γ2g∥L̃∥2∞. As ∥PK − P̂ p,q
K,L∥F ≤

Tr(P p,q
K,L − P̂ p,q

K,L), we establish the theorem.
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