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A Second-Order Reachable Sets Computational Scheme for a
Cauchy-type Variational Hamilton-Jacobi-Isaacs Equation.

Lekan Molu.

Abstract— We consider an overapproximation scheme for
computing high-dimensional reachable sets. Focusing on the
continuous-time systems, we leverage the standard terminal value
of the Hamilton-Jacobi-Isaacs (HJI) equation in devising a second-
order variational method for computing the reachable sets. We
numerically evaluate our methods on mechanical control systems
and formal verification domains. Within the bounds here set, our
analyses and results suggest that these overapproximated reach-
able sets computation scheme is applicable to numerous appli-
cations ranging from formal verification analysis, invariant sets
determination, steady-state/asymptotic stability analysis, safety-
critical control analysis, nonconvex robust control analysis, set-
based observers and predictions, to state estimation theory.

I. INTRODUCTION

At issue are point sets for dynamical systems’ behavioral evolution
(or trajectory) throughout a state space. Such sets must satisfy input or
state constraints in a least restrictive sense and under a worst-possible
disturbance [1]. Because of decidability issues1, we restrict our com-
putation scheme over a finite time period. This is a classic reachability
theory problem. Because the reachable sets are computed in a finite
time horizon, we resort to approximation methods. To allow formal
reasoning and guarantees on the system, we require the approximation
to contain the reachable set i.e. our scheme must engender an over-
approximation guarantee. Our overapproximated sets computation
method is applicable to continuous systems automatons in formal
verification analysis, invariant sets determination and applications
to safety-critical controllers, nonconvex robust control analysis, set-
based observers and predictions, as well as state estimation theory.

In emphasis, we present an overapproximation scheme for con-
structing the discriminating kernel for a reachable sets computational
problem. Ours is an extension of differential dynamic programming
methods in Bolza-like objective functions inspired by [2], [3], and
[4]’s second-order variational methods. In emphasis, we focus on
pursuit-evasion games [5], where in an iterative dynamic game
fashion [6], each agent’s strategy depends on its opponent’s control
law as agents locally approximate successive trajectories’ values
that emanate from a state space. Our evaluation is on a variant of
Isaacs’ [5] dolichobrachistochrone optimization problem where two
players are tasked with finding opposing extremals for the time of
quickest or slowest descent on a capture surface.

Reachable sets can be analyzed in a (i) forward sense, where sys-
tem trajectories are examined to determine if they enter certain states
from an initial set; (ii) backward sense, where system trajectories are
examined to determine if they enter certain target sets; (iii) reach set
sense, in which they are examined to see if states reach a set at a
particular time; or (iv) reach tube sense, in which they are examined
to determine that they reach a set during a time interval.

We focus on the backward construction. This consists in avoiding
an unsafe state set under the worst-possible disturbance within a
given time-bound. The state sets of a backward reachable problem
constitute the discriminating kernel that is “safety-preserving” for
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1We say a reachability problem is decidable if we can compute all the states
that can be reached from an initial condition in a finite number of steps.

a finite-time horizon control problem. This discriminating kernel’s
boundary satisfies a generalized Isaac’s equation i.e. if the state xxx
is within the set’s boundary, but not the target’s boundary, then for
a co-state p that is an exterior proximal normal at xxx, HHH(xxx, p) ≤ 0,
where HHH(xxx, p) is the problem’s Hamiltonian. The set associated with
the kernel computed in a backward reachability framework is termed
the backward reachable set or BRS.

Eulerian methods [7], [8] resolve the BRS as the zero-level set of
an implicitly-defined value function on a state space. Constructed
as an initial value problem for a Cauchy-type Hamilton-Jacobi-
Isaacs (HJI) partial differential equation (P.D.E.) [9], [10], the BRS
in one dimension is equivalent to the conservation of momentum
equation [8]. For a multidimensional problem, by resolving the P.D.E.
on a dimension-by-dimension basis in a consistent and monotone
fashion [11], a numerically precise and accurate solution to the HJ
P.D.E can be determined [7], [8]. However, as state dimensions
increase, spacetime discretization methods become impractical owing
to their exponential complexity.

Contrary to Eulerian methods, our approximation method does not
require state space discretization and hence reduces the exponential
complexity to polynomial time. While reachable sets computed as the
zero-sublevel sets of the terminal HJI value function in a two-player
game using Lax-Friedrichs schemes may be interpreted to contain
the Taylor model we introduce, their computational cost increases
exponentially with the state dimensions.

Contributions: We describe a computational scheme, provide
a summary of the complexity and convergence behavior for the
overapproximated BRS using [9]’s standard variational Hamilton-
Jacobi equation. Iteratively approximating nonlinear trajectories about
“near” local paths and under positive-definiteness requirement of the
stagewise cost function’s second-derivatives (in control terms), we
compute the extrema of the nominal state and control-disturbance
policy pair’s cost to find a cost improvement per iteration. Trajectories
are updated until we sweep all possible initial conditions into the
space of all trajectory costs. Within the bounds here set, the zero
isocontour of all “unionized costs” of all trajectories swept along
paths that assure cost improvement per iteration of the algorithm
constitute the zero level set. This work is the first to systematically
provide an polynomial time complexity computational scheme for
backward reachable sets to our knowledge.

The body of this letter is structured as follows: § II describes the
notations used . In § III, we introduce methods that will enable us
formulate our proposal in § IV. We describe the computational and
complexity analysis in § V.

II. NOTATIONS, TERMINOLOGY, AND ASSUMPTIONS

We employ standard vector-matrix notations throughout. Conven-
tions: lower-case Latin and Greek letters are scalars; in bold-font
they are vectors. Upper-case calligraphic letters are sets. Exceptions:
Players in a differential game e.g. PPP, EEE, are individual entities. All
vectors are column-stacked. Capital Greek and Calligraphic letters
are sets. The scalar product of vectors xxx and yyy is written as 〈xxx,yyy〉.
Arbitrary real variables e.g., t, t0, t f ,τ,T denote time. For a scalar
function VVV , VVV xxx is the gradient vector, and VVV xxxxxx is the jacobian matrix.
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Differential Games: We analyze conflicting objectives between a
pursuer (PPP) and an evader (EEE) in a standard pursuit-evasion game.
The set of all strategies executed by PPP (resp. EEE) during a game
(beginning at a time t) is denoted as B(t) (resp. A (t)).
System Description: For the dynamical system

ẋxx(t) = f (t,xxx(t),uuu(t),vvv(t)), xxx(0) = xxx0, −T ≤ t ≤ 0, (1)

where the state xxx(t) evolves from some initial negative time −T to
a final time 0, the flow field f (t, ·, ·, ·) and xxx(t) are bounded and
Lipschitz continuous for fixed controls uuu(t) and vvv(t) with continuous
second derivatives2. We take xxx(t) to belong in the open set Ω⊂ Rn

and the pair (xxx, t) as the system’s phase. The Cartesian product of
Ω and the space T = R1 of all time values is termed the phase
space, Ω×T . The closure of Ω is denoted Ω̄ and we let δΩ denote
the boundary of Ω. Unless otherwise stated, vectors uuu(t) ∈ Rnu and
vvv(t) ∈ Rnv are reserved for admissible control (resp. disturbance) at
time t for some nu, nv > 0. Controls uuu(t) (resp. vvv(t)) are piecewise
continuous in t, if for each t, uuu ∈ U (resp. vvv ∈ V ), U (resp. V ) is
a Lebesgue measurable and compact set. At all times, any of uuu(t)
or vvv(t) will be under the influence of a player such that the motion
of xxx(t) will be influenced by the will of that player. When a control
law or value function is optimal, it shall be signified by an asterisk
superscript e.g. uuu?. For the phase space (Ω×T ), the set of all controls
for players PPP and EEE are respectively drawn from

Ū ≡ {uuu : [−T,0]→U |uuu measurable, U ⊂ Rnu}, (2)

V̄ ≡ {vvv : [−T,0]→ V |vvv measurable, V ⊂ Rnv}, (3)

with U , V being compact.
Existence and Uniqueness of Value and Trajectories: For any
admissible control-disturbance pair (uuu(t),vvv(t)) and initial phase
(xxx,−T ), given a pursuer’s strategy, the game admits a value [13]
and there exists a unique trajectory ξξξ (t) such that the motion of (1)
passing through phase (xxx,−T ) under the action of control uuu(t), and
disturbance vvv(t), and observed at a time t afterwards, given by,

ξξξ (t) = ξξξ (t;−T,xxx,uuu(·),vvv(·)) (4)

satisfies (1) almost everywhere (a.e.) [9]. Note that under feedback
strategies, the game may not admit a value necessarily [14]; however,
if the target sets are initialized such that there is no overlap of
states between players, and that the evader(s) are not captured by
the pursuer(s) at the start of the game, then one can guarantee a
pursuit winning strategy [15, Assumption 2.1].

III. BACKGROUND.
Reachable sets in the context of dynamic programming and two

person games is here introduced. We restrict attention to computing
the backward reachable sets of a dynamical system. We establish the
viscosity solution P.D.E. to the terminal HJI P.D.E, and then describe
the formulation of the BRS and backward reachable tube (BRT). Let
us enquire.

A. The Backward Reachable (Target) Set

For any optimal control problem, a value function is constructed
based on a user-defined optimal cost that is bounded and uniformly
continuous for any input phase (xxx,−T ) e.g. reach goal at the end of
a time horizon i.e.,

|g(0;xxx)| ≤ k, |g(0;xxx)−g(t; x̂xx) |≤ k|xxx− x̂xx | (5)

2This bounded Lipschitz continuity property assures uniqueness of the
system response xxx(t) to controls uuu(t) and vvv(t) [12].

for constant k and all −T ≤ t ≤ 0, x̂xx, xxx ∈ Rn. The set

L0 = {xxx ∈ Ω̄ |g(0;xxx)≤ 0}, (6)

is the target set in the phase space Ω×R (proof in [9]). This target
set can represent the failure set (to avoid) or a goal set (to reach) in
the state space.

B. The Backward Reachable Tube
Backward reachability analysis seeks to capture all conditions

under which trajectories of the system may enter a user-defined target
set cf. (6). This could be desirable in goal-regions of the state (safe
sets) or undesirable state configurations (unsafe sets). For a target set
construction problem, a differential game’s (lower) value is equivalent
to a solution of (1) for uuu(t) and vvv(t) = β [uuu](t) i.e.,

VVV (xxx, t) = inf
β∈B(t)

sup
uuu∈U (t)

min
t∈[−T,0]

g(0; t,xxx,uuu(·),vvv(·)) . (7)

Optimal trajectories emanating from an initial phase (xxx,−T ) where
the value function is non-negative will maintain non-negative cost
over an entire time horizon, thereby avoiding the target set and
vice versa. For the safety problem setup in (7), we can define the
corresponding robustly controlled backward reachable tube as the
closure of the open set

L ([τ,0],L0) = {xxx ∈Ω |∃β ∈ V̄ (t)∀uuu ∈U (t),∃τ ∈ [−T,0],

ξξξ (t̄) ∈L0}. (8)

Read: The set of states from which the strategies of PPP and for all
controls of EEE imply that we reach and remain in the target set in the
interval [−T,0]. Following Lemma 2 of [9], the states in the reachable
set admit the following properties w.r.t the value function VVV :

xxx(t) ∈L (·) =⇒ VVV (xxx, t)≤ 0,VVV (xxx, t)≤ 0 =⇒ xxx(t) ∈L (·). (9)

Player PPP is minimizing (the game’s termination time c.f. (6)), seeking
to drive system trajectories into the unsafe set; and EEE is maximizing
(the game’s termination time) i.e. is seeking to avoid the unsafe set-3.

C. The Terminal HJI Value Function for Reachability
The non-anticipative strategy used in level set methods follows

from [12] viz., suppose that the pursuer’s strategy starting at a time
−T , is β : Ū → V̄ . Suppose further that β is provided for each
−T ≤ τ ≤ 0 and uuu, ûuu ∈ Ū . Then,{

uuu(t̄) = ûuu(t̄) a.e. on −T ≤ t̄ ≤ τ,

implies β [uuu](t̄) = β [ûuu](t̄) a.e. on −T ≤ t̄ ≤ τ.
(10)

In our work, however, we use feedback strategies in an iterative
dynamic game framework while initializing the target sets to ensure
the existence of a value as discussed in §II. It is well-known that a
differential game’s value function admits a “viscosity” (generalized)
solution [16], [17] for the associated HJ-Isaacs (HJI) PDE

∂VVV
∂ t

(xxx, t)+min{0,HHH(t;xxx, p)}= 0, V (xxx,0) = g(xxx) (11)

where the vector field p(≡ VVV xxx) is known in terms of the game’s
terminal conditions so that the overall game is akin to a two-
point boundary-value problem; and the Hamiltonian HHH(t;xxx,uuu,vvv,VVV xxx)
is defined as

HHH(t;xxx,uuu,vvv,VVV xxx) = max
u∈U

min
v∈V
〈 f (t;xxx,uuu,vvv),VVV xxx〉. (12)

3For the goal-satisfaction (or liveness) problem setups, the strategies are
reversed and the backward reachable tube are the states from which the evader
EEE can successfully reach the target set despite worst-case efforts of the pursuer
PPP.



LEKAN MOLU: IEEE TRANSACTIONS IN AUTOMATIC CONTROL JOURNAL (SEPTEMBER 2022) 3

Equation (7) only allows the game to determine that a trajectory
belongs in the target set at exactly time zero. That is, the evader can
chase a trajectory into the target set and escape it before reaching
the final time, 0. The min operation between the scalar 0 and the
Hamiltonian allows the pursuer to “freeze” trajectories that may
be under the evader’s willpower when the evader tries to evolve
such trajectories outside of the target set. For more details on the
construction of this P.D.E., see [9].

IV. SUCCESSIVE APPROXIMATION SCHEME

Throughout this section, all feasible trajectories {xxxi,xxxi+1, · · · ,xxxn}∈
Ω are scheduled for iterative second-order expansion along the
nonlinear state variations δxxxi and about nominal states x̄xxi; we derive
the variational linear differential equation form of (11) and describe
the integration scheme of the backward and forward steps of standard
DDP on the variational HJI equation. In what follows, for ease of
notation we drop the subscripts that denote the respective trajectories.
For clarity’s sake, we shall drop the subscripts and derive the optimal
value for a generic trajectory xxx.

A. Local Approximations to Nonlinear Trajectories

Suppose that system (1) is controllable everywhere on an interval
[−T,0] along a local trajectory xxxr generated by admissible control
disturbance pair uuur, vvvr starting from an initial phase (xxxr,−T ) so that

ẋxxr(τ) = f (t;xxxr(τ),uuur(τ),vvvr(τ)). (13)

First, we apply local controls uuur(t) and vvvr(t) on (1) so that the nomi-
nal value is VVV (t; ·, ·, ·) for a resulting nominal state xxxr(τ); τ ∈ [−T,0].
System dynamics that describe variations from the nonlinear system
cf. (1) with state and control pairs δxxx(t), δuuu(t), δvvv(t) respectively4

can then be written as

xxx(t) = xxxr(t)+δxxx(t), uuu(t) = uuur(t)+δuuu(t), (14a)

vvv(t) = vvvr(t)+δvvv(t), t ∈ [−T,0] . (14b)

Abusing notation, we drop the templated time arguments in the
variations (14) so that the canonical problem is now

d
dt

(xxxr +δxxx) = f (t;xxxr +δxxx,uuur +δuuu,vvvr +δvvv), (15)

xxxr(−T )+δxxx(−T ) = xxx(−T ), (16)

whose terminal value admits the optimal form (see (11)):

−∂VVV ∗

∂ t
(xxxr +δxxx, t) = min

{
000, max

δuuu∈U
min

δvvv∈V
〈 f (t;xxxr +δxxx,

uuur +δuuu,vvvr +δvvv),
∂VVV ∗

∂xxx
(xxxr +δxxx, t)

〉}
,

VVV ∗(xxxr +δxxx,0) = g(0;xxxr(0)+δxxx(0)); (17)

and state trajectory

ξξξ (t) = ξξξ (t;−T,xxxr +δxxx,uuu+δuuu,vvv+δvvv), t ∈ [−T,0] . (18)

For the inequality −T < t ≤ 0 and a τ ∈ [t,0], let the optimal cost
for using the optimal control uuu?(τ) = uuur(τ)+δuuu?(τ) and disturbance
vvv?(τ) = vvvr(τ)+δvvv?(τ) be VVV ?(xxxr,τ). In addition, let the nominal cost
for using the pair (uuur(τ),vvvr(τ)) be VVV r(xxxr, t), so that on the phase
(xxxr, t), we have

Ṽ?(xxxr, t) =VVV ?(xxxr, t)−VVV r(xxxr, t). (19)

Next, we expand VVV ∗ in (17) under sufficient regularity assumptions.

4Note that δxxx(t), δuuu(t), and δvvv(t) are respectively measured with respect
to xxx(t),uuu(t),vvv(t) and are not necessarily small.

B. Power Series Expansion Scheme
Suppose that the optimal terminal cost, VVV ∗(·), is sufficiently

smooth to allow a power series expansion in the state variation δxxx
about the nominal state, xxxr, then we must have

VVV ?(xxxr +δxxx, t) = Ṽ?(xxxr, t)+VVV r(xxxr, t)+ 〈VVV ∗xxx(xxxr, t),δxxx〉

+
1
2
〈δxxx,VVV ?

xxxxxx(xxxr, t)δxxx〉+h.o.t in δxxx, (20)

where h.o.t. signifies higher order terms. The smoothness assumption
is necessary for admitting the linear differential equation expansion
of (20). This expansion is consistent with differential dynamic
programming schemes [2], [4], [18].

Observe: If δxxx is not constrained to be small, (20) may require
huge memory for storage owing to the large dimensionality of
terms beyond second order. However, (i) if xxxr is constrained to
be sufficiently close to xxx, the state variation δxxx will be small,
resulting in xxx≈ xxxr cf. (14)5; (ii) for small δxxx, the expansion of (20)
becomes consistent with second-order methods where quadratic terms
in δxxx dominate higher-order terms. Hence, we can avoid infinite data
storage requirement by truncating the expansion in (20) at second-
order terms in δxxx. This will incur an O(δxxx3) approximation error,
affording us realizable control laws that can be executed on the
system (1). Thus, we rewrite (20) as

VVV ?(xxxr +δxxx, t) = Ṽ?(xxxr, t)+VVV r(xxxr, t)+ 〈VVV ∗xxx(xxxr, t),δxxx〉

+
1
2
〈δxxx,VVV ?

xxxxxx(xxxr, t)δxxx〉 . (21)

Denote by VVV ?
xxx (xxxr +δxxx, t) the optimal value of the co-state on the

r.h.s of (17). Then, expanding up to second order we find that

VVV ?
xxx (xxxr +δxxx, t) =VVV ?

xxx (xxxr, t)+ 〈VVV ?
xxxxxx (xxxr, t) ,δxxx〉, (22)

where we have again omitted the quadratic term VVV ?
xxxxxxxxxδxxxδxxx owing to

the foregoing reason. Substituting (21) and (22) into (17), abusing
notation by dropping the templated phase arguments, we find that

−∂ Ṽ∗

∂ t
− ∂VVV r

∂ t
−
〈

∂VVV ∗xxx
∂ t

,δxxx
〉
− 1

2

〈
δxxx,

∂VVV ∗xxxxxx
∂ t

δxxx
〉
=

min
{

0, max
δuuu∈U

min
δvvv∈V

〈
f T (t;xxxr +δxxx,uuur +δuuu,vvvr +δvvv),

VVV ∗xxx +VVV ∗xxxxxx δxxx〉} .

(23)

From (19), we may write

d
dt

(
VVV r + Ṽ∗

)
=

∂

∂ t

(
VVV r + Ṽ∗

)
+
〈

f T (t;xxxr,uuur,vvvr),VVV ∗xxx
〉

(24a)

V̇VV ∗xxx =
∂VVV ∗xxxxxx

∂ t
+ 〈 f T (t;xxxr,uuur,vvvr),VVV ∗xxxxxx〉, V̇VV ∗xxxxxx =

∂VVV ∗xxxxxx
∂ t

. (24b)

Therefore, (23) in light of (24) becomes

−∂ Ṽ∗

∂ t
− ∂VVV r

∂ t
−
〈

∂VVV ∗xxx
∂ t

,δxxx
〉
− 1

2

〈
δxxx,

∂VVV ∗xxxxxx
∂ t

δxxx
〉
=

min
{

000, max
δuuu∈U

min
δvvv∈V

[HHH(t;xxxr +δxxx,uuur +δuuu,vvvr +δvvv,VVV ∗xxx)+

〈VVV ∗xxxxxx δxxx, f (t;xxxr +δxxx,uuur +δuuu,vvvr +δvvv)〉]}

(25)

where HHH(t;xxx,uuu,vvv,VVV ∗xxx) = 〈VVV ∗xxx, f (t;xxx,uuu,vvv)〉.

C. Variational HJI Linear Differential Equation
Let the respective maximizing and minimizing control-disturbance

pair when xxx = xxxr at time t be

uuu∗ = uuur +δuuu∗, vvv∗ = vvvr +δvvv∗. (26)

5A scheme to keep the variation δxxx small is discussed in section V.
Ultimately, the δuuu,δvvv terms will be quadratic in δxxx if we neglect h.o.t.
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Given the variation δxxx on the r.h.s. of (25), let us write the respective
maximizing evader’s and minimizing pursuer’s controls for state xxx =
xxxr +δxxx as

uuu = uuur +δuuu∗+δuuu, vvv = vvvr +δvvv∗+δvvv. (27)

Observe that δuuu and δvvv are yet to be determined. Henceforward, we
adopt the abbreviations HHH = HHH(t;xxxr + δxxx,uuur + δuuu,vvvr + δvvv,VVV ∗xxx) and
f = f (t;xxxr +δxxx,uuur +δuuu,vvvr +δvvv). Expanding the r.h.s. of (25) about
xxxr,uuu∗,vvv∗ at time t up to second-order as before, we have

min
{

000, max
δuuu∈U

min
δvvv∈V

[HHH + 〈HHHxxx +VVV ∗xxxxxx f ,δxxx〉+ 〈HHHuuu,δuuu〉+

〈HHHvvv,δvvv〉+ 〈δuuu,(HHHuuuxxx + f T
uuu VVV ∗xxxxxx)δxxx〉+

〈
δvvv,(HHHvvvxxx + f T

vvv VVV ∗xxxxxx)δxxx
〉

+
1
2

〈
δuuu,HHHuuuvvvδvvv+

1
2
〈δvvv,HHHvvvuuuδuuu〉

〉
+

1
2
〈δuuu,HHHuuuuuuδuuu〉

+
1
2
〈δvvv,HHHvvvvvvδvvv〉+ 1

2

〈
δxxx,
(

HHHxxxxxx + f T
xxx VVV ∗xxxxxx +VVV ∗xxxxxx fxxx

)
δxxx
〉]}

.

‘

(28)

When capture occurs i.e. when EEE’s separation from PPP becomes less
than a pre-specified (capture) radius, we must have

HHHuuu(t;xxxr,uuu?,vvv,VVV xxx) = 0; HHHvvv(t;xxxr,uuu,vvv?,VVV xxx) = 0 (29)

for t ∈ (−T,0]. Seeking variational feedback controllers of the form:
δuuu = kkkuuuδxxx, δvvv = kkkvvvδxxx and putting (29) into (28) we may write

HHHuuuuuuδuuu+
(

HHHuuuxxx + f T
uuu VVV ∗xxxxxx

)
δxxx+

1
2

(
HHHuuuvvv +HHHT

vvvuuu

)
δvvv = 0, (30a)

HHHvvvvvvδvvv+
(

HHHvvvxxx + f T
vvv VVV ∗xxxxxx

)
δxxx+

1
2

(
HHHvvvuuu +HHHT

uuuvvv

)
δuuu = 0 (30b)

so that evaluating (30) at xxxr, uuu∗, and vvv∗, we have

kkkuuu =−HHH−1
uuuuuu

[
HHHuuuvvvkkkvvv +

(
HHHuuuxxx + f T

uuu VVV ∗xxxxxx

)]
, and that

kkkvvv =−HHH−1
vvvvvv

[
HHHvvvuuukkkuuu +

(
HHHvvvxxx + f T

vvv VVV ∗xxxxxx

)]
. (31)

In equation (31), the two players’ control strategies are interdepen-
dent: the optimal control for the nominal agent is to choose a strategy
that is an optimal response to the action choice of the adversary.
This is akin to the Newton-Raphson scheme which “correctly”
estimates the maximizing δuuu∗ and and minimizing δvvv∗ provided that
|uuu− uuu∗|, |vvv− vvv∗| < ε for ε > 0 and positive-definite HHH−1

uuuuuu and HHH−1
vvvvvv .

Substituting (31) into (28), we have

min
{

000,HHH + 〈HHHxxx +VVV ∗xxxxxx f ,δxxx〉+ 1
2
〈δxxx,(

HHHxxxxxx + f T
xxx VVV ∗xxxxxx +VVV ∗xxxxxx fxxx + kkkT

uuu HHHuuuuuukkkuuu + kkkT
vvv HHHvvvvvvkkkvvv

)
δxxx
〉}

.

(32)

Similar to [2], we discard terms involving the pairs (δuuu, δxxx) and
(δvvv, δxxx) beyond a linear order because the l.h.s is expanded to
second-order only. Comparing (32) to the l.h.s. of (25), we find that

− ∂ṼVV ∗

∂ t
− ∂VVV r

∂ t
= min{000,HHH}, (33a)

−∂VVV ∗xxx
∂ t

= min{000,HHHxxx +VVV ∗xxxxxx f} , (33b)

−∂VVV ∗xxxxxx
∂ t

= min
{

000,HHHxxxxxx + f T
xxx VVV ∗xxxxxx +VVV ∗xxxxxx fxxx + kkkT

uuu HHHuuuuuukkkuuu + kkkT
vvv HHHvvvvvvkkkvvv

}
.

(33c)

Furthermore, comparing (33) with (24), and using the first-order
necessary condition of optimality cf. (29), we have

− ˙̃VVV ∗ = min{000,HHH−HHH(t;xxxr,uuur,vvvr,VVV ∗xxx)} (34a)

−V̇VV ∗xxx = min{000,HHHxxx +VVV ∗xxxxxx ( f − f (t;xxxr,uuur,vvvr))} (34b)

−V̇VV ∗xxxxxx = min
{

000,HHHxxxxxx + f T
xxx VVV ∗xxxxxx +VVV ∗xxxxxx fxxx + kkkT

uuu HHHuuuuuukkkuuu + kkkT
vvv HHHvvvvvvkkkvvv

}

where every quantity in (34) is evaluated at t;xxxr,uuu∗,vvv∗6. Note
that equation (34) signifies the terms to be computed in the typical
backward pass of DDP-like algorithms namely, start at the final time
t = 0 and proceed backwards until −T ; whilst storing the locally
linear control gains i.e. (31) at every step of the backward pass to
keep the necessary conditions of optimality. In a forward pass, the
following new controls

uuu(τ) = uuu∗(τ)+ kkkuuuδxxx(τ), (35a)

vvv(τ) = vvv∗(τ)+ kkkvvvδxxx(τ), τ ∈ [−t,0] , t > T (35b)

are updated, proceeding forward in time from −T to 0 7.
The linear differential variational HJI equation for (11) thus

becomes (for sufficiently small δxxx):

−∂
ˆ̃V

∂ t
− ∂VVV r

∂ t
−
〈

∂V̂VV xxx

∂ t
,δxxx
〉
− 1

2

〈
δxxx,

∂V̂VV xxxxxx
∂ t

δxxx
〉
= min{000,[

HHH(t;xxxr,uuu∗,vvv∗,V̂VV xxx)+
〈
HHHxxx +V̂VV xxxxxx f ,δxxx

〉
+ 〈HHHuuu,kkkuuuδxxx〉
+〈HHHvvv,kkkvvvδxxx〉

+〈kkkuuuδxxx,(HHHuuuxxx + f T
uuu V̂VV xxxxxx)δxxx〉+

〈
kkkvvvδxxx,(HHHvvvxxx + f T

vvv V̂VV xxxxxx)δxxx
〉

+
1
2

〈
kkkuuuδxxx,HHHuuuvvvδvvv+

1
2
〈δvvv,HHHvvvuuukkkuuuδxxx〉

〉
+

1
2
〈kkkuuuδxxx,HHHuuuuuukkkuuuδxxx〉

+
1
2
〈kkkvvvδxxx,HHHvvvvvvkkkvvvδxxx〉+ 1

2

〈
δxxx,
(

HHHxxxxxx + f T
xxx V̂VV xxxxxx +V̂VV xxxxxx fxxx

)
δxxx
〉]}

.

(36)

where the hat terms indicate that (35) is used. Note that we have
discarded the VVV xxxxxxxxx terms in our derivations. We also do away with the
application of the penalizing ε > 0-term on the variational controls
in (35) as proposed in [4] in lieu of standard step-size adjustment
mechanisms to ensure a sufficiently small δxxx.

In a similar spirit to (34), we have

− ˙̂VVV ∗ = min{000,HHH−HHH(t;xxxr,uuur,vvvr,V̂VV
∗
xxx)} (37a)

− ˙̂VVV ∗xxx = min
{

0,HHHxxx +V̂VV ∗xxxxxx ( f − f (t;xxxr,uuur,vvvr))
}

(37b)

− ˙̂VVV ∗xxxxxx = min
{

000,HHHxxxxxx + f T
xxx V̂VV ∗xxxxxx +V̂VV ∗xxxxxx fxxx + kkkT

uuu HHHuuuuuukkkuuu + kkkT
vvv HHHvvvvvvkkkvvv

}
with the caret symbols signifying predictions upon application of

the policies (35).

V. COMPUTATIONAL PROCEDURE AND DISCUSSION.

Suppose that the position of points, {g.xxxi}Ni=1, where all trajectories
emerge is known. In what follows, we describe the numerical
scheme for carrying out the integrations (37) and computing the
overapproximated level set of VVV (xxxr +δxxx, t) i.e. (36).

A. Computational Scheme

First, a schedule of controls {uuur(t), vvvr(t)}0t=−T needed for comput-
ing nominal states {xxxr(t)}0t=−T is initialized as a problem-dependent
parameter and then used to run {xxxr(t)}0t=−T ; if the nominal control
schedules are not available, they can be set from the system’s passive
dynamics. The predicted cost improvement starting from the final
time and going backwards in time is (cf. (37)):

| V̂VV ∗(xxx,τ) |=
∫

τ

0
min{000,HHH−HHH(t;xxxr,uuur,vvvr,V̂VV

∗
xxx)}, τ �−T, (38)

6The “∗” sign implies that the optimal uuu∗ = uuur + δuuu∗ and vvv∗ = vvvr + δvvv∗
are used – essentially the optimal control-disturbance pair for xxx = xxxr +δxxx.

7Note that gains kkkuuu, kkkvvv are only used in computing feedback controllers for
the discriminating kernel in a backward reachability setting.
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Algorithm 1 Successive Approximation Scheme.
1: procedure VarHJIInt(η ρ) . Given η > 0, ρ ∈ (0,1]. . Stop

conditions.
2: Initialize Buffer Vbu f = /0.
3: for all initial trajectories X = {xxxi(t0)}Ni=1 ∈Ω do
4: Generate schedule πri = {uuuri(t), vvvri(t)}

t=−T
t=0 ;

5: Initialize | V̂VV i(xxxri , t) |= ∞; . cf. (39);
6: xxxri ,π

∗
i = BackwardPass(xxxi,πri , | V̂VV i(·) |);

7: VVV ∗i (xxxri +δxxxi, t), π∗ri
= ForwardPass(xxxri ,π

∗
i );

8: VVV bu f ←VVV bu f ∪VVV ∗i (xxxri +δxxxi, t);
9: end for

10: Compute zero-levelset of Vbu f . Using [19].
11: end procedure
1: function BackwardPass(xxxi,πri , | V̂VV

∗
i |)

2: Initialize te f f =−T, k = 1 · · ·K.
3: for t = 0,−k∆t, · · ·−T do . ∆t = T/(K−1);
4: Unpack uuuri(t), vvvri(t) := πri(t);
5: ẋxxri(t)← f (xxxri ,uuuri(t), vvvri(t)) & compute VVV ri(xxxri , t);
6: Compute | V̂VV ∗i (xxx, t) |←VVV ?

i (xxxri , t)−VVV ri(xxxri , t);
7: if | V̂VV ∗i (xxxri , t) |< η then
8: Update xxxri . e.g. via Runge-Kutta integration;
9: Accept xxxri only if condition (39) is satisfied;

10: Set te f f = t and Terminate loop.
11: else Line search for a smaller δxxxri ; restart line 3.
12: end if
13: δπ∗i (t) := (δuuu∗i , δvvv∗i )← extrema of HHH i(xxxri ,π

∗
ri
, p, t)

14: Update π∗i (t) := (uuu∗i (t), vvv∗i (t))← πri(t)+δπ∗i (t);
15: end for
16: return xxxri ,π

∗
i := {uuu∗i (t), vvv∗i (t)}

t=te f f
t=0 .

17: end function
1: function ForwardPass(xxxri ,π

∗
i )

2: for t =−T,(K−1)∆t, · · · ,−2∆t,−∆t,0 do
3: Unpack controllers (uuu∗i (t), vvv∗i (t)) := π∗i (t);
4: Compute the extremizing δuuu&δvvv cf. (28), (31);
5: Run δ ẋxxi(t)← f (·,δuuui(t), δvvvi(t));
6: δxxxi(t)← δ ẋxxri(t) set t f = text . e.g. Euler/RK integration;
7: Compute VVV ∗i (xxxri +δxxxi, t) cf. (20);
8: Update π∗ri

(t) := (uuur(t), vvvr(t)) . Using (26);
9: end for

10: return VVV ∗i (xxxri +δxxxi,0), π∗ri
.

11: end function

while the actual cost improvement is given by (19). Similar to [2],
define a cost improvement criterion ρ > 0 such that,

Ṽ?(xxxr, t)/| V̂VV
∗
(xxxr, t) |> ρ (39)

determines the “closeness” of the cost improvement to the cost
prediction.

As seen in Algorithm 1, the procedure proceeds in two passes for
all initial trajectories: (i) in a backward pass, costs (37) are estimated
with the open loop sequence {uuur(t), vvvr(t)}t=−T

0 . We generate uuu∗ and
vvv∗ in (26) afterwards; (ii) in a forward pass, reversing the order of
integration limits, controls uuu∗(t), vvv∗(t), t ∈ [−T,0] of (27) are then
applied and the approximation in (20) is computed for every trajectory
that emanates from the state space. For the line search procedure, an
Armijo-Goldstein condition in a typical backtracking line search can
be applied to iteratively keep δxxx small for a valid approximation
of VVV (·) i.e. (33). A regularization scheme similar to our previous
work [6] can also be applied to keep the stagewise Hessians positive
definite.

The union operator from line 8 of Algorithm 1 allows the recovery
of the maximal BRS as proposed in [20]. Given the “safe” and

“unsafe” sets that constitute VVV bu f , the reachable sets can be over-
approximated under a best-response strategy of the two-player game
(See [6]). We have released code that computes the zero isocontour
(levelset) of the (union of all trajectories’) optimal value function
stipulated on Line 10 of Algorithm 1. A method for obtaining this is
available in [19], which is an implementation of [21].

B. Notes on Computational Complexity
The problem introduced in (33) can be solved with Newton’s

method to find the extremizing policies δπ for all t in Algorithm 1:
with Hessian ∂ 2V

∂π2
u

for the maximizer and ∂ 2V
∂u2 ,

∂ 2V
∂v2 for the minimizer,

the inversion of the Hessian matrix would constitute O(T 3m3) CPU
flops. Whereas the overall DDP-style computational scheme we have
presented has a CPU cost per iteration of O(N)+T ·(2n3+ 7

2 n2(nu+

nv)+2n(nu+nv)
2+ 1

3 (nu+nv)
3+O(n2)+O((nu+nv)

2)) CPU flops
(see [22, Appendix II] for details), where nu and nv are as given in
section II. The polynomial time complexity of the presented scheme
makes it more attractive compared to Newton’s method or even level
set methods which are well-known to scale exponentially. We refer
readers to Pantoja [23] for a thorough differentiation between DDP
and Newton’s methods. In our opinion, recent first-order primal-
dual algorithms such as Chambolle-Pock [24] may prove more
computationally parsimonious for these problems.
A Note on Convergence: Conditions upon which the algorithm 1
converges is premised on the standard Hessians’ positive-definiteness
(PD) i.e. HHHuuuuuu and HHHvvvvvv of DDP algorithms. In addition, for linear
dynamical equations (1), the cost function being PD convex is a
sufficient requirement for PD stagewise Hessians. When 1 is nonlin-
ear, stagewise PD of HHHuuuuuu and HHHvvvvvv is no longer guaranteed [25]. In
such situations, one may explore (i) a Levenberg-Marquardt scheme,
convert the scheme to steepest descent by turning the stagewise
Hessian to an identity or using the active shift method of [25]’s
Theorem IV.
A Note on Conservativeness of Our Approach: The computed level
sets
A Note on Comparison with Lagrangian Methods: Lagrangian
methods [26] resolve the flow field in (1) using support vector sets
(such as polytopes and zonotopes) and are typically applied to linear
systems. These sets have a preconceived notion on the geometric
shape of the reachable set to be determined. In many real-world
setting, however, polytopes and zonotopes are the exception rather
than the norm as most safety sets can hardly be resolved using this
naive geometric primitives. On the contrary, our algorithm computes
the level sets as is without any assumption about the geometric
curvature of the reachable set.

C. Notes on Convergence Well-Posedness
Throughout, we have assumed that the Hessian terms, HHHuuuuuu and HHHvvvvvv

are positive-definite. This positive definiteness is critical in assuring
the convergence properties of the proposed methods.

D. Hessian Perturbation Theory
• Conditions under which H may be positive definite under

perturbations

VI. RESULTS AND DISCUSSION.
In what follows, we describe two experiments to demonstrate the

veracity of our analysis. We are concerned with pursuit-evasion games
on a vectogram. First, we solve Dreyfus’ rocket problem [27] in
a two-player differential game; TO-DO: we then follow-up with a
Dubins’ two vehicle differential game.
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x

z

Origin

Fig. 1. Motion of two rockets on a Cartesian xz-plane with a thrust
inclination in relative coordinates given by θ := up−ue.

A. The Rocket Launch Differential Game

We adopt the rocket launch problem of Dreyfus [28] which is
to launch a rocket in fixed time to a desired altitude, given a
final vertical velocity component and a maximum final horizontal
component as constraints. The rocket’s motion is dictated by the
following differential equations (under Dreyfus’ assumptions)

ẋ1 = x3; x1(t0) = 0; (40a)

ẋ2 = x4, x2(t0) = 0; (40b)

ẋ3 = acosu, x3(t0) = 0; (40c)

ẋ4 = asinu−g, x4(t0) = 0; (40d)

where, (x1,x2) are respectively the horizontal and vertical range
of the rockets (in feet), (x3,x4) are respectively the horizontal and
vertical velocities of the rockets (in feet per second), while a and
g are respectively the acceleration and gravitational accelerations (in
feet per square second). Being a free endpoint problem, we transform
it into a game between two players (40) without the terminal time
constraints as defined in [2]. The states of PPP and EEE are now denoted
as (xp,xe) respectively which are driven by their thrusts (up,ue)
respectively in the xz-plane (see Figure 1). The relevant kinematic
equations are (40b) and (40d). We now make the problem amenable
to a two-player differential game analysis so that every max and min
operations are in the interior and no sudden changes from extremes
are too aggravating in cost.

Therefore, we rewrite (40) with PPP’s motion relative to EEE’s along
the (x,z) plane so that the relative orientation as shown in Fig. 1
is θ = up − ue. The coordinates of PPP are freely chosen; however,
the coordinates of EEE are chosen a distance r away from (x,z) so
that the EEEPPP vector’s inclination measured counterclockwise from the
x−axis is θ . Following the conventions in Fig. 1, the game’s relative
equations of motion in reduced space is X = (x,z,θ) where θ ∈[
− π

2 ,
π
2
)

and (x,z) ∈ R2 are

ẋ = ap cosθ +uex, (41a)

ż = ap sinθ +ae +uex−g, (41b)

θ̇ = up−ue. (41c)

The payoff, Φ, is the distance of PPP from EEE when capture occurs
denoted as ‖PPPEEE‖2. Capture occurs when ‖PPPEEE‖2 ≤ r for a pre-

Fig. 2. Initial and final backward reachable tubes for the rocket system
(cf. Fig. 1) computed using the method outlined in [10], [12], [29]. We set
ae = ap = 64 f t/sec2 and g = 32 f t/sec2 as in Dreyfus’ original example.
We compute the reachable set by optimizing for the paths of slowest-
quickest descent in equation (44).

specified capture radius, r > 0. In (41c), we say PPP controls up and is
minimizing Φ, and EEE controls ue and is maximizing P. The boundary
of the usable part of the origin-centered circle of radius r8 is ‖PPPEEE‖2
so that

r2 = x2 + z2, (42a)

and all capture points are specified by

ṙ(x, t)+min
[

0,HHH(xxx,
∂ r(x, t)

∂x
)

]
≤ 0, (43)

with the corresponding Hamiltonian

HHH(xxx, p) =− max
ue∈Ue

min
up∈Up

p1
p2
p3

T  ap cosθ +uex
ap sinθ +ae +upx−g

up−ue

 . (44)

Suppose that the maximizing ue is ūe and the minimizing up is ūp. We
have at the point of slowest-quickest descent on the capture surface,
that

ūe = p1x− p3, (45a)

ūp = p3− p2x. (45b)

We set the linear velocities and accelerations equal to one another
i.e. ue = up and ae = ap. Thus, the Hamiltonian takes the form

HHH(xxx, p) =−cos(u)|ap1|+ cos(u)|ap1|− sin(u)|ap2|−
sin(u)|ap2|+u|p3|−u|p3|. (46)

Using a distributed version of the levelset toolbox [19], the backward
reachable tube of the game is depicted in Fig. 2. A game between
the two players was run over 11 global optimization time steps. The
initial value function (left inset of Fig. 2) is represented as a dynamic
implicit surface over all point sets in the state space with a signed
distance function. We made the third coordinate axis of the state
space (here the common heading of the two rockets) to align with
the third cylinder axis. The final BRT at the end of the optimization
run is shown in the right inset of Fig. 2.
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