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Abstract. We are concerned with finding control laws with input and state
constraints-satisfaction guarantees in nonlinear multi-agent systems that exhibit
complex dynamics. In this sentiment, we present a scheme for constructing back-
ward reach-avoid-tubes (BRATs) which return safety certificates or guarantees
for such systems. We locally resolve the extremal of payoffs for separated local
subsystems and prescribe a numerical scheme to assemble these local BRATs.
Within the bounds here set, our scheme presents a simple yet effective strategy for
designing the verification of complex nonlinear systems via backward reach-avoid
sets or tubes.
Supplementary Material: The computer program and simulations results for the
experiments reported in this paper are available on github: robotsorcerer/ComplexBRAT.

1 Introduction.

These, in essence, are our claims: (i) that in certain quantitative differential games,
involving complex system dynamics, and that possess input and/or state constraints1 [1],
local discriminating kernels [2] can be separately computed for system substructures [3];
(ii) that these respective local “safety-preserving” kernels can be stitched along their
boundaries into a global whole [4]. Therefore we infer: (a) that this framework eases the
computational burden for resolving closed-loop control laws for competing constraints
in large-scale systems involving fast-changing transients – a major drawback for model
predictive control; and (b) that within the bounds here set, real-time “constraints-
preserving” control design in-the-large with fast transients and high frequency (i.e.
the liveness problem [5]) of closed-loop control executions can be achieved on many
natural physical phenomena.

For many natural systems such as multi-agent systems, murmurations, foaming
across space, multiple cellular systems, crystallography e.t.c, the interconnection among
subsystems can be characterized as interfaces with motion possessing boundaries that
are made of interacting local regions. Computing the kinematics of such systems need
topologically complex domain reformulation – difficult to resolve in a conceptual,
computational, and numerically robust manner.

1 For instance, an antagonist player that must reach a target set in a minimal time, and a protagonist
player that must avoid it as long as possible. The target set here may be a subset of a state space
where the system exhibits instability.

https://github.com/robotsorcerer/ComplexBRAT
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Fig. 1: Starlings murmurations. From the top-left and clockwise. (i) A starlings flock
rises into the air, in a dense structure (Reuters/Amir Cohen). (ii) Starlings migrating over
an Israeli village (AP Photo/Oded Balilty). (iii) Starlings feeding on laid seeds in the
ground in Romania. (iv) Two flocks of migrating starlings (Menahem Kahana/AFP/Getty
Images). (v) A concentric conical formation of starlings (Courtesy of The Gathering
Site.). (vi) Splitting and joining of a flock of starlings.

Using the terminal function in Hamilton-Jacobi-Isaacs functionals and backward
reachability theory, we shall construct a theorem for computing “safety-preserving”
backward reach-avoid tubes (BRATs) [6–8] across local regions. BRATs are those
zero-level sets [9] of implicitly-defined value functions on a state space that return a
“safety-satisfying” certificate after solving a time-dependent Hamilton-Jacobi Isaacs
equation [10, 11]. We shall afterwards prescribe a scheme for aggregating the over-
approximated BRATs of the respective subsystems across space-time.

Differential optimal control theory and games provide a useful paradigm for resolving
the BRAT of multiple agents interacting over a large shared space. Both rely on the
resolution of the Hamilton-Jacobi-Bellman (HJB) equation or its Isaacs counterpart (HJI).
As HJ-type equations are seldom regular enough to admit a classical solution for almost
all practical problems, “weaker” or “viscosity” solutions [10,12,13] provide generalized
solutions to HJ partial differential equations (P.D.E.s) under relaxed regularity conditions;
these viscosity solutions are not necessarily differentiable anywhere in the state space,
and the only regularity prerequisite in the definition is continuity [11]. However, wherever
they are differentiable, they satisfy the values of HJ P.D.E.s in a classical sense. Thus,
they lend themselves well to many real-world problems existing at the interface of
discrete, continuous, and hybrid systems [7, 8, 14, 15].

With the elegant theoretical results of [10,13,16–18], stable essentially non-oscillatory
Lax-Friedrichs numerical integration schemes provide consistent and monotone viscosity
solutions with high accuracy and precision on a mesh to multi-dimensional HJ-type

http://www.thegatheringsite.net/qcgems/2014/1/24/murmuration
http://www.thegatheringsite.net/qcgems/2014/1/24/murmuration
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equations2. However, by discretizing the Hamiltonian on a dimension-by-dimension
basis, the scheme suffers from scalability as a result of the exponential computational
complexity associated with grid resolutions of value functions [19–21]. Given the limits
of computational resources and memory when resolving practical problems for multi-
agent systems, what if we exploit local structures within a complex system and resolve
the overall Hamiltonian by an aggregation of the computation of the numerical fluxes of
local Hamiltonians? This is the central question that this paper seeks to address.

Applications of these methods may include (i) the robust coordination of the motion
of search and rescue robot-teams in a complex terrain; (ii) motion-planning under state
and input constraints for human-robot interactive systems e.g. in warehouse assembly op-
erations; (iii) coordinating system operation based on a labyrinth of sensor nodes replete
throughout a vectogram in life-critical internet of medical things (IoMT); (iv) multi-agent
robotic systems requiring dynamical dexterity [22]; (v) dynamical systems with locally
valid asymptotic controllers that do not admit a continuous control law for arriving at a
globally asymptotically stable solution [23, Theorem II]; (vi) energy efficiency control
and management in large buildings where end-user demand-response must be accurately
predicted for evaluating fixed rule strategies and control actions, inter alia. Mostly, we
will work locally in our formulations, but occasionally will make global remarks.

The body of this paper goes thus: we introduce common notations and conventions in
§ 2. A rationale for our mathematical construction of the Hamiltonian, leveraging flocking
behaviors and reachability theory is provided as a compendium in Appendix A, and we
encourage the unfamiliar pedestrian reader with recent behavioral dynamics governing
flocking in European Starlings and reachability theory to read this appendix first before
continuing. We formally introduce our scheme in § 3; and we present results and insights
from experiments in § 4. We conclude with remarks in § 5. Lastly, algorithmic tables
and numerical results of our implementations and algorithm outlines are provided in the
appendices.

2 Notations, Conventions, and Assumptions.

We adopt vector-matrix notations throughout. Conventions: Time variables e.g. t, t0, τ, T
are all real numbers; t0 ≤ t ≤ tf shall denote fixed, ordered values of t. Vectors are
denoted by small, bold letters whose contents are real throughout; they are column-wise
represented. Latin upper case letters are matrices. Calligraphic letters are sets. Positive,
negative, increasing, decreasing e.t.c. shall refer to strict corresponding property.

The state x belongs in the open set in Ω ⊂ Rn. The cardinality of a set S is [S]. To
avoid the cumbersome phrase “the state x at time t”, we associate the pair (x, t) with
the system’s phase. The Cartesian product (Ω × T ), where T = R1 is the space of all
time values, is referred to as the phase space. The interior of Ω is denoted by int Ω;
whilst the closure of Ω is denoted Ω̄. We denote by δΩ (:= Ω̄\int Ω) the boundary of
the set Ω.

2 Consistent solutions to HJ equations are those whose explicit marching schemes via discrete
approximations to the HJ IVP agree with the nonlinear HJ solution [17]. Such schemes are said
to be monotone e.g. on [−R,R] if the numerical approximation to the vector field of interest is
a non-decreasing function of each argument of the discrete approximation to the vector field.
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Fig. 2: Illustration of robust heading consensus for a flock with 8 aircraft. The evading
player has all the evading agents under the will of its strategy. To every evading flock,
there is at most one pursuing player.

Unless otherwise stated, vectors u(t) and v(t) are reserved for admissible control
(resp. disturbance) at time t. We say u(t) (resp. v(t)) is piecewise continuous in t, if for
each t, u ∈ U (resp. v ∈ V), U( resp. V) is a Lebesgue measurable and compact set. At
all times, any of u(t) or v(t) will be under the influence of a player such that the motion
of a state x will be influenced by the will of that player.

At issue are conflicting objectives between various agents such as a heading conver-
gence goal under an external disturbance’ influence. For agents that are members of a
local coordination group, collision avoidance shall apply so that agents within a local
neighborhood cooperate to avoid entropy and predatory pursuer(s). Thus, the problem at
hand assumes that of a pursuit game. And by a game, we do not necessarily refer to a
single game, but rather a collection of games. Such a game will terminate when capture
occurs, that is the distance between players falls below a predetermined threshold. Each
player in a game shall constitute either a pursuer (P ) or an evader (E). The cursory
reader should not interpret P or E as controlling a single agent. In complex settings,
we may have several pursuers (enemies) or evaders (peaceful citizens). However, when
P or E governs the behavior of but one agent, these symbols will denote the agents
themselves. Each evading agent, identified by its label i as a state superscript, is parame-
terized by three state components: its linear velocities (x

(i)
1 ,x

(i)
2 ), and its heading w(i).

The state of an agent i within a flock Fj will be defined as x(i)j or xij .
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Given the various possibilities of outcomes, the question of what is “best” will be
resolved by a payoff, Φ, whose extremal over a time interval will constitute a value, V 3.
We adopt Isaac’s [4] language so that if the payoff for a game is finite we shall have a
game of kind (a qualitative game); and for a game with a continuum of payoffs we shall
have a game of degree (quantitative games). The strategy executed by P or E during a
game shall be denoted by α ∈ A (resp. β ∈ B). With this definition, a control law e.g.
u(i) played by a player e.g. P will affect agent i; and a collection of agents under P ’s
willpower be referred to as a flock. We shall refer to an aggregation of flocks on a state
space as a murmuration 4.

Assumptions: The many interacting subsystems under consideration employ (i) nat-
ural units of measurements that are the same for all agents; (ii) kinematics with same
linear speeds but with a capacity for orientation changes; (iii) intra-flock agent interaction
occurs within unique and distinct state space manifolds; and by agents maneuvering their
direction, a kinematic alignment is obtained with other flocks; (iv) inter-flock interaction
occurs when a pursuer is within a threshold of capturing any agent within the murmura-
tion; (v) the interaction among respective flocks is described by the time-evolution of an
interface, which is the zero-level set of the objective functional of the respective local
flocks.

3 Methods.

For the reader unfamiliar with reachability theory, a background necessary for processing
the formulations in this section is presented in Appendix A. An abridgment of this section
goes thus. The precept of the kinematics for a many-bodied system is introduced; we
press definitions, and introduce the state partitioning scheme (3.1); we then renew
and formalize the precept of flocks’ (an)isotropy (3.2). Flock motion verification is
constructed via HJI analysis (3.3) and a means for synthesizing multiple flock verification
is presented (3.4).

We locally synthesize the kinematics of agents in a manner amenable to state rep-
resentation by resolving local payoff extremals, {Φ1, · · · ,Φnf

}. This is a state space
partition induced by an aggregation of desired collective behavior from local flocks’
values {V1, · · · ,Vn}5. Suppose that the local control laws are properly coordinated,
the region of the state space across which their coordinated influence might be exerted
constitute a larger e.g. manipulability volume for a dexterous kinematic task. We now
formalize definitions that will aid the modularization of the problem into manageable
forms.

3 The functional Φ may be considered a functional mapping from an infinite-dimensional space
to the space of real numbers.

4 The definition of murmurations we use here has a semblance to the murmurations of possibly
thousands of starlings observed in nature.

5 Let the cursory reader understand that we use the concept of a flock loosely. The value function
could represent a palette of composed value functions whose extremals resolve local behaviors
we would like to emerge over separated local regions of the state space of dexterous drone
acrobatics [24], a robot balls juggling task [22] or any parallel task domain verification problem.
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Definition 1 (Neighbors of an Agent). We define the neighborsNi(t) of agent i at time
t as the set of all agents that lie within a predefined radius, ri.

Definition 2. We define a flock, F , consisting of agents labeled {1, 2, · · · , na} as a
collection of agents within a phase space (X , T ) such that all agents within the flock
interact with their nearest neighbors in a topological sense.

Remark 1. Every agent within a flock has similar dynamics to that of its neighbor(s).
Furthermore, agents travel at the same linear speed, v; the angular headings, w, however,
may be different between agents, seeing we are dealing with a many-bodied system.
Each agent’s continuous-time dynamics, ẋ(i)(t), evolves asẋ

(i)
1 (t)

ẋ
(i)
2 (t)

ẋ
(i)
3 (t)

 =

v(t) cosx
(i)
3 (t)

v(t) sinx
(i)
3 (t)

〈w(i)(t)〉r

 , 〈w(i)(t)〉r =
1

1 + ni(t)

w(i)(t) +
∑

j∈Ni(t)

wj(t)


(3.1)

for agents i = {1, 2, 3, ..., na}, where t is the continuous-time index, ni(t) is the
number of agent i’s neighbors at time t, Ni(t) denotes the sets of labels of agent i’s
neighbors at time t, and 〈w(i)(t)〉r is the average orientation of agent i w.r.t its neighbors
at time t. Note that for a game where all agents share the same constant linear speed and
heading, (3.1) reduces to the dynamics of a Dubins’ vehicle in absolute coordinates with
−π ≤ w(i)(t) < π. The averaging over the degrees of freedom of other agents in (3.1)
is consistent with the mean field theory, whereby the effect of all other agents on any
one agent is an approximation of a single averaged influence.

Definition 3 (Payoff of a Flock). To every flock Fj (with a finite number of agents
na) within a murmuration, j = {1, 2, · · · , nf} , we associate a payoff, Φj , that is the
union of all respective agent’s payoffs for expressing the outcome of a desired kinematic
behavior.

Given the recent results in robust numerical optimization of level sets of late, the
last point is more of an axiom, than an assumption (see [25–28]). Viscosity solutions
provide a particular means of finding a unique solution with a clear interpretation in
terms of the generalized optimal control problem, even in the presence of stochastic
perturbations. Each agent within a flock interacts with a fixed number of neighbors, nc,
within a fixed topological range, rc. This topological range is consistent with findings
in collective swarm behaviors and it reinforces group cohesion [29]. However, we are
interested in robust group cohesion in reachability analysis. Therefore, we let a pursuer,
P , with a worst-possible disturbance attack the flock, and we take it that flocks of agents
constitute an evading player, E. Returning to (3.1), for a single flock, we now provide a
sketch for the HJI formulation for a heading consensus problem.

3.1 Framework for Separated Payoffs.

Suppose that a murmuration’s global heading is predetermined and each agent i within
each flock, Fj , (j = {1, · · · , nf}) in the murmuration has a constant linear velocity, vi.
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An agent’s orientation is its control input, given by the average of its own orientation
and that of its neighbors. Instead of metric distance interaction rules that make agents
very vulnerable to predators [29], we resort to a topological interaction rule. With metric
distance rules, we will have to formulate the breaking apart of value functions that
encode a consensus heading problem in order to resolve the extrema of multiple payoffs;
which is typically what we want to prevent in real-world autonomous tasks.

What constitutes an agent’s neighbors are computed based on empirical findings and
studies from the lateral vision of birds and fishes [29–31] that provide insights into their
anisotropic kinematic density and structure. Importantly, starlings’ lateral visual axes
and their lack of a rear sector reinforces their lack of nearest neighbors in the front-rear
direction. As such, this enables them to maintain a tight density and robust heading
during formation and flight. The delineation of an agent’s nearest neighbors is given in
Algorithm 1. On lines 3 and 7 of Algorithm 1, cohesion is reinforced by leveraging the
observations above. While the neighbor updates for an agent involve an O(n2) algorithm
in Algorithm 1, we are merely dealing with 6 − 7 agents at a time in a local flock –
making the computational cost measly.

Each agent within a flock Fj interacts with a fixed number of neighbors, nc, within a
fixed topological range, rc. The topological range can be set as the distance between the
labels of agents in a flock. This topological range is consistent with findings in collective
swarm behaviors and it reinforces group cohesion [29]. However, we are interested in
robust group cohesion in reachability analysis. Therefore, we let a pursuer, P , with a
worst-possible disturbance attack the flock, and we take it that flocks of agents constitute
an evading player, E.

3.2 Global Isotropy via Local Anisotropy.

Structural anisotropy is not merely an effect of a preferential velocity in animal flocking
kinematics but rather an explicit effect of the anisotropic interaction character itself:
agents choose a mutual position on the state space in order to maximize the sensitivity to
changes in heading and speed of neighbors as the neighbors’ anisotropy is optimized via
vision-based collision avoidance characteristically unrelated to the eye’s structure [29].

To reinforce robust group cohesion in local flocks, we randomly simulate a pursuer
Pj against an evading agent in every flock Fj so that one agent is always relative
coordinates with P j . In this specialized case, the E and P ’s speeds and maximum
turn radii are equal: if both players start the game with the same initial velocity and
orientation, the relative equations of motion show that E can mimic P ’s strategy by
forever keeping the starting radial separation. As such, the barrier is closed and the
central theme in this game of kind is to determine the surface [32]. We defer a thorough
analysis of the nature of the surface to a future work.

Owing to the high-dimensionality of the state space, we cannot resolve this bar-
rier analytically, hence we resort to numerical approximation methods – in particular,
we leverage a parallel Lax-Friedrichs integration scheme [13] which we implement in
Cupy [33] in order to provide a consistent and monotone solution to the Hamiltonians of
the flocks. The assembly in the large of these respective Hamiltonians, and hence nu-
merically robust solutions to the variational backward reeachability problem is resolved
with a Voronoi tesselation of the zero-level sets of the boundaries of the flocks.
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Therefore, for an agent i within a flock with index j in a murmuration, the equations
of motion under attack from a predator p (see Fig. 2) in relative coordinates is ẋ

(i)j
1 (t)

ẋ
(i)j
2 (t)

ẋ
(i)j
3 (t)

 =

−v
(i)j
e (t) + v

(j)
p cosx

(i)j
3 (t) + 〈w(i)j

e 〉rx
(i)j
2 (t)

v
(i)j
p (t) sinx

(i)j
3 (t)− 〈w(i)j

e 〉rx
(i)j
1 (t)

w
(j)
p (t)− 〈w(i)j

e (t)〉r

 for i = 1, · · · , na

(3.2)

where na is the number of agents within a flock,
(
x

(i)j
1 (t),x

(i)j
2 (t)

)
∈ R2, and we have

x
(i)j
3 (t) ∈ [−π,+π)6. Read x(i)j

1 (t): the first component of the state of an agent i at
time t which belongs to the flock j in the murmuration at time t. In absolute coordinates,
the equation of motion for free agents is ẋ

(i)j
1 (t)

ẋ
(i)j
2 (t)

ẋ
(i)j
3 (t)

 =

v
(i)j
e (t) cosx

(i)j
3 (t)

v
(i)j
e (t) sinx

(i)j
3 (t)

〈w(i)j
e (t)〉r

 . (3.3)

3.3 Flock Motion from Aggregated Value Functions.

We introduce the union operator i.e. ∪ below as an aggregation symbol since the respec-
tive payoffs of each agent in a flock may be implicitly or explicitly constructed7 – when
it is implicitly represented, say from a signed distance function, we shall aggregate the
payoff of agents 1 and 2 as

∪{Φ1(x, t),Φ2(x, t)} ≡ Φ1(x, t) ∪Φ2(x, t) = min(Φ1(x, t),Φ2(x, t)) (3.4)

otherwise, other appropriate arithmetic or logical operation shall apply.
We assume that the value of a flock heading control (differential game) exists. And

by an extension of Hamilton’s principle of least action, the terminal motion of a flock
coincide with the extremal of the payoff functional

V (x, t) = inf
β(1)∈B(1)

sup
u(1)∈U(1)

g(1)(x(T )) ∪ · · · inf
β(nf )∈B(nf )

sup
u(nf )∈U(nf )

g(nf )(x(T ))

where nf is the total number of distinct flocks in a murmuration. The resolution of this
equation admits a viscosity solution to the following variational terminal HJI PDE [7]

∪nf

j=1

[
∪na
i=1

(
∂Vi
∂t

(x, t) + min
[
0,H(i)(x(i),Vx(x, t))

])]
= 0. (3.5)

with Hamiltonian,

H(i)(t;x(i),u(i),v(i), p(i)) = max
u(i)∈U(i)

min
v(i)∈V(i)

〈f (i)(t;x,u(i),v(i)), p(i)〉. (3.6)

6 We have multiplied the dynamics by −1 so that the extremal’s resolution evolves backwards in
time.

7 In resolving the zero-level sets of HJ value functions, it is typical to represent the payoff’s
surface as the isocontour of some function (usually a signed distance function).



Scalable Reachability Analysis 9

In swarms’ collective motion, when e.g. a Peregrine Falcon attacks, immediate near-
est agents change direction almost instantaneously. And because of the interdependence
of the orientations of individual agents with respect to one another, all other agents
respond instantaneously. Thus, we only simulate a single attack against a flock within
the murmuration to realize robust cohesion.

A pursuer can attack any flock within the murmuration from a distinct surface: a P
direction: this side of the surface reached after penetration in the P − [E−] direction is
the P − [E] side [4]. We attribute the term in the small to determine the smooth parts of
the singular surface solution when a pursuer attacks, and when they are stitched together
into the total solution, we shall describe them as in the large. There exists at least one
value ᾱ of α such that if α = ᾱ, no vector in the β-vectogram8 penetrates the surface
in the E-direction. Similar arguments can be made for β̄ which prevents penetration in
the P -direction. We adopt [4]’s terminology and call these surfaces semi-permeable
surfaces (SPS).

Throughout the game, we assume that the roles of P and E do not change, so that
when capture can occur, a necessary condition to be satisfied by the saddle-point controls
of the players is the Hamiltonian,Hi(x, p).

Theorem 1. For a flock, Fj , the Hamiltonian is the total energy given by a summation
of the exerted energy by each agent i so that we can write the main equation or total
Hamiltonian of a murmuration as

H(x, p) = max
w

(k)j
e ∈[wj

e,w̄
j
e]

min
w

(k)j
p ∈[wj

p,w̄
j
p]

∪nf

j=1

[
H(k)j
a (x, p) ∪

(
∪na−1
i=1 H

(i)j
f (x, p)

)]
(3.7)

= ∪nf

j=1

(
∪na−1
i=1

[
p

(i)j
1 v(i)j cosx3 + p

(i)j
2 v(i)j sinx3 + p

(i)j
3 〈w(i)j

e 〉r
]

∪
[
p

(k)j
1

(
v(k)j − v(k)j cosx

(k)j
3

)
− p(k)j

2 v(k)j sinx
(k)j
3 − wjp|p

(k)j
3 |

+w̄je

∣∣∣∣p(k)j
2 x

(k)j
1 − p(k)j

1 x
(k)j
2 + p

(k)j
3

∣∣∣∣]) . (3.8)

whereH(k)j
a (x, p) is the Hamiltonian of the individual under attack by a pursuing agent,

P , and H(i)j
f (x, p) are the respective Hamiltonians of the free agents, i = {1, · · · , nf},

within an evading flock in a murmuration, and not under the direct influence of capture
or attack by P ; we denote by w(i)j

e the heading of an evader i within a flock j and w(j)
p

the heading of a pursuer aimed at flock j; w(k)j
e is the orientation that corresponds to

the orientation of the agent with minimum turn radius among all the neighbors of agent
k, inclusive of agent k at time t; similarly, w̄(k)j

e is the maximum orientation among all
of the orientation of agent k’s neighbors.

8 A β−vectogram is the resulting state space when a the strategy β is applied in computing the
optimal control law for an agent.
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Corollary 1. For the special case where the linear speeds of the evading agents and
pursuer are equal i.e. v(i)j

e (t) = vp(t) = +1m/s, we have the Hamiltonian as

H(x, p) = ∪nf

j=1

(
∪na−1
i=1

[
p

(i)j
1 cosx3 + p

(i)j
2 sinx3 + p

(i)j
3 〈w(i)j

e 〉r
]

∪
[
p

(k)j
1

(
1− cosx

(k)j
3

)
− p(k)j

2 sinx
(k)j
3 − wjp|p

(k)j
3 |

+w̄je

∣∣∣∣p(k)j
2 x

(k)j
1 − p(k)j

1 x
(k)j
2 + p

(k)j
3

∣∣∣∣]) . (3.9)

We adopt the essentially non-oscillatory Lax-Friedrichs scheme of [17, 18] in re-
solving (3.9). Denote by (x, y, z) a generic point in R3 so that given mesh sizes
∆x, ∆y, ∆z, ∆t > 0, letters u, v, w will represent functions on the x, y, z lattice
∆ = {(xi, yj , zk) : i, j, k ∈ Z}. We define the numerical monotone flux, Ĥ(i)j (·), of
H

(i)
j (·) as

Ĥ(i)j (u+, u−, v+, v−, w+, w−) = H(i)j

(
u+ + u−

2
,
v+ + v−

2
,
w+ + w−

2

)
−1

2

[
α(i)j
x

(
u+ − u−

)
+ α(i)j

y

(
v+ − v−

)
+ α(i)j

z

(
w+ − w−

)]
(3.10)

where

α(i)j
x = max

a≤u≤b
c≤v≤d
e≤w≤f

|H(i)j
u (·)|, α(i)j

y = max
a≤u≤b
c≤v≤d
e≤w≤f

|H(i)j
v (·)|, α(i)j

z = max
a≤u≤b
c≤v≤d
e≤w≤f

|H(i)j
w (·)|

(3.11)

are the dissipation coefficients, controlling the level of numerical viscosity in order to
realize a stable solution that is physically realistic [17]. Here, the subscripts of H are
the partial derivatives w.r.t the subscript variable, and the flux, Ĥ(·) is monotone for
a ≤ u± ≤ b, c ≤ v± ≤ d, e ≤ w± ≤ f . We adopt the total variation diminishing Runge-
Kutta scheme of [34] in efficiently calculating essentially non-oscillating upwinding
finite difference gradients ofH(·).

3.4 ComplexBRAT by Voronoi Tesselaton of Local ε-BRAT Interfaces.

The method we propose here is inspired by the algorithmic notions of robust, self-
organizing emergent “behaviors” where efficiency and consistency is important when
considering the interconnection between moving interfaces [26]. In our case, the physics
of the local interface of the flocks that constitute a murmuration possesses topological
complexity arising from local value function boundaries that evolve temporally e.g. via
intersection or destruction of interfaces as a result of physical phenomena changes such
as vacuole, splitting, or flash expansion inherent in starlings murmurations (cf. Fig. 1).

Suppose that the boundaries between two flocks Fj , Fk is a closed hypersurface,
moving through time i.e. Γjk(t = 0) ∈ RN with speed vj as given in (A.7). We can
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solve the internally generated level set equation (A.7) to obtain the capture surface of
respective flocks (see subsection 3.3). Given the value function aggregation scheme (cf.
3.5), we are interested in solving for the externally generated velocity field, vext, induced
by a flock’s kinematics in light of (3.2) so that vj in (3.2) is now a parameter for every
level set, instead of just the level set of the interface alone. We call vext the external
velocity, so that at the zero level set, we have

vjext = vj when Vj = 0. (3.12)

The key idea here is that we stitch the interfaces Γjk, Γkl, Γlm, by leveraging motion
involving mean curvature [35, §4.1] in systems characterized by multi-phase kinetics.
Therefore, a gradient descent on the energies of the respective flocks at the zero level set
can be computed from

∪nf

i=1 Vi =
∑
j 6=k

γjkΥ (Γjk), for (j, k) ∈ {i | i = 1, · · · , nf} where Vi ∈ Ω, (3.13)

Υ is the area covered by the multi-flock interface, Vi ∩ Vj = (∂Vi) ∩ (∂Vj) for i 6= j,
Vi ∩ Vi = (∂Vi) ∩ (∂Vi) ≡ ∅. In addition, we require the surface tension, γjk, to be
positive so that the interfaces shrink as the level set equation evolves over time; we do
this by imposing the following triangle inequality γjk + γkl ≥ γjl for distinct j, k, l in
order to assure that (3.13) is well-posed [27]. Where interacting flocks share a boundary,
we characterize such higher order junctions by triple hypersurfaces, by tracking the
ε-BRATs for an ε > 0. The kinematics of these ε-BRATs under attack by predators
constitute the evolution of the event-driven behavior of murmurations that swoop, swirl,
or whirl in order to evade capture (see Fig. 1).

The speed of the interface, at a point x ∈ Γjk a distance from a triple junction, is
given by

vN (x) = γjkKjk(x) (3.14)

for a curvature Kjk(x) = Kkj(x), and a normal speed vN (x). We implicitly initialize
the payoff, Φij of each agent labeled p ∈ {1, · · ·na} within every flock, Fj , ∀ j =

1, · · · , nf as a signed distance function dΦi
j
(x) to a phase (set) in Φij ∈ Ω so that it

yields an Euclidean distance to the boundary ∂Φij whose sign bit is an indicator function,
signifying that if a point x ∈ Rn is inside or outside Σ i.e.

dΦi
j
(x) =

{
infz(i)∈∂Φi

j
| x− z(i) |, x ∈ Φij ,

− infz(i)∈∂Φi
j
| x− z(i) |, x /∈ Φij ,

(3.15)

so that each agent’s initial position is uniquely represented on the overall vectogram
based on the value of z(i). In order to maintain a consistent level set representation for
each payoff, (e.g. when flocks split, expand, or spread out, cf. Fig. 1), the structure of
interface must be maintained as time evolves. We follow Adalsteinsson et. al’s [25]
construction and write the level set equation as

vjext · ∇Vj = 0, where vjext =
∇Φ
|∇Φ|

, (3.16)
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Fig. 3: Implicit representation of the payoffs for agents 2 and 5 within flock 7.

so that the level set function Vj remains the signed distance function as time evolves.
When the level set functions must be evolved concurrently, we reparameterize the level
set equation with an unsigned distance function as a union of an ε > 0 super-level sets
of the respective flocks

∂Φ

∂t
(x, t)−∇ · vjext |∇Φ(x, t)| = ε. (3.17)

That is the level set corresponding to the interface is now a neighbor of nearby level
sets; this makes the motion of the zero level set that corresponds to the interface (A.7)
is surrounded by the motion of nearby level sets. Similar to [26], we define Voronoi
interface ΓV as the set of of all points x that are equidistant to at least two different
ε-level sets belonging to different flocks, and no closer to any other ε-level set i.e.

ΓV = {x ∈ Ω : ∃i 6= j}
such that d(x, Γε,i) = d(x, Γε,j) ≤ d(x, Γε,k)∀ k 6= i, j, (3.18)

where Γε,i is the ε-level set corresponding to a flock i.

4 Experiments.

At issue is a family of games with different target sets for local flocks that on the whole
constitute a murmuration. Every agent’s target position is initialized as

ρj
[
rc cos( iπ4 ), rc sin( iπ4 ), h+ i δh

]T ∀ i ∈ {1, · · ·na},∀ j ∈ {1, · · ·nf}. (4.1)

Here, ρj is a scaling factor that ensures adequate inter-flock separation on a grid, h, δh
are appropriately problem-dependent parameters, and rc is a collision avoidance radius.
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The set of grid points for which the states of (4.1) is defined are those point set for which
dΦi

j
(x) is fixed and Ω = {all grid points}. We set dΦi

j
(x) = sgn(V i

j (x)) for all x ∈ Ω.
Fig. 3 denote the representation of the payoffs of certain agents that constitute a flock.
They are constructed from the signed distance function from all points on the grid to an
interface in the spirit of the foregoing.

An adaptive allocation rule for robust cohesion lets P randomly aim against an agent
within an evading flock in every iteration of the game (see Fig. 2) – since when hunting
for a prey, an originally targeted prey may evade P . The domain in which we calculate
the BRT of the agent under attack in relative coordinates w.r.t a pursuer, and that of the
other agents (within a flock) in absolute coordinates are respectively

Ω̄rel = R2 × S1, Ω̄abs = {∪na−1
p=1 Ω̄pabs|Ω̄

p
abs ∈ R2 × S1}. (4.2)

It follows that the domain that constitutes the BRAT for a flock Fj is

Ω̄jflk = {Ω̄jrel ∪ Ω̄
j
abs}, (4.3)

and the domain that constitutes the BRAT of a murmuration Fj , · · · , Fnf
is

Ω̄murmur = {Ω̄jflk ∪ Ω̄
j+1
flk ∪ · · · ∪ Ω̄

nf

flk}. (4.4)

Since the orientations of neighboring agents are averaged throughout a flock, the infor-
mation is inevitably propagated across the entire flock. Note that the above equations
imply that the cardinality of all agents within a flock is [na] and the cardinality of all
agents within a murmuration is [nf ]. We define the payoff for a flock Fj as the union
of the payoff of every individual agent that constitute it (that is, it is the union of the
respective payoffs as shown in Fig. 3) i.e.

Φj = Φ1 ∪Φ2 ∪ · · · ∪Φna−1 ∪Φna
, (4.5)

where a Φ solves the level set PDE [9] in the form of the unsigned distance function
of (3.17). The backward reach-avoid tubes we aim to compute constitute the states’ set
from which the pursuer can drive the evader into the target set

L0 =

{
x ∈ Ω̄|

(√
x

(1)2
1 + x

(1)2
2 − r(1)

c

)
∪
(√

x
(2)2
1 + x

(2)2
2 − r(2)

c

)
∪ · · ·

∪
(√

x
(na)2
1 + x

(na)2
2 − r(na)

c

)}
(4.6)

where superscripts in parentheses denote the label of an agent, so that in a 3-D, L0 is
akin to an uneven cylinder (see left inset of Fig. 4). The interface is the union of the
zero-level set of the payoffs of the individual agents that constitute the flock (see Fig. 3).
Each flock’s zero-level set is distinct because the target set of its agents belong to unique
positions in the state space.

Results from the numerical integration of the level set equation for different flocks
is depicted in Fig. 4, and more results for other flocks are included in the Appendix
C. Let us enquire. Observe: (a) Each flock’s RCBRAT’ surface is nonconvex; (b) The
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Fig. 4: Left: Interface or zero-level set for two example flocks. Right: Interfaces (zero-level set)
of the evading flocks under attack from a pursuer at the end of the respective Lax-Friedrichs’
integration scheme. Metric reach radius=0.2m, avoid Radius=0.2m. More results are included in
Appendix C.

Lax-Friedrich’s numerical integration scheme of the respective Hamilton-Jacobi value
functions has discontinuities in the solution despite the value function being initially
smooth; (c) Owing to the possibility of non-unique solutions to each initial value problem,
the weighted essentially nonoscillatory entropy scheme we adopted helps in picking out
“physically” relevant solutions to (3.8).

5 Conclusion.

We have proposed an Hamilton-Jacobi-Isaacs systems verification scheme, based on
Hamilton-Jacobi’s reachability theory for constructing backward reachable tubes for
a complex system with structural local behaviors that is characterized by topological
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nearest neighbor rules. These local spatio-temporal dynamics whose local interactions
constitute a collective behavior. Using the key idea that the total energy within every
subsystem is an aggregate of the respective energies of its individual agents, we have
formulated a theorem for constructing the local Hamiltonians as well as value functionals.

Under the assumptions that we have (i) constant linear velocity among agents;
(ii) each agent’s orientation serves as the control input; (iii) intra-flock agent interaction
occurs within unique and distinct state space manifolds; and by agents maneuvering
their direction, a kinematic alignment is obtained with other flocks; and (iv) inter-
flock interaction occurs when a pursuer is within a threshold of capturing any agent
within the murmuration, we have presented a numerical input/state-constraint preserv-
ing scheme utilizing a time-constrained HJI formulation in a backward reachability
setting.
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37. Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition
in a system of self-driven particles. Physical review letters 75(6), 1226 (1995) 17

38. Bialek, W., Cavagna, A., Giardina, I., Mora, T., Silvestri, E., Viale, M., Walczak, A.M.:
Statistical mechanics for natural flocks of birds. Proceedings of the National Academy of
Sciences 109(13), 4786–4791 (2012) 17

39. Haiken, M.: These birds flock in mesmerizing swarms of thousandsbut why is
still a mystery. (2021). URL https://www.nationalgeographic.com/animals/article/
these-birds-flock-in-mesmerizing-swarms-why-is-still-a-mystery 17

40. Sethian, J.A.: Numerical Methods for Propagating Fronts. In: Variational methods for free
surface interfaces, pp. 155–164. Springer (1987) 19

A Reachability for Systems Verification.

To alleviate mesh constraints used in constructing BRATs, we look to natural swarms
as a guide. Reachable sets in the context of dynamic programming and two person
games is then introduced. We restrict attention to verifying a dynamical system behavior
(or trajectories) within the backward reachable sets construction of Mitchell [7]. We
then establish the viscosity solution P.D.E. to the terminal HJI P.D.E, and describe the
formulation of the BRS and backward reachable tube (BRT).

A.1 Natural Swarm as an Inspiration.

Natural swarms provide clues on efficiently constructing a game’s outcome, Hamiltonian,
and hence control laws, and strategies that govern the transient behaviors of many
systems that possess structural subsystems with the properties we have introduced in
the foregoing. We now know that local flocks within large murmurations of starlings
maintain an anisotropic formation based on a topological interaction, regardless of
sparsity of birds within a flock [36]. Thus, intra- and inter-flock collision are avoided
and attacks are fended off [29].

Through empirical [29, 31, 36–38] and theoretical findings [30], evidence now
abounds that in certain natural species that exhibit collective behavior (see Fig. 1),
convergence and group cohesion is based on simple topological interaction rules that
they employ to keep a tab on one another in local flocks for collision avoidance, pre-
serving density and structure in an anisotropic formation, and exhibiting flock splitting,
vacuole, cordon, and flash expansion isotropically [39]. This aids these animals in emerg-
ing an eye-pleasing local anisotropic synchrony, which taken together among possibly
hundreds of thousands of local interactions9 [39], keep these animals whirling, swooping,
and flying in isotropic formations [29]. Thus, individual agents aggregate into finite
flocks, and flock motion is synergized via local topological interactions in order to realize
a stable global heading and cohesion [30]. There exists evidence that when an individual

9 It has been reported that no birds fly together with greater coordination and complexity than
European starlings, with murmurations counting upwards of 750,000 individual birds!

https://www.nationalgeographic.com/animals/article/these-birds-flock-in-mesmerizing-swarms-why-is-still-a-mystery
https://www.nationalgeographic.com/animals/article/these-birds-flock-in-mesmerizing-swarms-why-is-still-a-mystery
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within a flock of starlings senses danger (e.g. an attack from a Peregrine Falcon), it
changes its course immediately. Owing to the lateral vision in such animals, immediate
nearest neighbors change course in response. This information is propagated across the
entire group of flocks within the fraction of a second [29], resulting in elegant formations
cf. Fig. 1. We now formally introduce backward reachability theory within the context
of differential games.

A.2 Backward Reachability from Differential Games Optimal Control

A basic characteristic of a control system is to determine the point sets within the state
space that are reachable with a control input choice. An example objective in reachability
analysis could be a target (L) protection objective by an evading player from a pursuing
player. Our treatment here is a special case of Isaac’s homicidal chauffeur’s game [4],
whereupon P and E travel at constant linear speeds but have different headings, e.g.
where the P seeks to drive an evader, E, into a target set (L0) or tube, L[[−T, 0] ,L0].

Backward reachability consists in avoiding an unsafe set of states under the worst-
possible disturbance and at all times. The verification problem may consist in finding a set
of reachable states that lie along the trajectories of the solution to a first order nonlinear
P.D.E. that originates from some initial state x0 = x(0) up to a specified time bound,
t = tf : from a set of initial and unsafe state sets, the time-bounded safety verification
problem is to determine if there is an initial phase that the solution to the P.D.E. enters
an unsafe set. Backward reachable sets (BRS) or tubes (BRTs) are popularly analyzed
as a game of two vehicles with non-stochastic dynamics [32]. Such BRTs possess
discontinuity at cross-over points (which exist at edges) on the surface of the tube, and
may be non-convex. In general, we seek for a terminal payoff g(·) : Rn → R to satisfy

|g(x(t))| ≤ k, |g(x(t))− g( ˆx(t)) |≤ k|x(t)− x̂(t) | (A.1)

for constant k and all T ≤ t ≤ 0, x̂, x ∈ Rn, u ∈ U and v ∈ V .
Now, suppose that a pursuer’s mapping strategy (starting at t) is β : Ū(t) → V̄(t)

provided for each t ≤ τ ≤ T and u(t), û(t) ∈ Ū(t); then u(t̄) = û(t̄) a.e. on t ≤ t̄ ≤
τ implies β[u](t̄) = β[û](t̄) a.e. on t ≤ t̄ ≤ τ . Suppose further that the player P is
controlling the strategy β and minimizing, while the player E is controlling its strategy,
α, and maximizing. For any admissible control-disturbance pair (u(·),v(·)) and initial
phase (x0, t0), Crandall [11] and Evan’s [10] claim is that there exists a unique trajectory,
ξ(t), the motion of the dynamical system, (A.3), passing through phase (x0, t0) under
the action of control u, and a worst-possible disturbance v, and observed at a time t
afterwards i.e.

ξ(t) = ξ(t; t0,x0,u(·),v(·)). (A.2)

Equation (A.2) is a solution of the following dynamical system, represented as a first-
order p.d.e.

ẋ(τ) = f(τ,x(τ),u(τ),v(τ)) T ≤ τ ≤ t, x(t) = x, (A.3)
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almost everywhere (a.e.); where f(τ, ·, ·, ·) and x(·) are bounded and Lipschitz con-
tinuous. This bounded Lipschitz continuity property assures uniqueness of the system
response x(·) to controls u(·) and v(·) [15]. a.e. with the property that

ξ(t0) = ξ(t0; t0,x0,u(·),v(·)) = x0. (A.4)

In backward reachability analysis, the lower value of the differential game [15] is
used in constructing an analysis of the backward reachable set (or tube). The differential
game’s lower value for a solution x(t) that solves (A.3) for u(t) and v(t) = β[u](·) is
used in backward reachability analysis, given as

V −(x, t) = inf
β∈B(t)

sup
u∈U(t)

Φ(u, β[u])

= inf
β∈B(t)

sup
u∈U(t)

∫ T

t

l(τ,x(τ),u(τ), β[u](τ))dτ + g (x(T )) . (A.5)

Lemma 1 (Theorem 1, [7]). The backward reachability problem resolves the infimum-
supremum of the non-anticipative strategies of P and the controls of E as an extremum
of the cost functional over a time interval (time of capture), t ∈ [−T, 0] is given by

∂V −

∂t
(x, t) + min{0,H−(t;x,u,v,V −x )} = 0, x ∈ Rn, (A.6a)

V −(x, 0) = g(x), (A.6b)

whereH−(t;x,u,v, p) = max
u∈U

min
v∈V
〈f(t;x,u,v), p〉, (A.6c)

and p, the co-state, is the spatial derivative of V − w.r.t x. where the vector field V −x is
known in terms of the game’s terminal conditions so that the overall game is akin to a
two-point boundary-value problem.

Henceforward, we will remove the negative superscript on the lower value and Hamilto-
nian (A.6).

Flock Fj and Fk within a murmuration, Fj ∪Fk ∪Fl · · · are separated by partitions,
or interfaces, Γjk, Γkl, · · · . This interface may be implicitly represented as a signed
distance function Φ(x) which is negative on the interior of each flock, and zero on the
edges. The zero-level set (i.e. Φ(x) = 0) corresponds to the interface V [40]. As the
system evolves over time, Fj’s interface (zero-level set) motion can be parameterized
by time, so that the flow field V (x, t) is equivalent to the solution of the Cauchy-type
Hamilton Jacobi partial differential equation [10, 11]:

Vt + vj |∇Vj | = 0, j = 1, · · · , nf , (A.7)

where vj is the flow speed for Fj . Equation (A.7) is the level set equation [9].
In the sentiment of [7], we say the zero sublevel set of g(·) in (A.6) i.e. L0 = {x ∈

Ω̄ | g(x) ≤ 0}, is the target set in the phase space Ω × R for a backward reachability
problem [6]. This target set10 can represent the failure set, regions of danger, or obstacles

10 Note that the target set, L0, is a closed subset of Rn and is in the closure of Ω.
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to be avoided e.t.c. in the vectogram. And the robustly controlled backward reachable
tube for τ ∈ [−T, 0]11 is the closure of the open set

L([τ, 0],L0) = {x ∈ Ω | ∃β ∈ V̄(t)∀u ∈ U(t),∃ t̄ ∈ [−T, 0],

ξ(t̄) ∈ L0}, t̄ ∈ [−T, 0] . (A.8)

Read: the set of states from which the strategies β of P , and for all controls U(t) of E
imply that we reach the target set within the interval [−T, 0]. More specifically, following
Lemma 2 of [7], the states in the reachable set admit the following properties w.r.t the
value function V

x ∈ L0 =⇒ V −(x, t) ≤ 0 and V −(x, t) ≤ 0 =⇒ x ∈ L0. (A.9)

B Hamiltonian of a Murmuration.

In this appendix, we provide a derivation for the Hamiltonian of a flock, and by extension,
that of a murmuration. In our implementations, the zero-level set is constructed implicitly
from the isocontour of a signed distance function as described in [35, Chapter II].

Recall from (3.8) that the total Hamiltonian of a flock is a union of the mechanical
energy of the free agents in a flock and the individual under attack i.e.

H(x, p) = max
w

(k)j
e ∈[wj

e,w̄
j
e]

min
w

(k)j
p ∈[wj

p,w̄
j
p]

∪nf

j=1

[
H(k)j
a (x, p) ∪

(
∪na−1
i=1 H

(i)j
f (x, p)

)]
(B.1)

Proof of Theorem 1. We write the Hamiltonian of the free agents in absolute coordinates
and the Hamiltonian of the agent under attack in relative coordinates with respect to the
pursuer. A flock’s Hamiltonian is Hamiltonian of the free agents is the aggregation of all
the mechanical energy in the system in absolute coordinates i.e.

∪na−1
i=1 H

(i)j
f (x, p) = ∪na−1

i=1

[
p

(i)j
1 p

(i)j
3 p

(i)j
3

]v(i)j cosx3

v(i)j sinx3

〈w(i)j
e 〉r

 (B.2)

where we have again dropped the time arguments for convenience. It follows that

∪na−1
i=1 H

(i)j
f (x, p) = ∪na−1

i=1

[
p

(i)j
1 v(i)j cosx3 + p

(i)j
3 v(i)j sinx3 + p

(i)j
3 〈w(i)j

e 〉r
]
.

(B.3)

Equation (3.8) can be re-written as

H(k)j
a (x, p) = −

(
max

w
(k)j
e ∈[wj

e,w̄
j
e]

min
w

(k)j
p ∈[wj

p,w̄
j
p]

[
p

(k)j
1 (t) p

(k)j
2 (t) p

(k)j
3 (t)

]
−v

(k)j
e (t) + v

(j)
p cosx

(k)j
3 (t) + 〈w(k)j

e 〉r(t)x
(k)j
2 (t)

vjp(t) sinx
(k)j
3 (t)− 〈w(k)j

e 〉r(t)x
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1 (t)

wjp(t)− 〈w
(k)j
e (t)〉r


 ,

(B.4)
11 The (backward) horizon, −T is negative for T > 0.
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where p(k)j
l (t) |l=1,2,3 are the adjoint vectors [32]. For the pursuer, its minimum and

maximum turn rates are fixed so that we have wjp as the minimum turn bound of the
pursuing vehicle, and w̄jp is the maximum turn bound of the pursuing vehicle. Henceforth,
we drop the templated time arguments for ease of readability. Rewriting (B.4), we find
that

H(k)j
a (x, p) = −

(
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w
(k)j
e ∈[wj

e,w̄
j
e]

min
w
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(
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= p
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(B.5)

It follows that we have from (B.5) that

H(k)j
a (x, p) = p
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and that

H
(i)j
f (x, p) =
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. (B.7)

A fortiori the main equation (3.8) becomes

H(x, p) = ∪nf
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For the special case where the linear speeds of the evading agents and pursuer are
equal i.e. v(i)j

e (t) = vp(t) = +1m/s, we have a murmuration’s Hamiltonian as

H(x, p) = ∪nf

j=1

(
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i=1

[
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∪
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Fig. 5: Left: Initial zero-level set for various flocks at different initial conditions. Right: Evading
flock’s interface under a pursuer’s attack after specific Lax-Friedrichs’ integration. (Metric reach
radius=0.2m, Avoid Radius=0.2m).
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Algorithm 1 Nearest Neighbors For Agents in a Flock.

1: Given a set of agents a = {a1, a2, · · · , ana
| [a] = na} . na agents in a flock Fk.

2: function UPDATENEIGHBOR(n)
3: for i in 1, . . . , n do . Look to the right and update neighbors.
4: for j in i+ 1, . . . , n do
5: COMPARE NEIGHBOR(a[i], a[j])
6: end for
7: for j in i− 1 down to 0 do . Look to the left and update neighbors.
8: COMPARE NEIGHBOR(a[i], a[j])
9: end for

10: end for
11: for each ai ∈ Fk, i = 1, · · ·na do . Recursively update agents’ headings.
12: Update headings according to (3.1).
13: end for
14: end function

1: function COMPARE NEIGHBOR(a1, a2) . (a1, a2): distinct instances of AGENT.
2: if |a1.label - a2.label| < a1.r

1
c . rnc : agent n’s capture radius, rc.

3: a1.UPDATE NEIGHBORS(a2) then
4: end if
5: end function
1: procedure AGENT(ai, Neighbors={}) . Neighbors: Set of neighbors of this agent.
2: . Agent ai with attributes label ∈ N, avoid and capture radii, ra, rc.
3: function UPDATE NEIGHBORS(neigh)
4: if length(neigh)> 1 then . Multiple neighbors.
5: for each neighbor of neigh do
6: UPDATE NEIGHBORS(neighbor) . Recursive updates.
7: end for
8: end if
9: Add neigh to Neighbors

10: end function
11: end procedure

C Flocks’ Robustly Controllable BRATs

Note that the symmetry between non-consecutive flock labels e.g. flock 1 and flock 3’s
RCBRAT is because the we multiplied the initial position of a flock’s state by −1.
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