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Talk Outline and Overview

Policy Optimization and Stochastic Linear Control

Connections to risk-sensitive control;
Mixed H2/H∞ control theory.

The case for convergence analysis in stochastic PO.

Kleinman’s algorithm, redux.
Kleiman’s algorithm in an iterative best response setting;
PO Convergence in best response settings.

Robustness margins in model- and sampling- settings.

PO as a discrete-time nonlinear system;
Kleiman and input-to-state-stability;
Robust policy optimization as a small-input stable state
optimization algorithm
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Research Significance

(Deep) RL and modern AI

Robotic manipulation (Levine et al., 2016), text-to-visual
processing (DALL-E), Atari games (?), e.t.c.

Policy optimization (PO) is fundamental to modern AI
algorithms’ success.

Major success story: functional mapping of observations to
policies.

But how does it work?
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Policy Optimization – General Framework

PO encapsulates policy gradients (?) or PG, actor-critic
methods (Vrabie and Lewis, 2011), trust region PO ?, and
proximal PO methods (?).

PG particularly suitable for complex systems.

minJ(K )

subject to K ∈ K (1)

where K = {K1,K2, · · · ,Kn}.

J(K ) could be tracking error, safety assurance,
goal-reaching measure of performance e.t.c. required to be
satisfied.
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Continuous-time RL control applications

A little randomness in a system’s mathematical model
coefficients?

Population growth model: dN/dt = a(t)N(t), N(0) = N0;
growth rate a(t) subject to random effects e.g.
a(t) = r(t)+ “noise”.
We only know the distribution of “noise”.

Filtering and state estimation problems where the nature
of the noise is unknown, but it is observed via sensor
measurements.

Kalman + Bucy Filters – aerospace (Apollo, Mariner etc.).

Lekan Molu Continuous-Time Stochastic Policy Optimization



Continuous-
Time

Stochastic
Policy

Optimization

Lekan Molu

Outline and
Overview

Risk-sensitive
control

Contributions

Setup

Assumptions

Optimal Gain

Model-based
PO

Outer loop

Stabilization and
Convergence

Sampling-
based
PO

Discrete-time
system

Sampling-based
nonlinear system

Robustness Analyses

Numerical
Results

References

7/95

Continuous-time RL control applications

Semielliptic P.D.E.s with Dirichlet boundary value
problems e.g. slender flexible rods, Cosserat dynamics etc:

∆q =
∑n

i=1

∂2q

∂ξ2
i

= 0 ∈ Ω, q = q→ on ∂Ω, Ω ⊂ Rn

An economic portfolio problem where the price, p(t), of a
stock satisfies a stochastic differential equation e.g.
dp/dt = (a + α · “noise”)p for a > 0, α ∈ reline.

Call options pricing: The Black-Scholes option price
formula.
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Policy Optimization – Open questions

Gradient-based data-driven methods: prone to divergence
from true system gradients.

Challenge I: Optimization occurs in non-convex objective
landscapes.

Get performance certificates as a mainstay for control
design: Coerciveness property (?).

Challenge II: Taming PG’s characteristic high-variance
gradient estimates (REINFORCE, NPG, Zeroth-order
approx.).

Hello, (linear) robust (H∞-synthesis) control!
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Policy Optimization – Open questions

Challenge III: Under what circumstances do we have
convergence to a desired equilibrium in RL settings?

Challenge IV: Stochastic control, not deterministic control
settings.

models involving round-off error computations in floating
point arithmetic calculations; the stock market; protein
kinetics.

Challenge V: Continuous-time RL control.

Very little theory. Lots of potential applications
encompassing rigid and soft robotics, aerospace or finance
engineering, protein kinetics.
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H∞-Control Under Model Mismatch

dx(t) = Ax(t)dt + Bu(t)dt + Ddw(t),

z(t) = Cx(t) + Eu(t), α > 0;
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Tools: Complexity, Convergence, Robustness.

Risk-sensitive H∞-control (Glover, 1989) and discrete-
and continuous-time mixed H2/H∞ design (Khargonekar
et al., 1988; ?):

min. upper bound on H2 cost subject to satisfying a set of
risk-sensitive (often H∞) constraints (?):

minK∈KJ(K ) := Tr(PKDD>) (2)

subject to K := {K |ρ(A− BK ) < 1, ‖Tzw (K )‖∞ < γ}

PK : solution to the generalized algebraic Riccati equation
(GARE);
A,B,D,K : standard closed-loop system matrices;
‖Tzw (K )‖∞: H∞-norm of the closed-loop transfer
function from a disturbance input w to output z .
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Tools: Complexity, Convergence, Robustness.

Infinite-horizon

discrete-time deterministic LQR settings (Fazel et al.,
2018):

min
K∈K

E
∞∑
t=0

(x>t Qxt +u>t Rut) s.t. xt+1 = Axt +But , x0 ∼ P0

discrete-time LQ problems under multiplicative noise (?):
minπ∈Π Ex0,{δi},{γi}}

∑∞
t=0(x>t Qxt + u>t Rut)

subject to xt+1 = (A+
∑p

i=1 δtiAi )xt +(B +
∑q

i=1 γtiBi )ut ;
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Mainstay

Continuous-time infinite-dimensional linear systems.

Disturbances enter additively as random stochastic Wiener
processes.

Many natural systems admit uncertain additive Brownian
noise as diffusion processes.

Theoretical analysis machinery: Îto’s stochastic calculus.

Goal: keep controlled process, z , small i.e.

‖z‖2 =

(∫
|z(t)|2dt

)1/2

,

Under a minimizing u(x(t)) ∈ U in spite of unforeseen
w(t) ∈ W ⊆ Rq.
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Minimization Objective and Risk-Sensitive Control

Risk-sensitive linear exponential quadratic Gaussian
objective functional (Jacobson, 1973):

min
u∈U
Jexp(x0, u,w) = E

∣∣∣∣
x0∈P0

exp

[
α

2

∫ ∞
0

z>(t)z(t)dt

]
,

subject to dx(t) = Ax(t)dt + Bu(t)dt + Ddw(t),

z(t) = Cx(t) + Eu(t), α > 0; (3)

where dw/dt = N (0,W ), x0 = N (0, µ), and
(x0,w(t)) ⊆ (Ω,F ,P).
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Minimization Objective and Risk-Sensitive Control

A Taylor series expansion of (3) reveals:

Jexp(x0, u,w) =

lim
T→∞

E
∣∣∣∣
x0∈P0

[
α

2

T∑
t=0

z>(t)z(t)

]
+
α2

4
var

[
T∑
t=0

z>(t)z(t)

]
.

(4)

Consider the variance term
α2

4
var
[∑T

t=0 z>(t)z(t)
]
→ ε.

α a measure of risk-propensity if α > 0;
α a measure of risk-aversion if α < 0;
α = 0 implies solving a classic LQP.
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RL PO as a Risk-Sensitive Control Problem

RL (via PG) computes high-variance gradient estimates
from Monte-Carlo trajectory roll-outs and bootstrapping.

If we set α > 0 in the LEQG problem (3), we have a
controlled setting where we can study the theoretical
properties of RL-based PO.

Framework: an ADP policy iteration (PI) in a continuous
PO setting.

LEQG also interprets as a risk-attenuation algorithm.
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Contributions

A two-loop iterative alternating best-response procedure
for computing the optimal mixed-design policy;

Rigorous convergence analyses follow for the model-based
loop updates;

In the absence of exact system models, we provide an
input-to-state-stable hybrid robust stabilization scheme.
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Problem Setup

For α > 0, the cost

Jexp(x0, u) = E
∣∣∣∣
x0∈P0

exp
[
α
2

∫∞
0 z>(t)z(t)dt

]
, becomes

E
∣∣∣∣
x0∈P0

exp

{
α

2

∫ ∞
0

[
x>(t)Qx(t) + u>(t)Ru(t)

]
dt

}
, (5)

with the associated closed loop transfer function,

Tzw (K ) = (C − EK ) (sI − A + BK )−1D. (6)
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Nonconvexity and Coercivity in PG

Coercivity: iterates remain feasible and strictly separated
from the infeasible set as the cost decreases.

Figure: Coercivity property of PG on LQR and in mixed-design settings.
Credit: (Zhang et al., 2019).

Lekan Molu Continuous-Time Stochastic Policy Optimization



Continuous-
Time

Stochastic
Policy

Optimization

Lekan Molu

Outline and
Overview

Risk-sensitive
control

Contributions

Setup

Assumptions

Optimal Gain

Model-based
PO

Outer loop

Stabilization and
Convergence

Sampling-
based
PO

Discrete-time
system

Sampling-based
nonlinear system

Robustness Analyses

Numerical
Results

References

22/95

Assumptions

C>C = Q � 0, ET (C , E ) = (0, R) for some R � 0.

Coercivity satisfaction: (A,B) is stabilizable;

Optimization satisfaction: (
√

Q,A) is detectable.
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PO and Dynamic Games: Finite-horizon Gain

Coercivity: feasibility set of optimization iterates

K = {K : λi (A− B1K ) < 0, ‖Tzw (K )‖∞ < γ}. (7)

Finite-horizon optimization u?(t) = −K ?
leqg x̂(t).

K ?
leqg = R−1B>Pτ , and Pτ is the unique, symmetric,

positive definite solution to the algebraic Riccati equation
(ARE)

A>Pτ + PτA− Pτ (BR−1B> − α−2DD>)Pτ = −Q. (8)

(?, Proposition I), (Duncan, 2013) .

∞-horizon case: P? , P∞ = limτ→∞ Pτ , and
K ?
leqg , K∞ = limτ→∞ Kτ [Theorem on limit of monotonic

operators (?)].
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Solving the LEQG Problem

Directly solving the LEQG problem (3) in policy-gradient
frameworks incurs biased gradient estimates during
iterations;

Affects risk-sensitivity preservation in infinite-horizon LTI
settings (see (?Zhang et al., 2019));

Workaround: an equivalent dynamic game formulation to
the stochastic LQ PO problem.
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Two-Player Zero-Sum Game and LEQG

An equivalent closed-loop two-player game connection (?,
Lemma 1):

min
u∈U

max
ξ∈W
J̄γ(x0, u,ξ)

subject to dx(t) = Ax(t)dt + Bu(t)dt + Ddw(t),

z(t) = Cx(t) + Eu(t) (9)

J̄γ(x0, u, ξ) = Ex0∼P0, ξ(t)

∫ ∞
0

[
x>(t)Qx(t) + u>(t)Ru(t)

]
dt

−Ex0∼P0, ξ(t)

∫ ∞
0

[
γ2ξ>(t)ξ(t)

]
dt

, ξ(≡ dw) ∼ N (0,Σ), and γ ≡ α.
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Proof Sketch (?, Lemma 1)

If a non-negative definite (n.n.d ) GARE (8)’s solution
exists, then a minimal realization P? must exist.

Existence: the bounded real Lemma (Zhou et al., 1996).

If (A,Q
1
2 ) is observable, then every n.n.d solution of (8),

i .e. P?, is positive definite.

For a n.n.d P?, we essentially have a Nash (equivalently a
Saddle) equilibrium with J̄γ = J γ .
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Proof Sketch (?, Lemma 1)

If J̄γ is finite for some γ = γ̂ > 0, then J̄γ is bounded (if
and only if the pair (A,B) is stabilizable).

For a bounded J̄γ for some γ = γ̂ and for optimal
K ? = R−1B>PK ,L, L? = γ−2D>PK ,L and all γ > γ̂, J̄γ
admits the closed-loop matrices

A?K = A− BK ?, A?K ,L = A?K + DL?. (10)

Whence, the saddle-point optimal controllers are

u?(x(t)) = −K ?x(t), ξ?(x(t)) = L?x(t). (11)
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Model-based PO

Define {p, q}p̄,q̄p=1,q=1 where (p̄, q̄) ∈ N+ as nested
iteration indices for a gain Kp (in an outer loop) and an
alternating gain Lq(Kp) (in an inner-loop).

Problem 1 (Model-Based Policy Iteration)

Given system matrices A,B,C ,D,E , find the optimal controller
gains Kp, Lq(Kp) that robustly stabilizes (3) such that the
controller gains do not leave the set of all suboptimal
controllers denoted by

K̆ = {(Kp, Lq(Kp)) : λi (Ap
K ) < 0, λi (Ap,q

K ,L) < 0,

‖Tzw (Kp, Lq(Kp))‖∞ < γ for all (p, q) ∈ N}. (12)
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Model-based Policy Optimization

Further, define the following closed-loop matrix identities

Ap
K = A− BKp, Ap,q

K ,L = Ap
K + DLq(Kp),

Qp
K = Q + K>p RKp, AγK = Ap

K + γ−2DD>Pp
K . (13)

Equation (13) informs the value iterations of the Riccati
equations for the outer and inner loops.

Ap>
K Pp

K + Pp
KAp

K + Qp
K + γ−2Pp

KDD>Pp
K = 0, (14a)

Kp+1 = R−1B>Pp
K . (14b)

A
(p,q)>

K ,L Pp,q
K ,L + Pp,q

K ,LAp,q
K ,L + Qp

K − γ
2L>q (Kp)Lq(Kp) = 0 (15a)

Kp+1 = R−1B>Pp,q
K , Lq+1(Kp) = γ−2D>Pp,q

K ,L. (15b)
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Kleinman’s Algorithm

An iterative algorithm for solving infinite-time Riccati
equations (Kleinman, 1968).

Based on a successive substitution method.

For a deterministic LTI system’s cost matrix Pd , the value
iterations of Pk

d are monotonically convergent to P?
d .

Kleinman’s algorithm as policy iteration

Choose a stabilizing control gain K0, and let p = 0.
(Policy evaluation) Evaluate the performance of Kp from
the GARE’s solution.
(Policy improvement) Improve the policy:
Kp = −R−1B>Pp

d .
Advance iteration p ← p + 1.
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Model-based Policy Iteration
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Convergence Analyses: Outer Loops

Lemma 1

Under our assumptions and for the ARE (14), if K0 ∈ K, then
for any p ∈ N+, we must have the following conditions for the
optimal K ? and P?,

(1) Kp ∈ K;

(2) P0
K � P1

K � · · ·P
p
K � · · · � P?;

(3) limp→∞‖Kp − K ∗‖F = 0, limp→∞‖Pp
K − P∗‖F = 0.
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Proof Sketch: The Bounded Real Lemma

Under our standard stabilizability and observability
assumptions, for a stabilizing gain K , the following conditions
are equivalent

‖T (K )‖∞ < γ;

The Riccati equation

A>KPK + PKAK + C>C + K>RK +

γ−2PKDD>PK = 0,
(16)

admits a unique positive definite solution PK � 0 for a
Hurwitz matrix (AK + γ−2DD>PK );
There exists PK � 0 such that

A>KPK + PKAK + Q + K>RK + γ−2PKDD>PK ≺ 0.

(17)
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Stabilizing Proof Sketch

At an iteration 0, find a K0 that is stabilizing (?, Alg. 1),
so that K0 ∈ K by the bounded real Lemma.

For p > 0, set Qp+1
K = C>C + K>p+1RKp+1, the outer loop

GARE is

For p > 1, Kp ∈ K. Rest: completion of squares, the
bounded real Lemma, and the theorem on the “limit of
monotonic operators.” (?).
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Convergence Analysis

In (Zhang et al., 2019, Theorem A.7 and A.8), the authors
showed that this controller update in the outer-loop has a
global sub-linear and local quadratic convergence rates.

We now show that the outer-loop iteration has a global
linear convergence rate.
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Convergence Analysis: Outer Loop

Lemma 2

Let Ψ = (Kp+1 − Kp)>R(Kp+1 − Kp); and Ψ = Ψ> � 0.
Furthermore, let Φ ∈ Rn×n be Hurwitz so that
Θ =

∫∞
0 e(Φ>t)Ψe(Φt)dt and define c(Φ) = log(5/4)‖Φ‖−1.

Then, ‖Θ‖ ≥ 1
2 c(Φ)‖Ψ‖.
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Convergence Analysis: Outer Loop

Remark 1

For AK = A− BK , we know from the bounded real
Lemma (Zhang et al., 2019, Lemma A.1) that the Riccati
equation

A>KPK + PKAK + QK + γ−2PKDD>PK = 0 (18)

admits a unique positive definite solution PK � 0 with a
Hurwitz (AK + γ−2DD>PK ).
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Optimality of the Iteration

Lemma 3 (Optimality of the iteration)

Consider any K ∈ K, let K ′ = R−1B>PK (where PK is the
solution to (18), and ΨK = (K − K ′)>R(K − K ′). If ΨK = 0,
then K = K ?.

Proof.

Since R � 0, ΨK = 0 implies K = K ′. Therefore at ΨK = 0,
we must have K = K ′ which implies that PK = P ′K . If K = K ′

and PK = P ′K , it suffices to conclude that K ′ = K , K ? where
K ? = R−1B>P?. Hence, ΨK = 0 is tantamount to PK = P?

and K = K ?.
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Bound on Cost Difference Matrix

Lemma 4 (Bound on Cost Difference Matrix)

For any h > 0, define Kh := {K ∈ K|Tr(Pp
K − P?) ≤ h}. For

any K ∈ Kh, let K ′ := R−1B>Pp
K , where Pp

K is the p’th
iterate’s solution to (18), and ΨKp = (Kp − K ′p)>R(Kp − K ′p).
Then, there exists b(h) > 0, such that
‖Pp

K − P?‖F ≤ b(h)‖ΨKp‖F .
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Bound on Cost Difference Matrix

For A? = A− BR−1B>P? + γ−2DD>P?, rewrite the
closed-loop Riccati equation as

A?>Pp
K + Pp

KA? + QKp + (K ? − Kp)>RK ′p

+ K ′>p R(K ? − Kp)− γ−2P?DD>Pp
K − γ

−2Pp
KDD>P?

+ γ−2Pp
KDD>Pp

K = 0. (19)

Then do completion of squares so that

A?>(Pp
K − P?) + (Pp

K − P?)A? + ΨKp

+ γ−2(Pp
K − P?)DD>(Pp

K − P?)

− (K ′p − K ?)>R(K ′p − K ?) = 0.

(20)
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Proof

Implicit function theorem: Pp
K = f (Kp ∈ K), f (·) ∈ Cn.

There exists a ball Bδ(K ?) := {K ∈ K|‖K − K ?‖F ≤ δ},
such that A(K ) is invertible for any K ∈ Kh ∩ Bδ(K ?).

A(Kp) = In⊗A?>+(A−BR−1B>Pp
K +γ−2DD>Pp

K )>⊗ In.

Therefore, for any K ∈ Kh ∩ Bδ(K ?),

‖P̃p
K‖F ≤ σ−1(A(Kp))‖ΨKp‖F .

Similarly, for any K ∈ Kh ∩ Bcδ (K ?), where Bc is a
complement of B, ΨKp 6= 0 and there exists a constant
b1 > 0 such that ‖ΨKp‖ ≥ b1.

Set b2 = maxK∈Kh∩Bδ(K?) σ
−1(A(K )) and

b(h) = max{b2,
h+Tr(P?)

b1
}, then the proof follows

immediately.
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Outer Loop Convergence: Exponential Stability of
Pp

K

Theorem 2

For any h > 0 and K0 ∈ Kh, there exists α(h) ∈ R such that
Tr(Pp+1

K − P?) ≤ α(h)Tr(Pp
K − P?). That is, P? is an

exponentially stable equilibrium.
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Convergence Analysis: Inner Loop

Now, we analyze the monotonic convergence rate of the
inner loop.

Given arbitrary gains Kp ∈ K and Lq(Kp) ∈ L, and
Pp,q
K ,L � 0 solution of the inner-loop Lyapunov equation,

the cost matrix Pp,q
K ,L monotonically converges to the

solution of (15).

A
(p,q)>

K ,L Pp,q
K ,L + Pp,q

K ,LAp,q
K ,L + Qp

K − γ
2L>q (Kp)Lq(Kp) = 0

(21a)

Kp+1 = R−1B>Pp,q
K , Lq+1(Kp) = γ−2D>Pp,q

K ,L. (21b)
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Convergence Analysis: Inner Loop I

Lemma 5

Suppose that L0(K0) is stabilizing, then for any q ∈ N+ (with
Pp,q̄
K ,L as the solution to (15)), i .e.

A
(p,q)>

K ,L Pp,q
K ,L + Pp,q

K ,LAp,q
K ,L + Qp

K − γ
2L>q (Kp)Lq(Kp) = 0 (22a)

Kp+1 = R−1B>Pp,q
K , Lq+1(Kp) = γ−2D>Pp,q

K ,L. (22b)

Then, the following statements hold

1 Ap,q
K ,L is Hurwitz;

2 Pp,q̄
K ,L � · · · � P

(p,q+1)
K � Pp,q

K � · · · � Pp,0
K ,L; and

3 limq→∞‖Pp,q
K ,L − Pp,q̄

K ,L‖F = 0.
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Convergence Rate – Inner Loop

Lemma 6 (Monotonic Convergence of the Inner-Loop)

For any K ∈ K, let L(K ) be the control gain for the player w
such that AK + DL(K ) is Hurwitz. Let PL

K be the solution of

(AK + DL(K ))> PL
K + PL

K (AK + DL(K )) + QK

− γ2L(K )>L(K ) = 0. (23)

Let L′(K ) = γ−2D>PL
K and

ΨL
K = γ−2(L′(K )− L(K ))>(L′(K )− L(K )). Then, for a

c(K ) = Tr
(∫∞

0 e(AK+DL(K?))te(AK+DL(K?))>tdt
)

, the following

inequality holds Tr(PK − PL
K ) ≤ ‖ΨL

K‖c(K ).
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Convergence of the Inner Loop Iteration

Theorem 3

For a K ∈ K̆, and for any (p, q) ∈ N+, there exists β(K ) ∈ R
such that

Tr(Pp
K − Pp,q+1

K ,L ) ≤ β(K )Tr(Pp
K − Pp,q

K ,L). (24)

Remark 2

As seen from Lemma 5, Pp
K − Pp,q

K ,L � 0. By the norm on a
matrix trace (?, Lemma 13) and the result of Theorem 3, we
have ‖PK − Pp,q

K ,L‖F ≤ Tr(PK − Pp,q
K ,L) ≤ β(K )Tr(PK ), i.e.

Pp,q
K ,L exponentially converges to PK in the Frobenius norm.
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Algorithm as a Policy Iteration Scheme

Choosing a stabilizing Kp we first evaluate u’s
performance by solving (14).

This is the policy evaluation step in PI.

The policy is then improved in a following iteration by
solving for the cost matrix in (15b);

This is the policy improvement step.

Essentially, a policy iteration algorithm whereupon

Performance of an initial control gain Kp is first evaluated
against a cost function.
A newer evaluation of the cost matrix Pp,q

K ,L is then used to
improve the controller gain Kp+1 in the outer loop.
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Sampling-based PO Scheme

A,B,C ,D,E are often unavailable so that the policy
evaluation step will result in biased estimates.

There is the possibility for a divergence from the
stability-robustness feasibility set K̆:

When errors are present from I/O or state data;
Residuals from early termination of numerically solving
Riccati equations;
Using an approximate cost function owing to inexact
values of Q and R;
Since the inner loop is computed in a finite number of
steps;
In a data sampling scheme, we must guarantee the
stability and robustness of the closed-loop system.
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Sampling-based PO: Statement of the Problem

Problem 4 (Sampling-based Policy Optimization)

If A,B,C ,D,E ,P are all replaced by approximate matrices
Â, B̂, Ĉ , D̂, Ê , P̂, under what conditions will the sequences

{P̂p,q
K ,L}

(p,q)=∞
(p,q)=1 , {K̂p}∞p=0, {L̂q}∞q=0 converge to a small

neighborhood of the optimal values {P?
K ,L}

(p,q)=∞
(p,q)=0 , {K ?

p }∞p=0,

and {L?q}∞q=0?
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Discrete-Time Nonlinear System Interpretation

From assumptions, a P0
K ∈ Sn exists such that when

applied to find a K0 such a K0 will be stabilizing.

Approximation errors between the nested iteration steps
yield a hybrid of a continuous-time policy gain pair
(K̂p, L̂q(K̂p)) and a learning scheme.

This learning scheme is essentially a discrete sampled data
from a nonlinear system (owing to errors from various
sources).

Task: under inexact loop updates, lump iterates of gain
errors into system inputs to the online PO scheme;
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Discrete-Time Nonlinear System Interpretation

How do we converge to the optimal solution and preserve
closed-loop dynamic stability?

What does input-to-state stability (ISS) Sontag (2008)
have to do with it?
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Online Model-free Reparameterization

Suppose that P̂0
K ∈ Sn is chosen following the

controllability and stabilizability assumptions.

Then K̂ 1
k = R−1B>P̂0

K will be stabilizing since

K̃ 1
k = K̂ 1

k − K 1
k , 0.

Ditto argument for L1.

Problem 5

For (p, q) > 0, show that for K̃p
k = K̂p

k − Kp
k , 0 so that the

sequence {Pp,q
K ,L}

∞
(p,q)=0 converges to the locally exponentially

stable P̂?
K ,L.

Lekan Molu Continuous-Time Stochastic Policy Optimization



Continuous-
Time

Stochastic
Policy

Optimization

Lekan Molu

Outline and
Overview

Risk-sensitive
control

Contributions

Setup

Assumptions

Optimal Gain

Model-based
PO

Outer loop

Stabilization and
Convergence

Sampling-
based
PO

Discrete-time
system

Sampling-based
nonlinear system

Robustness Analyses

Numerical
Results

References

62/95

Transition Slide

This page is left blank intentionally.

Lekan Molu Continuous-Time Stochastic Policy Optimization



Continuous-
Time

Stochastic
Policy

Optimization

Lekan Molu

Outline and
Overview

Risk-sensitive
control

Contributions

Setup

Assumptions

Optimal Gain

Model-based
PO

Outer loop

Stabilization and
Convergence

Sampling-
based
PO

Discrete-time
system

Sampling-based
nonlinear system

Robustness Analyses

Numerical
Results

References

63/95

Hybrid System Reparameterization

Lump estimate errors as an input into the gain terms to be
computed in the PO algorithm.

With inexact outer loop update, Kp+1 becomes biased so
that the inexact outer-loop GARE value iteration involves
the recursions

Âp>
K P̂p

K + P̂p
K Âp

K + Q̂p
K + γ−2P̂p

KDD>P̂p
K = 0, (25a)

K̂p+1 = R−1B>P̂p
K + K̃p+1 , K̄p+1 + K̃p+1, (25b)

NB: Âp
K = A− BK̂p and Q̂p

K = Q + K̂>p RK̂p.
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Discrete-Time System Closed-loop System

Same argument for the inner-loop inexact GARE value
iteration updates:

Âp,q>
K ,L P̂p,q

K ,L + P̂p,q
K ,LÂp,q

K ,L + Q̂p
K − γ

2L̂>q L̂q(K̂p) = 0 (26a)

K̂p+1 = R−1B>P̂p,q
K + K̃p, (26b)

L̂q+1(K̂p) = γ−2D>P̂p,q
K ,L + L̃q+1(K̃p) (26c)

, L̄q+1(K̄p) + L̃q+1(K̃p). (26d)

Rewrite the infinite-dimensional stochastic differential
equation as the discrete-time system (for iterates
(p, q) > 0):

dx = [Âp,q
K ,Lx + B(K̂px − DL̂q(Kp) + u)]dt + Ddw . (27)

Lekan Molu Continuous-Time Stochastic Policy Optimization



Continuous-
Time

Stochastic
Policy

Optimization

Lekan Molu

Outline and
Overview

Risk-sensitive
control

Contributions

Setup

Assumptions

Optimal Gain

Model-based
PO

Outer loop

Stabilization and
Convergence

Sampling-
based
PO

Discrete-time
system

Sampling-based
nonlinear system

Robustness Analyses

Numerical
Results

References

65/95

Transition Slide

This page is left blank intentionally.

Lekan Molu Continuous-Time Stochastic Policy Optimization



Continuous-
Time

Stochastic
Policy

Optimization

Lekan Molu

Outline and
Overview

Risk-sensitive
control

Contributions

Setup

Assumptions

Optimal Gain

Model-based
PO

Outer loop

Stabilization and
Convergence

Sampling-
based
PO

Discrete-time
system

Sampling-based
nonlinear system

Robustness Analyses

Numerical
Results

References

66/95

System Trajectories from HJB Interpretation

On a time interval [s, s + δs], it follows from Itô’s
stochastic calculus and the Hamilton-Jacobi-Bellman
equation that

d
[
x>(s + δs)P̂p,q

K ,Lx(s + δs)− x>(s)P̂p,q
K ,Lx(s)

]
=

(dx)>P̂p,q
K ,Lx + x>P̂p,q

K ,Ldx + (dx)>P̂p,q
K ,L(dx). (28)

Along the trajectories of equation (27) and using the gains
in (15), i .e.

Kp+1 = R−1B>Pp,q
K , Lq+1(Kp) = γ−2D>Pp,q

K ,L.
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System Trajectories

The r.h.s. in (28) becomes

x>
[
Âp,q>
K ,L P̂p,q

K ,L + P̂p,q
K ,LÂp,q

K ,L

]
xdt + 2x>P̂p,q

K ,LDdw (29)

+ 2x>P̂p,q
K ,LB(Kpx − DL̂q(Kp) + u)dt + Tr(D>PD),

= −x>Q̂p
Kxdt − γ−2x>P̂p,q

K ,LDD>P̂p,q
K ,Lxdt + Tr(D>P̂p,q

K ,L

D) + 2x>P̂p,q
K ,LB

[
K̂px − DL̂q(Kp) + u

]
dt + 2x>P̂p,q

K ,LDdw

(30)
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System Trajectories via HJB Expansions

So that

x>(s + δs)P̂p,q
K ,L(s + δs)− x>(s)P̂p,q

K ,Lx(s)

=

∫ s+δs

s

[
(−x>Q̂p

Kx − γ2w>w)dt + 2γ2x>L̂>q+1(Kp)dw
]

+

∫ s+δs

s
2x>K̂>p+1R

[
K̂px − DL̂q(K̂p) + u

]
dt

+

∫ s+δs

s
Tr(D>P̂p,q

K ,LD)dt. (31)
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Input To State System Interpretation

System matrices Âp,q
K ,L,B,C ,D now embedded within

input and state terms: Q̂p
K , K̂p+1, and L̂q+1;

Retrievable via online measurements.

We essentially end up with an input-to-state system!

The price that we pay is that the noise feedthrough matrix
D must be known precisely.

No marvel: in many linear stochastic system with
Brownian motion, D is identity (??).
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Sampling-based Scheme

Explore system model until we achieve exact equality in
Âp,q
K ,L ≡ Ap,q

K ,L, P̂
p,q
K ,L, K̂p+1 ≡ Kp+1, and

L̂q+1(Kp) ≡ Lq+1(Kp).

Choose u = −K0x + ηp and w = −L0x + ηq where (ηp, ηq)
is drawn uniformly at random over matrices with a
Frobenium norm r similar to (?Fazel et al., 2018).
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Sampled System Parameterization

Consider the identities

x>Q̂p
Kx = (x> ⊗ x>) vec(Q̂p

K ),

γ2w>w = γ2(w> ⊗ w>) vec(Iv ),

2γ2x>L̂>q+1(K̂p)dw = 2γ2(In ⊗ x>)dw vec(L̂>q+1(K̂p)),

2x>K̂>p+1RK̂px = 2(x> ⊗ x>)(In ⊗ K̂>p ) vec(K̂>p+1R),

2x>K̂>p+1RDL̂q(K̂p) = 2(L̂>q (K̂p)D> ⊗ x>) vec(K̂>p+1R),

2x>K̂>p+1Ru = 2(u> ⊗ x>) vec(K̂>p+1R),

Tr(D>P̂p,q
K ,LD) = vec>(D) vec(P̂p,q

K ,LD). (32)
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Sampled System Parameterization I

Let ∆xx ∈ R
n(n+1)

2
l , ∆ww ∈ R

v(v+1)
2

l , Ixx ∈ Rl×n2
, and

Iux ∈ Rl×mn for l ∈ N+

It follows that

∆xx = [vecv(x1), . . . , vecv(xl)]> , xl = xl+1 − xl ,

∆ww = [vecv(w1), . . . , vecv(wl)]> , wl = wl+1 − wl ,

Ixx =

[∫ s1

s0

x ⊗ x dt, . . . ,

∫ sl

sl−1

x ⊗ x dt

]>
,

Lekan Molu Continuous-Time Stochastic Policy Optimization



Continuous-
Time

Stochastic
Policy

Optimization

Lekan Molu

Outline and
Overview

Risk-sensitive
control

Contributions

Setup

Assumptions

Optimal Gain

Model-based
PO

Outer loop

Stabilization and
Convergence

Sampling-
based
PO

Discrete-time
system

Sampling-based
nonlinear system

Robustness Analyses

Numerical
Results

References

74/95

Transition Slide

This page is left blank intentionally.

Lekan Molu Continuous-Time Stochastic Policy Optimization



Continuous-
Time

Stochastic
Policy

Optimization

Lekan Molu

Outline and
Overview

Risk-sensitive
control

Contributions

Setup

Assumptions

Optimal Gain

Model-based
PO

Outer loop

Stabilization and
Convergence

Sampling-
based
PO

Discrete-time
system

Sampling-based
nonlinear system

Robustness Analyses

Numerical
Results

References

75/95

Sampled System Parameterization

Ixw =

[∫ s1

s0

(In ⊗ x)dw , . . . ,

∫ sl

sl−1

(In ⊗ x)dw

]>
,

Iux =

[∫ s1

s0

u ⊗ x dt, . . . ,

∫ sl

sl−1

u ⊗ x dt

]>
. (33)

Next, set

Θp,q
K ,L =

[
∆xx ,−2Ixx(In ⊗ K̂>p ) + 2(L̂>q (K̂p)D> ⊗ x>)

−2Iux ,−2γ2Ixw ,−vec>(D)vec(P̂p,q
K ,LD)

]
, (34a)

Υp,q
K ,L =

[
−Ixxvec(Q̂p

K ), −γ2Iwwvec(Iv )
]
. (34b)
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Sampled System Parameterization

Define 1q2 as a one-vector with dimension q2. Thus,

Θp,q
K ,L

[
svec(Pp,q

K ,L) vec(K̂>p+1R) vec(L̂>q+1(K̂p)) 1q2

]>
= Υp,q

K ,L. (35)

Suppose that Θp,q
K ,L is of full rank, then we can retrieve the

unknown matrices via least squares estimation i .e.
svec(Pp,q

K ,L)

vec(K̂>p+1R)

vec(L̂>q+1(K̂p))dw

1q2

 = (Θp,q>
K ,L Θp,q

K ,L)−1Θp,q>
K ,L Υp,q

K ,L. (36)
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Sampling-based Algorithm
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Robustness Analyses

Define P̃ = PK − P̂K

and K̃ = K − K̂ .

Keep |K̃ | < ε, start with
a K ∈ K: iterates stay in
K.

Lemma 7 (Lemma 10, C&M,
’23)

For any K ∈ K, there exists
an e(K ) > 0 such that for a
perturbation K̃ , K + K̃ ∈ K,
as long as ‖K̃‖ < e(K ).

Theorem 6

The inexact outer loop is
small-disturbance ISS. That
is, for any h > 0 and
K̂0 ∈ Kh, if ‖K̃‖ < f (h),
there exist a KL-function
β1(·, ·) and a K∞-function
γ1(·) such that

‖Pp

K̂
− P?‖ ≤

β1(‖P0
K̂
− P∗‖, p) + γ1(‖K̃‖).

(37)
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ISS Outer Loop Robustness Proof

Prelim result (Lemma 12, C&M, ’23): For any h > 0 and
K ∈ Kh, let K ′ = R−1B>PK , where PK is the solution of
(18), and K̂ ′ = K ′ + K̃ . Then, there exists f (h) > 0, such
that K̂ ′ ∈ Kh as long as ‖K̃‖ < f (h).

Therefore, K̂p
K ∈ Kh for any p ∈ N+.

Let

f1(K̂ ′) =
log(5/4)b(h)

2n‖A?
K̂ ′
‖

, f2(K̂ ′) = Tr

(∫ ∞
0

eA
?>t
K̂ ′ eA

?t
K̂ ′dt

)
.

Lekan Molu Continuous-Time Stochastic Policy Optimization



Continuous-
Time

Stochastic
Policy

Optimization

Lekan Molu

Outline and
Overview

Risk-sensitive
control

Contributions

Setup

Assumptions

Optimal Gain

Model-based
PO

Outer loop

Stabilization and
Convergence

Sampling-
based
PO

Discrete-time
system

Sampling-based
nonlinear system

Robustness Analyses

Numerical
Results

References

81/95

ISS Outer Loop Robustness Proof

f 1(h) = inf
K̂ ′∈Kh

f1(K̂ ′) > 0, f̄2(h) = sup
K̂ ′∈Kh

f2(K̂ ′) <∞.

(38)

This implies

Tr(Pp

K̂
− P?) ≤ [1− f 1(h)]Tr(Pp−1

K̂
− P?)+

f̄2(h)‖R‖‖K̃p
K‖

2. (39)

Repeating (39) for p, p − 1, · · · , 1,

Tr [Pp

K̂
− P?] ≤ (1− f 1)pTr(P1

K̂
− P?) +

f̄2‖R‖‖K̃‖2
∞

f 1(h)
.

(40)
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Outer Loop Robustness

It follows from (40) and (Mori, 1988, Theorem 2) that

‖Pp

K̂
− P?‖F ≤ (1− f 1)p

√
n‖P1

K̂
− P?‖F +

f̄2‖R‖‖K̃‖2
∞

f 1

.

(41)

As p →∞, Pp

K̂
→ P?. Whence, a radius of P?’s neighbor is

proportional to ‖K̃‖2
∞.
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Inner Loop Robustness

The perturbed inner-loop iteration (26) has inexact matrix
Âp,q
K ,L, and sequences {L̂q+1(Kp)}∞q=0, and {P̂p,q

K ,L}
∞
q=0.

Lemma 8 (Stability of the Inner-Loop’s System Matrix)

Given K ∈ K̆, there exists a g ∈ R+, such that if
‖L̃q+1(Kp)‖F ≤ g, Âp,q

K ,L is Hurwitz for all q ∈ N+.
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Inner Loop Robustness

Theorem 7

Assume ‖L̃q(Kp)‖ < e for all q ∈ N+. There exists
β̂(K ) ∈ [0, 1), and λ(·) ∈ K̆∞, such that

‖P̂p,q
K ,L − Pp,q

K ,L‖F ≤ β̂
q−1(K )Tr(Pp,q

K ,L) + λ(‖L̃‖∞). (42)

From Theorem 7, as q →∞, P̂p,q
K ,L approaches the solution

PK and enters the ball centered at Pp,q
K ,L with radius

proportional to ‖L̃‖∞.

The proposed inner-loop iterative algorithm well
approximates Pp,q

K ,L.
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Numerical Results – Car Cruise Control System

(?, §3.1):

m
dv

dt
= αnuτ(αnv)−mgCr sgn(u)− 1

2
ρCdA|v |v −mg sin θ

(43)

u(x(t)) = [u1(t), u2(t)] must maintain a constant velocity
v (the state), whilst automatically adjusting the car’s
throttle, u1(t), t ∈ [0,T ]

despite disturbances characterized by road slope changes
(u3 = θ),
rolling friction (Fr ), and
aerodynamic drag forces (Fd).
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Numerical Results – Car Cruise Control System

Well-suited to our robust control formulation because

the disturbances and state variables are separable and can
be lumped into the form of the stochastic differential
equations;

it is a multiple-input (throttle, gear, vehicle speed)
single-output (vehicle acceleration) system that introduces
modeling challenges;

the entire operating range of the system is nonlinear
though there is a reasonable linear bandwidth that
characterize the input/output (I/O) system as we will see
shortly.
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Road (Disturbance) Profile
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Search for initial stabilizing gain and H∞-norm
bound.

Proposition 1

(?) For all ωp ∈ R, we have that jωp is an eigenvalue of the
Hamiltonian H(γ1) if and only if γ1 is a singular value of
Tzw (jωp).
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Cost Matrix and Gains Convergence
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Pendulums Experiment – Comparison to NPG

5 10 15 20

0.5

1

5 10 15 20

0.5

1

5 10 15 20

4.8

5

Model-free design: ‖K̃‖∞ = 0.15.
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Pendulums Experiment – Comparison to NPG
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Model-based design: ‖K̃‖∞ = 0.15.

Lekan Molu Continuous-Time Stochastic Policy Optimization



Continuous-
Time

Stochastic
Policy

Optimization

Lekan Molu

Outline and
Overview

Risk-sensitive
control

Contributions

Setup

Assumptions

Optimal Gain

Model-based
PO

Outer loop

Stabilization and
Convergence

Sampling-
based
PO

Discrete-time
system

Sampling-based
nonlinear system

Robustness Analyses

Numerical
Results

References

93/95

Double Pendulum and Acrobot Experiment –
Comparison to NPG

Table: Computational Time: Model-based PO vs. Model-free PO vs.
NPG.

Policy Optimization Computational time (secs)

Double Inverted Pendulum Triple Inverted Pendulum

Model-
based

Model-
free

NPG Model-
based

Model-
free

NPG

0.0901 0.3061 2.1649 0.1455 0.7829 2.3209
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Talk Overview

The principle of morphological computation in nature

Morphology: shape, geometry, and mechanical properties.
Computation: sensorimotor information transmission among
geometrical components.

Morphology and computation in artificial robots

Cosserat Continua and reduced soft robot models.
Reductions: Structural Lagrangian properties and control.

Towards real-time strain regulation and control

Simplexity: Hierarchical and fast versatile control with
reduced variables.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Morphology and computation

Morphology: Emergent behaviors of natural organisms from
complex sensorimotor nonlinear mechanical feedback from the
environment.

Shape affecting behavioral response.

Geometrical Arrangement of motors such that processing and
perception affect computational characteristics.

Mechanical properties that allow the engineering of emergent
behaviors via adaptive environmental interaction.

Computation: The information transformation among the
system geometrical units, upon environmental perception, that
effect morphological changes in shape and material properties.
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MC in vertebrates – a case for soft designs

An adult human skeleton u 11% of
the body mass. ©Brittanica

The arrangement and
compliance of body parts,
perception, and computation
creates emergence of complex
interactive behavior.

Soft bodies seem critical to the
emergence of adaptive natural
behaviors.

Morphological computation is
crucial in the design of robots
that execute adaptive natural
behavior.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Simplexity in Morphological Computation

Simplexity: Exploiting structure for effective control.

The geometrical tuning of the morphology and neural circuitry
in the brain of mammals that simplify the perception and
control of complex natural phenomena.

Not exactly simplified models or reduced complexity.

But rather, sparse connections and finite variables to execute
adaptive sensorimotor strategies!

Example: Saccades (focused eye movements) are controlled
by (small) Superior Colliculus in the human brain.

Plug: Complex neural circuitry; simple control systems!

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Simplexity: The Central Pattern Generator

A neural mechanism (in vertebrates) that generates motor
control with minimal parameters.

CPG: Neurons and synapses couple to generate effective
motor activation for rhythmic environmental motion.

In Lampreys, only two signals trigger swimming motion, for
example!

This CPG enables indirect use of brain computational power
via nonlinear feedback from stretch receptor neurons on
Lamprey’s skin.
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Saccades and the Superior Colliculus

©Anatomical Justice.
Credit: Vision and Learning Center.
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Morphing in Invertebrates: Cephalopods

Cuttlefish. ©Monterey Bay Museum Octopus. ©Smithsonian Magazine
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The Octopus and Cuttlefish

No exoskeleton, or spinal cord.

A muscular hydrostat: transversal, longitudinal, and oblique
muscles along richly innervated arms and mechanoreceptors:

Allows for bending, stretching, stiffening, and retraction.

Diverse compliance across eight arms imply sophisticated
motion strategies in the wild!

Simplexity enhanced by a peripheral nervous system and a
central nervous system.
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Soft Robot Mechanism in Focus

A continuum soft robot whose mechanics can be

well-described with Cosserat rod theory. Reprinted from

(Della Santina et al. (2023))

One dimension is
quintessentially longer than
the other two.

Characterized by a central
axis with undeformable discs
that characterize deformable
cross-sectional segments.

Strain and deformation, via
e.g. Cosserat rod theory,
enables precise
finite-dimensional
mathematical models.
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Cosserat models

A Finite and Reliable Model

A soft robot’s usefulness is
informed by control system
that melds its body
deformation with internal
actuators.

By design, this calls for a
high-fidelity model or a
delicate balancing of
complex morphology and
data-driven methods.

Non-interpretable; non-reliable.

ÖContinuous coupled
interaction between the
material, actuators, and external
affordances.
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The case for model-based control

Soft robots are infinite degrees-of-freedom continua i.e., PDEs
are the main tools for analysis.

Nonlinear PDE theory is tedious and computationally
intensive.

Notable strides in reduced-order, finite-dimensional
mathematical models that induce tractability in continuum
models.
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Tractable reduced-order models

Morphoelastic filament theory: Moulton et al. (2020);
Kaczmarski et al. (2023); Gazzola et al. (2018);

Generalized Cosserat rod theory: Rubin (2000); Cosserat and
Cosserat (1909);

The constant curvature model: Godage et al. (2011);

The piecewise constant curvature model: Webster and Jones
(2010); Qiu et al. (2023); and

Ordinary differential equations-based discrete Cosserat
model: Renda et al. (2016, 2018).
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Cosserat-based piecewise constant strain model

A discrete Cosserat model: Renda et al. (2018).

Shapes defined by a finite-dimensional functional space,
parameterized by a curve, X : [0, L]..

Assumes constant strains between finite nodal points on
robot’s body.

Strain-parameterized dynamics on a reduced special
Euclidean-3 group (SE(3)).
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The piecewise constant strain model

Credit: Renda et al. (2018).

C-space: g(X ) : X →

SE(3) =

(
R(X ) p(X )

0> 1

)
.

Strain and twist vectors:

{η, ξ} ∈ R6.

{η, ξ} := {q, q̇}

Strain field:
η̆(X ) = g−1∂g/∂X .

Twist field:
ξ̆(X ) = g−1∂g/∂t.
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Dynamic equations

From the continuum equations for a cable-driven soft arm [Renda
et al. (2014)], we can derive the following dynamic
equation [Renda et al. (2018)]:[∫ LN

0

JTMaJdX

]
︸ ︷︷ ︸

M(q)

q̈ +

[∫ LN

0

JT ad?Jq̇MaJdX

]
︸ ︷︷ ︸

C1(q,q̇)

q̇ +

[∫ LN

0

JTMaJ̇dX

]
︸ ︷︷ ︸

C2(q,q̇)

q̇

+

[∫ LN

0

JT DJ‖Jq̇‖pdX

]
︸ ︷︷ ︸

D(q,q̇)

q̇− (1− ρf /ρ)

[∫ LN

0

JT MAd−1
g dX

]
︸ ︷︷ ︸

N(q)

Ad−1
gr

G

− J(X̄ )T Fp︸ ︷︷ ︸
F(q)

−
∫ LN

0

JT [∇x Fi −∇x Fa + ad?ξn
(Fi − Fa)

]
dX︸ ︷︷ ︸

τ (q)

= 0, (1)
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Structural properties – mass inertia operator

M(q)q̈ + [C1(q, q̇) + C2(q, q̇)] q̇ = F(q) + N(q)Ad−1
gr
G + τ(q)− D(q, q̇)q̇.

(2)

Property 1 (Boundedness of the Mass Matrix)

The mass inertial matrix M(q) is uniformly bounded from below by mI
where m is a positive constant and I is the identity matrix.

Proof of Property 1.

This is a restatement of the lower boundedness of M(q) for fully
actuated n-degrees of freedom manipulators [Romero et al. (2014)].

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Structural properties – parameters Identification

Property 2 (Linearity-in-the-parameters)

There exists a constant vector Θ ∈ Rl and a regressor function
Y (q, q̇, q̈) ∈ RN×l such that

M(q)(̈q)+ [C1(q, q̇) + C2(q, q̇) + D(q, q̇)] q̇− F(q)N(q)Ad−1
gr
G

= Y(q, q̇, q̈)Θ. (3)
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Structural properties – skew symmetry of system inertial
forces

Property 3 (Skew symmetric property)

The matrix Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)] is
skew-symmetric.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Skew-symmetric of robot’s mass and Coriolis forces

By Leibniz’s rule, we have

Ṁ(q)=
d

dt

(∫ LN

0
JT MaJdX

)
=

∫ LN

0

∂

∂t

(
JT MaJ

)
dX

,
∫ LN

0

(
J̇

T
MaJ + JT ṀaJ + JT MaJ̇

)
dX . (4)

Therefore, Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)] becomes∫ LN

0

(
J̇
>

MaJ + J>ṀaJ + J>MaJ̇
)
dX − 2

∫ LN

0

(
J>ad?Jq̇MaJ + J>MaJ̇

)
dX

(5)

,
∫ LN

0

(
J̇
>

MaJ + J>ṀaJ− J>MaJ̇
)
dX − 2

∫ LN

0

J>ad?Jq̇MaJdX . (6)
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Skew-Symmetric Property Proof

Similarly, −
[
Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)]

]>
expands as

− Ṁ
>

(q) + 2
[
C>1 (q, q̇) + C>2 (q, q̇)

]
=∫ LN

0

dX>
(
−J>MaJ̇− J>ṀaJ− J̇

>
MaJ

)
+ 2

∫ LN

0

dX>
(

J>MaadJq̇J + J̇
>

MaJ
)

,
∫ LN

0

(
J>MaJ̇− J̇

>
MaJ− J>ṀaJ

)
dX − 2

∫ LN

0

J>ad?Jq̇MaJdX (7)

which satisfies the identity:

Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)] =

−
[
Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)]

]>
. (8)

A fortiori, the skew symmetric property follows.
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MC Takeaways: Simplexity

Simplexity: Reliance on a few parameters to model an
infinite-DoF system:

M(q)q̈ + [C1(q, q̇) + C2(q, q̇)] q̇ = F(q) + N(q)Ad−1
gr

G + τ(q)

− D(q, q̇)q̇.

Simplexity: From PDE to ODE, i.e. inifinite-dimensional
analysis (Continuum PDE) to finite-dimensional ODE!
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Control exploiting structural properties

Regarding the generalized torque τ (q) as a control input, u(q, q̇),
feedback laws are sufficient for attaining a desired soft body
configuration.

Theorem 1 (Cable-driven Actuation)

For positive definite diagonal matrix gains KD and Kp, without
gravity/buoyancy compensation, the control law

u(q, q̇) = −Kpq̃− KD q̇− F(q) (9)

under a cable-driven actuation globally asymptotically stabilizes
system (2), where q̃(t) = q(t)− qd is the joint error vector for a
desired equilibrium point qd .
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Computational Control exploiting structural properties

Corollary 2 (Fluid-driven actuation)

If the robot is operated without cables, and is driven with a dense
medium such as pressurized air or water, then the term F (q) = 0
so that the control law u(q, q̇) = −Kpq̃− KD q̇ globally
asymptotically stabilizes the system.

Proof.

Proofs in Section V of Molu and Chen (2024).
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Robot parameters

Tip load in the +y direction
in the robot’s base frame.

Poisson ratio: 0.45;
M = ρ[Ix , Iy , Iz ,A,A,A] with
ρ = 2, 000kgm−3;

D = −ρwν
TνD̆ν/|ν|.

X ∈ [0, L] discretized into 41
segments.
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Computational Control exploiting structural properties
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terrestrial control.

2 4 6 8 10
Total RKF Iterations (X 100)

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

̇
ξ
y

Kp: 3.5, KD: 0.34, y
p: 10N.
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Fluid-actuated, strain twist setpoint
terrestrial control.
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Computational Control exploiting structural properties
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̇
ξ
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Kp: 4.0, KD: 0.5, y
p: 10N.

PD Velocity Controller
Ref.
Sec. 1
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Fluid-actuated, strain twist setpoint
underwater control.
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PD Velocity Controller
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Cable-driven, strain twist setpoint
regulation.
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Computational Control exploiting structural properties
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PD Position Controller
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Sec. 5

Cable-based position control with a
small tip load, 0.2N.
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Terrestrial position control.
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Exploiting Mechanical Nonlinearity for Feedback!
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Hierarchical Dynamics and Control

Reaching steps towards the real-time strain control of
multiphysics, multiscale continuum soft robots.

Separate subdynamics — aided by a perturbing time-scale
separation parameter.

Respective stabilizing nonlinear backstepping controllers.

Stability of the interconnected singularly perturbed. system.

Fast numerical results on a single arm of the Octopus robot
arm.
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A case for layered control

©C. Draper, ”Guidance and Navigation, MIT, 1965.
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Layered control architecture: Singularly Perturbed
Dynamics

Essentially a layered multirate control scheme (Matni et al.
(2024)) of the various interconnected physics components of a
soft robot prototype.

Informed by a standard two-time-scale singularly perturbed
system.

ż1 = f(z1, z2, ε, us , t), z1(t0) = z1(0), z1 ∈ R6N , (10a)

εż2 = g(z1, z2, ε, uf , t), z2(t0) = z2(0), z2 ∈ R6N (10b)
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Framework: Singularly Perturbed Dynamics

f and g are Cn(n� 0) differentiable functions of their
arguments;

ε > 0 denotes all small parameters to be ignored.

us is the slow sub-dynamics’ control law, and

uf is the fast sub-dynamics’ controller.
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Isolated Equilibrium Manifold Justification

Assumption 1 (Real and distinct root)

Equation (10) has the unique and distinct root z2 = φ(z1, t) (for a
sufficiently smooth φ) so that

0 = g(z1,φ(z1, t), 0, 0, t) , ḡ(z1, 0, t), z1(t0) = z1(0). (11)

The slow subsystem therefore becomes

ż1 = f(z1,φ(z1, t), 0, us , t) , fs(z1, us , t). (12)
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Framework: Slow Dynamics Extraction

Assumption: the fast feedback law is asymptotically stable;

It does not modify the open-loop equilibrium manifold of the
fast dynamics.

With ε = 0 we have,

ż1 = f(z1, z2, 0, us , t), z1(t0) = z1(0), (13a)

0 = g(z1, z2, 0, 0, t). (13b)
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Framework: Fast Dynamics Extraction

Introduce the time scale T = t/ε, and write the deviation of z2

from its isolated equilibrium manifold, φ(z1, t) as
z̃2 = z2 − φ(z1, t). Then, (10) becomes

dz1

dT
= εf(z1, z̃2 + φ(z1, t), ε, us , t), (14a)

d z̃2

dT
= ε

dz2

dt
− ε ∂φ

∂z1
ż1, (14b)

= g(z1, z̃2 + φ(z1, t), ε, uf , t)− ε∂φ(z1, t)

∂z1
ż1. (14c)
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Framework for singularly perturbed dynamics

Setting ε = 0, we obtain the algebraic equation

d z̃2

dT
= g(z1, z̃2 + φ(z1, t), 0, uf , t) (15)

with z1 frozen to its initial values.
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Decomposition of SoRo Rod Dynamics
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Decomposition of SoRo Rod Dynamics

Mcore
i : composite mass distribution as a result of microsolid

i ′s barycenter motion;

Mpert: motions relative to Mcore
i , considered as a

perturbation;

M = Mpert ∪Mcore.

Introduce the transformation: [q, q̇] = [q, z], rewrite (2):

M(q)ż + [C1(q, z) + C2(q, z) + D(q, z)] z− F(q)− N(q)Ad−1
gr

G = τ(q)

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Dynamics separation

Suppose that Mp =
∫ Lp

max

L
p
min

J>MpertJdX , and Mc =
∫ Lc

max
Lc

min
J>McoreJdX , then,

M(q) = (Mc + Mp)(q), N = (Nc + Np)(q), (16a)

F(q) = (Fc + Fp)(q), D(q) = (Dc + Dp)(q) (16b)

C1(q, q̇) = (Cc
1 + Cp

1)(q, q̇), (16c)

C2(q, q̇) = (Cc
2 + Cp

2)(q, q̇). (16d)
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Dynamics Separation

Furthermore, let

M =

[
H 0
0 0

]
︸ ︷︷ ︸

Mc (q)

+

[
0 Hfast

slow

Hfast
slow
> Hslow

]
︸ ︷︷ ︸

Mp (q)

, (17)

where Hfast
slow denotes the decomposed mass of the perturbed sections of the

robot relative to the core sections.

Let robot’s state, x = [q>, z>]> decompose as q = [q>fast, q
>
slow]> and

z = [z>fast, z
>
slow]>,

Define M̄
p

= Mp/ε, and let u = [u>fast, u
>
slow]> be the applied torque.
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SoRo Dynamics Separation

(Mc + εM̄
p
)ż = s + u, (18)

where

s =

[
sfast

sslow

]
=

[
Fc + Nc Ad−1

gr
G − [Cc

1 + Cc
2 + Dc ]zfast

Fp + NpAd−1
gr

G − [Cp
1 + Cp

2 + Dp]zslow

]
. (19)

Since Hfast is invertible, let

M̄
p

=

[
M̄

p
11 M̄

p
12

M̄
p
21 M̄

p
22

]
and ∆ =

[
0 0

M̄
p
21H−1

fast 0

]
. (20)
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SoRo Dynamics Separation

Premultiplying both sides by I− ε∆, it can be verified that[
Hfast M̄

p
12

0 M̄
p
22

] [
żfast

εżslow

]
=

[
sfast

sslow − εM̄
p
21H−1

fastsfast

]
+

[
ufast

uslow − εM̄
p
21H−1

fastufast

]
(21)

which is in the standard singularly perturbed form (10):

ż1 = f(z1, z2, ε, us , t), z1(t0) = z1(0), z1 ∈ R6N , (22a)

εż2 = g(z1, z2, ε, uf , t), z2(t0) = z2(0), z2 ∈ R6N (22b)
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SoRo Fast Subsystem Extraction

On the fast time scale T = t/ε, with dT/dt = 1/ε so that,

żfast =
dzfast

dt
≡ 1

ε

dzfast

dT
,

1

ε
z′fast

; and

εżslow = z′slow.

Fast subdynamics:

z′fast = εH−1
fast(sfast + ufast)−H−1

fastH
fast
slowz′slow, (23a)

z′slow = H−1
slow(sslow − uslow)−H−1

fast(sfast − ufast) (23b)

where the slow variables are frozen on this fast time scale.
Lekan Molu Embodied Intelligence for Soft Robots’ Control
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SoRo Slow Subsystem Extraction

We let ε→ 0 in (21), so that what is left, i.e.,

żslow = H−1
slow(sslow + uslow) (24)

constitutes the system’s slow dynamics; where the fast
components are frozen on this slow time scale.
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Control of the Fast Strain Subdynamics

Consider the transformation:

[
θ
φ

]
=

[
qfast

zfast

]
so that

θ′ = εzfast , ν := A virtual input.
Let {qd

fast, q̇
d
fast} = {ξd

1 , . . . , ξ
d
nξ
,ηd

1 , . . . ,η
d
nξ
}fast be the

desired joint space configuration for the fast subsystem.

Theorem 3 (Molu (2024))

The control law

ufpos = qd
fast(tf )− qfast(tf ) + q′dfast(tf )

is sufficient to guarantee an exponential stability of the origin of
θ′ = ν such that for all tf ≥ 0, qfast(tf ) ∈ S for a compact set
S ⊂ R6N . That is, qfast(tf ) remains bounded as tf →∞.
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Control of the Fast Strain Subdynamics

Proof Sketch 1 (Proof of Theorem 3)

e1 = θ − qd
fast, =⇒ e′1 = θ′ − q′

d

fast , ν − q′
d

fast. (25)

Choose V1(e1) =
1

2
e>1 Kpe1 (26)

Then, V′1 = e>1 Kpe′1 = e>1 Kp(ν − q′dfast). (27)

For ν = q′dfast − e1, V′1 = −e1Kpe1 ≤ 2V1.
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Stability Analysis of the Fast Velocity Subdynamics

Theorem 4 (Molu (2024))

Under the tracking error e2 = φ− ν and matrices
(Kp,Kq) = (K>p ,K

>
q ) > 0, the control input

ufvel =
1

ε
Hfast[q

′′d
fast + e1 − 2e2 − K>q (KqK>q )−1Kpe1]

+
1

ε
Hfast

slowz′slow − sfast (28)

exponentially stabilizes the fast subdynamics (23).
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Stability Analysis of Fast Velocity Subdynamics

Proof Sketch 2 (Sketch Proof of Theorem 4)

Recall from the position dynamics controller:

e′1 = θ′ − q′dfast , zfast − q′dfast + (ν − ν) (29a)

= (φ− ν) + (ν − q′dfast) , e2 − e1. (29b)

It follows that

e′2 = φ′ − ν ′ = z′fast + e′1 − q′′dfast (30)

= H−1
fast

[
εufast + εsfast −Hfast

slowz′slow

]
+ (e2 − e1)− q′′dfast.
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Stability Analysis of the Fast Velocity Subdynamics

Proof Sketch 3 (Sketch Proof of Theorem 4)

For diagonal matrices Kp,Kq with positive damping, let us choose the
Lyapunov candidate function

V2(e1, e2) = V1 +
1

2
e>2 Kqe2 =

1

2
[e1 e2]

[
Kp 0
0 Kq

] [
e1

e2

]
.

If q̃fast = qfast − qd
fast and q̃′fast = q′fast − q′dfast, then the controller

ufvel =
1

ε
Hfast[q

′′d
fast − q̃fast − 2q̃′fast − K>q (KqK>q )−1Kp q̃fast]

+
1

ε
Hfast

slowz′slow − sfast,

exponentially stabilizes the system;
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Stability Analysis of the Fast Velocity Subdynamics

Proof Sketch 4 (Sketch Proof of Theorem 4)

since it can be verified that

V′2 = e>1 Kp(e2 − e1)

− e>2 Kq

(
e2 − K>q (KqK>q )−1Kpe1

)
(31a)

= −e>1 Kpe1 − e>2 Kqe2 (31b)

, −2V2 ≤ 0. (31c)
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Stability analysis of the slow subdynamics

Set e3 = zslow − ν so that ė3 = żslow − ν̇. Then,

ė3 = żslow − q̈d
fast + (e2 − e1), (32a)

= H−1
slow(sslow + uslow)− q̈d

fast + (e2 − e1). (32b)

Theorem 5

The control law

uslow = Hslow(e1 − e2 − e3 + q̈d
fast)− sslow (33)

exponentially stabilizes the slow subdynamics.
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Stability analysis of the slow subdynamics

Proof.

Consider the Lyapunov function candidate

V3(e3) =
1

2
e>3 Kr e3 where Kr = K>r > 0. (34)

It follows that

V̇3(e3) = e>3 Kr ė3 (35a)

= e>3 Kr

[
H−1

slow(sslow + uslow)− q̈d
fast + e2 − e1

]
. (35b)

Substituting uslow in (33), it can be verified that

V̇3(e3) = e>3 Kr e3 , −2V3(e3) ≤ 0. (36)

Hence, the controller (33) stabilizes the slow subsystem.

Lekan Molu Embodied Intelligence for Soft Robots’ Control



56/65

Outline
Morphological Computation

Finite Models for Infinite-DoF Morphology
Singular Perturbation Theory: Overview
Hierarchical Decomposition of Dynamics

References

Hierarchical Control
Fast Strain Subdynamics
Fast Strain Velocity (Twist) Subdynamics
Slow subdynamics
Interconnected System

Stability of the singularly perturbed interconnected system

Let ε = (0, 1) and consider the composite Lyapunov function candidate
Σ(zfast, zslow) as a weighted combination of V2 and V3 i.e. ,

Σ(zfast, zslow) = (1− ε)V2(zfast) + εV3(zslow), 0 < ε < 1. (37)

It follows that,

Σ̇(zfast, zslow) = (1− ε)[e>1 Kp ė1 + e>2 Kq ė2] + εe>3 Kr ė3,

= −2(V2 + V3) + 2εV2 ≤ 0 (38)

which is clearly negative definite for any ε ∈ (0, 1). Therefore, we conclude that
the origin of the singularly perturbed system is asymptotically stable under the
control laws.

u(zfast, zslow) = (1− ε)ufast + εuslow. (39)
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Asynchronous, time-separated control
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Runtime: 18.0 mins

Ten discretized PCS sections: 6 fast, 4 slow subsections. F y
p = 10N,

with Kp = 10, Kd = 2.0 for ηd = [0, 0, 0, 1, 0.5, 0]> and ξd = 06×1.
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Five-axes control
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Time Response Comparison with Non-hierarchical
Controller

Pieces Runtime (mins)

Total Fast Slow Hierarchical
SPT
(mins)

Single-layer PD control (hours)

6 4 2 18.01 51.46

8 5 3 30.87 68.29

10 7 3 32.39 107.43

Table: Time to Reach Steady State.
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Contributions

Layered singularly perturbed techniques for decomposing
system dynamics to multiple timescales.

Stabilizing nonlinear backstepping controllers were introduced
to the respective subdynamics for fast strain regulation.
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Discussions

Leverage the multiphysics of (often) heterogeneous soft
material components;

Neat manipulation strategies for motion is a multiscale
problem that requires imbuing geometric mathematical
reasoning into the control strategies for desired movements.

Challenge: Merging the long-term planning horizon of spatial
perception tasks with the fast time-constant (typically
milliseconds or microseconds) requirements of the precise
control of soft, compliant pneumatic/mechanical systems
across multiple time-scales;
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Discussions

Process spatial information (Lagrangian) often within a
long-time horizon context (Eulerian) for the real-time control
or planning across multiple time-scales.
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Conclusion

Email: lekanmolu@microsoft.com

Thank you!
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