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Abstract— We propose reaching steps towards the real-time
strain control of multiphysics, multiscale continuum soft robots.
To study this problem fundamentally, we ground ourselves in a
model-based control setting enabled by mathematically precise
dynamics of a soft robot prototype. Poised to integrate, rather
than reject, inherent mechanical nonlinearity for embodied
compliance, we first separate the original robot dynamics into
two separate subdynamics — aided by a perturbing time-
scale separation parameter. Second, we prescribe a set of
stabilizing nonlinear backstepping controllers for regulating
the resulting subsystems’ strain dynamics. Third, we study
the interconnected singularly perturbed system by analyzing
and establishing its stability. Fourth, our theories are backed
up by fast numerical results on a single arm of the Octopus
robot arm. We demonstrate strain regulation to equilibrium, in
a significantly reduced time, of the whole-body reduced-order
dynamics of infinite degrees-of-freedom soft robots. This paper
communicates our thinking within the backdrop of embodied
intelligence: it informs our conceptualization, formulation, com-
putational setup, and yields improved control performance for
the nonlinear control of infinite degrees-of-freedom soft robots.

I. INTRODUCTION

Soft manipulators, inspired by the functional role of
living organisms’ soft tissues, provide better compliance
and configurability compared to their rigid counterparts. In
proof-of-concept studies and in certain real-world cases, they
have found applications in delicate 6D dexterous bending
and whole-arm manipulation tasks [3], minimally invasive
surgery in tight spaces [12, 13], inspection [7], and assistive
rehabilitation [15, 11] tasks, where otherwise stiff and rigid
robot configurations possess worse stiffness-to-weight ratios
and manipulability. Despite their attractiveness, rigid robots
are still the go-to mechanism in many automation tasks today.
How can we bridge this divide for soft robot adoption in
automation? We argue a sustained research effort for devel-
oping real-time computational tools for interaction modeling
and control will be the key to wide adoption.

Soft robots are multiphysics systems that generate phys-
ically heterogeneous interactions from muscle activation to
contact and adhesion with the environment in an embodied
intelligence fashion [23]. Embodied intelligence stipulates
that rather than reject external mechanical processes that
impede performance, a robot should leverage its shape,
bending, and twisting capabilities along with constraints
in the external environment in achieving its desired con-
figuration. The morphing characteristics of a soft robots
occur at multiple scales from millimeters (in their continuum
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Fig. 1. Simplified configuration of an Octopus arm, reprinted from Molu
and Chen [9]. .

deformation characterization) to meters (in their overarching
compliance strategy). We are poised with the fast and precise
control of soft robots. To systematically dissect the problem,
we focus on model-based control methods. This is attractive
since the long time scales required to computationally resolve
models and control has been a drawback for their ubiquitous
adoption in automation tasks.

We take a holistic approach that includes modeling, ap-
plied mathematics and control, and fast scientific computing
schemes to solve the multiscale problem constrained by
the robot’s multiphysics. Being a continuum phenomenon,
the default machinery for soft robot analyses are nonlinear
partial differential equations (PDEs). However, nonlinear
PDE theory is tedious and computationally intensive for
realizing computationally fast and compliant behavior in soft
robots. There are notable strides in reduced-order, finite-
dimensional mathematical models that induce tractability in
continuum models. A non-exhaustive list range from mor-
phoelastic filament theory [10, 4, 2], to generalized Cosserat
rod theory [20, 1], the constant curvature model [3], the
piecewise constant curvature model [22, 17], and ordinary
differential equations-based discrete Cosserat model [18, 19].

To study the problem at hand, we leverage [19]’s kinetic
model in grounding the layered multirate control scheme [6]
of the various interconnected physics components of a soft
robot prototype. In this sentiment, we take the view of re-
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duced order modeling and control with singular perturbation
techniques [5]. Discretizing the continuum into piecewise
constant strain sections [19], we consider regions where the
robot’s activation influences its mass density the most as
the fast subsystem to be controlled on a finer scale. The
remaining microstructures on the robot are considered the
slower subsystem which can be solved at a much coarser
resolution. This enables us to devise a tractable mathematical
scheme for separating the system dynamics into two separate
sub-dynamical systems, controllable at different time scales,
to improve computational time and accurate strain regulation.
To encourage resilience and improve runtime, we sidestep
linear control methods [16, 9] and opt for nonlinear control
whilst exploiting interprocess communication on a modern
GPU and its host CPU. The motivation is for the robot
to utilize, not discard, its inherent mechanical nonlinear
feedback in achieving control compliance whilst improving
computational time.
Contributions: Our contributions are as follows:

• we separate the robot dynamics into separate time scales
by manipulating the governing dynamics equations with
a perturbation parameter;

• we then devise separate nonlinear controllers for either
subdynamics, each operating at different time resolu-
tions on separate GPU and host CPU threads;

• between the two separated subdynamics, an asyn-
chronous communication scheme enables passing dy-
namics and control computational data from one thread
to the other – the subdynamics and controller of the
other system are “frozen” within the other subsystem’s
control and dynamics thread – we do not freeze the
other process itself;

• a multi-rate sampling of state measurements asyn-
chronously controls each subsystem: a fast sampling of
the fast state variable is employed in a fast nonlinear
backstepping controller and a slow-sampling of the
slow state variable is employed in a slow backstepping
controller. There is not a stringent requirement for
communication between both subsystems so that the
overall controller takes the form of a decentralized one;

• we achieve a faster computational time for control
compared to previously reported results [21, 9].

Our formulation avoids the empirical hierarchical computa-
tional schemes typically employed on soft robot bodies such
as Shih et al. [21]. While in a way our contribution adheres to
this bio-inspired hierarchical computational scheme,a layered
modeling and control scheme from a rigorous dynamical
systems viewpoint enables us to preserve stability guarantees
to the computational scheme. This allows the negligence of
(i) parasitic parameters which otherwise complicate system
model; (ii) extraneous minute time constants, and mass
densities etc; and (iii) the overparameterization caused by
sensitive neural network (and hence non-interpretability of)
models used for the high-level controllers in bio-inspired
models such as [21].

The rest of this paper is structured as follows: background

and theoretical machinery are described in §II; §III intro-
duces the singularly perturbed dynamics framework and in
§IV, we prescribe the layered dynamics and backstepping
controllers for the separated system including stability anal-
yses; numerical simulations are presented in §V, and we
conclude the paper in §VI.

II. NOTATIONS AND PRELIMINARIES

Matrices and vectors are respectively upper- and lower-
case bold-faced letters. The strain field and strain twist
vectors are ξ ∈ R6 and η ∈ R3, respectively. Sets, screw
stiffness, wrench tensors, and the gravitational vector are
upper-case Calligraphic bold-faced characters. Distributed
wrench tensors are signified by an overbar, e.g. F̄ . For a
curve X : [0, L], where L is the curve’s length at time t,
the robot’s configuration is denoted as Xt(X). The matrix
A’s Frobenius norm is denoted ‖A‖ while its Euclidean
norm is ‖A‖2. The Lie algebra of the Lie group SE(3) is
se(3). The special orthogonal group consisting of corkscrew
rotations is SO(3). The structure’s configuration g(X) is
a member of the Lie group SE(3), whose adjoint and
coadjoint are respectively denoted Adg , Ad?g . We remark
that these are parameterized by the curve, X . In generalized
coordinate, the joint vector of a soft structure is denoted q =
[ξ>1 , . . . , ξ

>
nξ

]> ∈ R6nξ and q̇ = [η>1 , . . . , η
>
nξ

]> ∈ R6nξ . For
a roll, pitch and yaw angles θ, φ, ψ, a typical strain ξi or
strain twist vector ηi takes the forms [θ, φ, ψ, x, y, z]> and
[θ̇, φ̇, ψ̇, ẋ, ẏ, ż]> in our notation.

A. SoRo Configuration

Our analysis is amenable to many soft robots with one
predominantly longer dimension than the other two (see
Fig. 1) so that “thin” Cosserat rod theory [20] applies. Shown
in Fig. 1, the inertial frame is the basis triad (e1, e2, e3)
and gr is the inertial to base frame transformation. For a
cable-driven arm, actuation occurs through the central axis
of the robot and at the point X̄ per section. The configuration
matrix that parameterizes curve Ln in X is denoted gLn . The
robot’s z-axis is offset in orientation from the inertial frame
by −90◦ so that a transformation from the base to inertial
frames is

gr =


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 . (1)

B. Continuous Strain Vector and Twist Velocity Fields

Suppose that p(X) ∈ R6 describes a microsolid’s po-
sition on the soft body at t and let R(X) be the corre-
sponding orientation matrix. Let the pose be [p(X), R(X)].
Then, the robot’s C-space, parameterized by a curve g(·) :

X → SE(3), is g(X) =

(
R(X) p(X)

0> 1

)
. Suppose

that ε(X) ∈ R3 and γ(X) ∈ R3 respectively denote
the linear and angular strain components of the soft arm.
Then, the arm’s strain field is a state vector, ξ̆(X) ∈
se(3), along the curve g(X) i.e. ξ̆(X) = g−1∂g/∂X ,



g−1∂xg. In the microsolid frame, the matrix and vector
representation of the strain state are respectively ξ̆(X) =(
γ̂ ε
0 0

)
∈ se(3), ξ(X) =

(
γ> ε>

)> ∈ R6. Read

γ̂: the anti-symmetric matrix representation of γ. Read ξ̆:
the isomorphism mapping the twist vector, ξ ∈ R6, to its
matrix representation in se(3). Furthermore, let ν(X), ω(X)
respectively denote the linear and angular velocities of the
curve g(X). Then, the velocity of g(X) is the twist vector
field η̆(X) = g−1∂g/∂t , g−1∂tg. In the microsolid frame,

η̆(X) =

(
ω̂ ν
0 0

)
∈ se(3), η(X) =

(
ω> ν>

)> ∈
R6.

C. Discrete Cosserat-Constitutive PDEs
The PCS model assumes that (ξi, ηi) i = 1, . . . , N

robot sections are constant. Spatially spliced along sectional
boundaries, the overall strain position and velocity of the
entire soft robot is a piecewise sum of the sectional strain
field parameters.

Using d’Alembert’s principle, the generalized dynamics
for PCS model Fig. 1 under external and actuation loads
admits the form [19][∫ LN

0

J>MaJdX

]
︸ ︷︷ ︸

M(q)

q̈ +

[∫ LN

0

J>ad?Jq̇MaJdX

]
︸ ︷︷ ︸

C1(q,q̇)

q̇+

[∫ LN

0

J>MaJ̇dX

]
︸ ︷︷ ︸

C2(q,q̇)

q̇ +

[∫ LN

0

J>DJ‖Jq̇‖pdX
]

︸ ︷︷ ︸
D(q,q̇)

q̇

− (1− ρf/ρ)

[∫ LN

0

J>MAd−1g dX

]
︸ ︷︷ ︸

N(q)

Ad−1gr G − J
>(X̄)Fp︸ ︷︷ ︸
F (q)

−
∫ LN

0

J>
[
∇xF i −∇xFa + ad?ηn (F i −Fa)

]
︸ ︷︷ ︸

u(q)

dX = 0,

(2)

for a Jacobian J(X) (see definition in [19]), wrench
of internal forces F i(X), distributed wrench of actua-
tion loads F̄a(X), and distributed wrench of the ap-
plied external forces F̄e(X). The torque and (internal)
force are respectively Mk,Fk for sections k; and M(X)
is the screw mass inertia matrix, given as M(X) =
diag (Ix, Iy, Iz,A,A,A) ρ for a body density ρ, sectional
area A, bending, torsion, and second inertia operator
Ix, Iy, Iz respectively. In (2), Ma = M+Mf is a lumped
sum of the microsolid mass inertia operator, M, and that of
the added mass fluid, Mf ; dX is the length of each section
of the multi-robot arm; D(X) is the drag fluid mass matrix;
J(X) is the Jacobian operator; ‖ · ‖p is the translation norm
of the expression contained therein; ρf is the density of the
fluid in which the material moves; ρ is the body density; G is
the gravitational vector defined as G = [0, 0, 0,−9.81, 0, 0]

T ;
and Fp is the applied wrench at the point of actuation X̄ .

Suppose that z = q̇ and the robot’s state at a configuration
g is x = [q>, z>]>, then equation (2) can be appropriately
written in standard Newton-Euler (N-E) form as

M(q)ż + [C1(q, z) +C2(q, z) +D(q, z)] z =

τ(q) + F (q) +N(q)Ad−1gr G.
(3)

III. SINGULARLY PERTURBED DYNAMICS

Seeking a robust response to parametric variations, noise
sensitivity, and parasitic small time constants in the dynamics
that increase model order, we separate system (3) into a stan-
dard two-time-scale singularly perturbed system consisting
of fast-changing (here, ż2) and slow-changing (i.e. ż1) sub-
dynamics. Thus, we write

ż1 = f(z1, z2, ε,us, t), z1(t0) = z1(0), z1 ∈ R6N ,
(4a)

εż2 = g(z1, z2, ε,uf , t), z2(t0) = z2(0), z2 ∈ R6N (4b)

where f and g are Cn(n � 0) differentiable functions of
their arguments, ε > 0 denotes all small parameters to be
ignored1, us is the slow sub-dynamics’ control law, and uf
is the fast sub-dynamics’ controller.

Set ε = 0 for the slow subsystem uf = 0 so that (4b)
becomes the algebraic equation

0 = g(z1, z2, 0, 0, t). (5)

To ensure that the fast subsystem has a distinct equilibrium
manifold, we proceed with the following standard assump-
tion from singular perturbation theory [5].

Assumption 1 (Real and distinct root): Equation (5) has
the unique and distinct root z2 = φ(z1, t) (for a sufficiently
smooth φ(·)) so that

0 = g(z1,φ(z1, t), 0, 0, t) , ḡ(z1, 0, t), z1(t0) = z1(0).
(6)

The slow subsystem therefore becomes

ż1 = f(z1,φ(z1, t), 0,us, t) , fs(z1,us, t). (7)
For the fast subdynamics, let us introduce the time scale
T = t/ε, and write the deviation of z2 from its isolated
equilibrium manifold, φ(z1, t) as z̃2 = z2−φ(z1, t). Then,
(4) becomes

dz1
dT

= εf(z1, z̃2 + φ(z̄1, t), ε,us, t), (8a)

dz̃2
dT

= ε
dz2
dt
− ε ∂φ

∂z1
ż1, (8b)

= g(z1, z̃2 + φ(z1, t), ε,uf , t)− ε
∂φ(z1, t)

∂z1
ż1. (8c)

Setting ε = 0, we obtain the fast subdynamics

dz̃2
dT

= g(z1, z̃2 + φ(z1, t), 0,uf , t) (9)

with z1 frozen to its initial values.

1Restriction to a two-time-scale is not binding and one can choose to
expand the system into multiple sub-dynamics across multiple time scales.



A. Soft Robots’ Dynamics Separation

The robot’s motion can be decomposed into those along
the discretized sections’ barycenter and those relative to the
barycenter based on the discretized Cosserat-based piecewise
constant strain assumption. Denote the composite mass dis-
tribution as a result of the motion of the microsolids near
the barycenter Mcore. Motions relative to Mcore can be
considered a perturbation, Mpert, so that Mpert = M \
Mcore. Examining (3), let the perturbation and core mi-
crosolids motion indices be (Lpmin, L

p
max) and (Lcmin, L

c
max),

respectively, where 0 ≤ Lpmin < Lcmin, Lcmax < Lpmax ≤ L,
and (Lcmax > Lcmin), (Lpmax > Lpmin). Then, we can write

M(q) = (M c +Mp)(q),N(q) = (N c +Np)(q),
(10a)

F (q) = (F c + F p)(q), D(q) = (Dc +Dp)(q) (10b)
C1(q, q̇) = (Cc

1 +Cp
1 )(q, q̇), (10c)

C2(q, q̇) = (Cc
2 +Cp

2 )(q, q̇) (10d)

where Mp =
∫ Lpmax

Lpmin
J>MpertJdX , and M c =∫ Lcmax

Lcmin
J>McoreJdX; every other matrix in (10) is similarly

defined. In block diagonal form, the mass inertia matrix can
be decomposed as (dropping the joint space arguments for
ease of readability)

M =

[
Hfast 0

0 0

]
︸ ︷︷ ︸

Mc(q)

+

[
0 Hfast

slow

Hfast
slow
> Hslow

]
︸ ︷︷ ︸

Mp(q)

, (11)

where each block diagonal matrix M c(q) and Mp(q) and
by extension Hfast is invertible (see [9]); Hfast

slow denotes the
decomposed mass of the perturbed sections of the robot
relative to the core sections.

Introducing the change of variables [q>, q̇>]> =
[q>, z>]>, so that [q>, z>]> decomposes as q =
[q>fast, q

>
slow]>, z = [z>fast, z

>
slow]>, where xfast denotes the

components of x belonging to the fast subsystem and xslow
denotes the components of x belonging to the slow subsys-
tem. Furthermore, let M̄p = Mp/ε, and u = [u>fast,u

>
slow]>

the control law to be designed. Rewriting (3) with the
singular perturbation parameter ε = ‖Mp‖/‖M c‖, we have

(M c + εM̄p)ż = s+ u, (12)

where

s =

[
sfast
sslow

]
=

[
F c +N cAd−1gr G − [Cc

1 +Cc
2 +Dc]zfast

F p +NpAd−1gr G − [Cp
1 +Cp

2 +Dp]zslow

]
.

(13)

Since Hfast is invertible, let

M̄p =

[
M̄p

11 M̄p
12

M̄p
21 M̄p

22

]
and ∆ =

[
0 0

M̄p
21H

−1
fast 0

]
. (14)

Premultiplying both sides of (12) by I − ε∆, and ignoring
the squared term in ε, it can be verified that[

Hfast εHfast
slow

0 εHslow

] [
żfast
żslow

]
=

[
sfast

sslow − εM̄p
21H

−1
fastsfast

]
+[

ufast

uslow − εM̄p
21H

−1
fastufast

]
. (15)

Rearranging, we must have[
Hfast M̄p

12

0 M̄p
22

] [
żfast
εżslow

]
=

[
sfast

sslow − εM̄p
21H

−1
fastsfast

]
+[

ufast

uslow − εM̄p
21H

−1
fastufast

]
(16)

which is in the standard singularly perturbed form (4).
1) Fast subsystem dynamics extraction: Consider the fast

time scale T = t/ε, with dt/dT = ε. The dynamics on

this time scale is żfast =
dzfast

dt
≡ 1

ε

dzfast

dT
,

1

ε
z′fast and

εżslow = z′slow. Rewriting (16), we find[
Hfast εM̄p

12

0 M̄p
22

] [
z′fast
z′slow

]
=

[
εsfast

sslow − εM̄p
21H

−1
fastsfast

]
+[

εufast

uslow − εM̄p
21H

−1
fastufast

]
, (17)

or,

z′fast = εH−1fast(sfast + ufast)−H−1fastH
fast
slowz

′
slow (18a)

z′slow = H−1slow(sslow − uslow)−H−1fast(sfast − ufast) (18b)

where the slow variables are frozen on this fast time scale.
2) Slow sub-dynamics: To extract the slow subdynamics,

we let ε→ 0 in (16), so that what is left

żslow = H−1slow(sslow + uslow) (19)

constitutes the system’s slow dynamics. Again, the fast
components are frozen on this slow time scale during com-
putations.

IV. HIERARCHICAL CONTROLLER SYNTHESIS

We seek a multi-rate feedback backstepping controller
which steers an arbitrary strain and strain twist configuration
[q(t)>, q̇(t)>]> at time t, to a target point [qd>, q̇d>]>.
We now design nonlinear backstepping controllers for the
separate subsystems in §III-A.

1) Stability analysis of the fast velocity subdynamics: Let
us first consider the velocity component of the fast subdy-
namics in (18) which exists on the time scale T = t/ε. Con-
sider the transformation [θ>,φ>]> = [q>fast(T ), z>fast(T )]>

where θ′ = zfast. Suppose that we choose a virtual input ν1
such that θ′ = ν1 and let qdfast(T ) = [ξd1 , . . . , ξ

d
nξ

]>fast(T ) be
the desired joint space configuration

Theorem 1: The control law

qdfast(T )− qfast(T ) + q′dfast(T )

is sufficient to guarantee an exponential stability of the origin
of θ′ = ν1 such that for all T ≥ 0, qfast(T ) ∈ S for a
compact set S ⊂ R6N . That is, qfast(T ) remains bounded as
T →∞.



Proof: Abusing notation by dropping the time depen-
dence for ease of readability, let us define the tracking error
with the corresponding error dynamics

e1 = θ − qdfast, =⇒ e′1 = θ′ − q′
d

fast , ν1 − q′
d

fast. (20a)

Consider the following candidate Lyapunov function,

V1(e1) =
1

2
e>1Kpe1 (21)

where Kp is a diagonal matrix of positive damping (gains).
Ignoring the templated arguments for ease of readability, for
a constant qdfast, we must have

V ′1 = e>1Kpe
′
1 = e>1Kp(ν1 − q′dfast). (22)

Set ν1 = q′dfast − e1, then

V ′1 = −e1Kpe1 ≤ 2V1. (23)

That is for, limT→∞ e1(T ) = 0 the control law q′dfast− e1 ,
qdfast − qfast(T ) + q′d implies an exponentially stable origin
of the subsystem hence satisfying Assumption 1.

2) Stability analysis of the fast acceleration subdynamics:

Theorem 2: Under the tracking error e2 = φ − ν1 and
matrices (Kp,Kq) = (K>p ,K

>
q ) > 0, the control input

ufast =
1

ε
Hfast[q

′′d
fast + e1 − 2e2 −K>q (KqK

>
q )−1Kpe1]

+
1

ε
Hfast

slowz
′
slow − sfast (24)

exponentially stabilizes the fast subdynamics (18).
Proof: First recall that

e′1 = θ′ − q′dfast , zfast − q′dfast + (ν1 − ν1) (25a)

= (φ− ν1) + (ν1 − q′dfast) , e2 − e1. (25b)

Now, consider the whole nonlinear fast subsystem (18). It
follows that

e′2 = φ′ − ν′1 = z′fast + e′1 − q′′dfast (26)

= H−1fast

[
εufast + εsfast −Hfast

slowz
′
slow

]
+ (e2 − e1)− q′′dfast.

Suppose that we choose the Lyapunov candidate function

V2(e1, e2) = V1 +
1

2
e>2Kqe2 =

1

2
[e1 e2]

[
Kp 0
0 Kq

] [
e1
e2

]
,

it can be verified that

V ′2 (e1, e2) = e>1Kpe
′
1 + e>2Kqe

′
2 (27a)

= e>1Kp(e2 − e1) + e>2Kq[H−1fast(εufast + εsfast−
Hfast

slowz
′
slow) + (e2 − e1)− q′′dfast]. (27b)

Substituting the value of ufast in (24) into the foregoing (and
ignoring the templated arguments for ease of readability), we
have

V ′2 = e>1Kp(e2 − e1)

− e>2Kq

(
e2 −K>q (KqK

>
q )−1Kpe1

)
(28a)

= −e>1Kpe1 − e>2Kqe2 , −2V2 ≤ 0. (28b)

Since V ′2 is negative definite, the equilibrium point e12 =
[e>1 , e

>
2 ]> = 0 is exponentially stable. And the controller

that satisfies the equilibrium points [e>1 , e
>
2 ]> = 0 is given

by (24) or in simplified form

ufast =
1

ε
Hfast[q

′′d
fast − q̃fast − 2q̃′fast −K>q (KqK

>
q )−1Kpq̃fast]

+
1

ε
Hfast

slowz
′
slow − sfast,

where q̃fast = qfast − qdfast and q̃′fast = q′fast − q′dfast. On the
fast subsystem, the control input value when the perturbed
parameters are frozen is

uslow = sslow −Hslowz
′
slow −HslowH−1fast(sfast − ufast) (29)

where the variables sslow, Hslow, z
′
slow are frozen during the

computation of this controller.
3) Stability analysis of the slow subsystem: For the slow

subsystem (19), we operate on the slow time scale t = εT ,
where variables in the fast subsystem are fixed. Let e3 =
zslow − ν1 so that ė3 = żslow − ν̇1. It follows that (dropping
the time arguments)

ė3 = żslow − q̈dfast + (e2 − e1), (30a)

= H−1slow(sslow + uslow)− q̈dfast + (e2 − e1). (30b)

Theorem 3: The control law

uslow = Hslow(e1 − e2 − e3 + q̈dfast)− sslow (31)

exponentially stabilizes the slow subdynamics.
Proof: Consider the Lyapunov function candidate

V3(e3) =
1

2
e>3Kre3 where Kr = K>r > 0. (32)

It follows that

V̇3(e3) = e>3Krė3 (33a)

= e>3Kr

[
H−1slow(sslow + uslow)− q̈dfast + e2 − e1

]
. (33b)

Substituting uslow in (31), it can be verified that

V̇3(e3) = e>3Kre3 , 2V3(e3) ≤ 0. (34)

Hence, the controller (31) exponentially stabilizes the slow
subsystem on the slower time scale t.

4) Stability of the singularly perturbed interconnected
system: Let ε = (0, 1) and consider the composite Lyapunov
function candidate Σ(zfast, zslow) as a weighted combination
of V2 and V3 i.e. ,

Σ(zfast, zslow) = (1− ε)V2(zfast) + εV3(zslow). (35)

It follows that,

Σ̇(zfast, zslow) = (1− ε)[e>1Kpė1 + e>2Kqė2] + εe>3Krė3,

= −2(V2 + V3) + 2εV2 ≤ 0 (36)

which is clearly negative definite for any ε ∈ (0, 1). There-
fore, we conclude that the origin of the singularly perturbed
system is asymptotically stable under the control laws.



V. NUMERICAL RESULTS

A. System Setup

We replicate the parameters of [9] with tweaks to accom-
modate our layered control method. As seen in Fig. 1, the
tip load acts on the +y-axis in the robot’s base frame so that
the tip wrench applied at X̄ = L, can be expressed as

Fp = diag
(
R>(L),R>(L)

) (
03×1 0 10 0

)>
(37)

where R(L) is the first 3×3 block submatrix of (1). We use
Fy
p to represent the tip load acting along the +y direction in

what follows. Given the geometry and nature of the robot,
we chose a drag coefficient of 0.82 (a Reynolds number of
order 104). We set the Young’s modulus asE = 110kPa and
the shear viscosity modulus to 3kPa. The bending second
inertia momenta are Iy = Iz = πr4/4 while the torsion’s
second moment of inertia is Ix = πr4/2 for r = 0.1m, the
arm’s radius – uniform across sections. The arm length is
L = 2m. We assume a (near-incompressible) rubber material
makes up the robot’s body and set its Poisson ratio to 0.45;
the mass is set to be M = ρ · diag([Ix, Iy, Iz, A,A,A]) for a
cylindrical soft shell’s nominal density of ρ = 2, 000kgm−3

as used in [19]; the cross-sectional area A = πr2 so that
Ix = πr4/2. The drag screw stiffness matrix D in (3) is a
function of each section’s geometry and hydrodynamics so
that D = −ρwνT νD̆ν/|ν| where ρw is the water density set
to 997kg/m3, and D̆ is the tensor that models the geometry
and hydrodynamics factors in the viscosity model (see [19,
§II.B, eq. 6]). The curvilinear abscissa, X ∈ [0, L] was
discretized into 13 microsolids per section. For integrating
the system dynamics, we adopt a Runge-Kutta-Fehlberg
(RKF) integrator implemented in PyTorch. Computations
were carried out on an 80GB A100 CUDA-capable NVIDIA
GPU.

B. Deployment and Discussion

We deployed the slow and fast controllers on the two sub-
systems using two asynchronous separate threads: the slow
controller (34) was deployed on the host CPU while the fast
controller (24) was deployed on a CUDA-capable GPU in a
parallel thread. During operations, the slow subsystem state,
zslow, and control uslow were retrieved from a Linux named
pipe within the faster subsystem’s thread. Computation on
the slow subsystem were frozen when computing zfast and
ufast in the fast subsystem thread.

We now report two numerical experiments (for the sake
of conciseness) to validate our new scheme. Further testing
and evaluation are available in the online code repository.

In a two-axes strain regulation control experiment, we
discretized the continuum robot described in §V-A into 6
pieces. The fast and slow subdynamics were separated as 4
and 2 pieces, respectively. The goal is to have the continuum
strain along the +x and +y directions as 1.0 and 0.5
respectively whilst every other axis is kept at zero under
a 10 Newtons tip load. We set gains Kp = 5 and Kd = 0.5.
Fig. 2 shows the strain and strain twist stabilization results
for a total runtime of 18 minutes. As seen, the system reaches
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Fig. 2. Backstepping control on the singularly perturbed soft robot system
with 6 discretized pieces, divided into 4 fast and 2 slow pieces. For a tip load
of Fy

p = 10N , the backstepping gains were set as Kp = 10, Kd = 2.0
for a desired joint configuration ξd = [0, 0, 0, 1, 0.5, 0]> and ηd = 06×1

that is uniform throughout the robot sections.

Pieces Runtime (mins)
Total Fast Slow Hierarchical

SPT (mins)
Single-layer PD control (hours)

6 4 2 18.01 51.46
8 5 3 30.87 68.29
10 7 3 32.39 107.43

TABLE I
TIME TO REACH STRAIN STEADY STATE.

steady state across all axes of interest. We remark that this
whole body control scheme takes tens of hours for a typical
soft robot (later reported in Table I).

Our second experiment employs a PCS scheme with 10
discretized Cosserat sections — six fast and four slow pieces,
respectively. Under a tip load Fy

p = 10N , and backstepping
gains Kp = 10, Kd = 2.0 we aim for desired strain states
ξd = [0, π/3, π, 0.85, 0.5, π/4]> and twist states ηd = 06×1.
Fig. 3 shows we reached equilibrium in less than 20 iterations
of running the RKF scheme within 25 minutes.

Lastly, we compare the time to reach steady states in
our hierarchical control scheme versus a previous work [9]
that employed a PD single-layer control scheme. All robot
sections are discretized into 13 segments per section for
the hierarchical scheme; the PD controller employed 41
segments per section. We found that using a much more
coarse grid for the hierarchical controller does not hamper
performance. An equal amount of tip load, i.e. 10N was
employed in all experiments. Computations were carried out
on an 80GB A100 CUDA-capable NVIDIA GPU for the
single layer PD and fast controllers. The slow subsystem was
executed in parallel on the host CPU thread as before. Table I
shows the results. We found that the hierarchical scheme was
significantly faster in reaching equilibrium whilst preserving
whole-body strain regulation compared against the PD strain
regulation law.

VI. CONCLUSION

In the quest towards the adoption of soft robots in everyday
automation processes, we identified that the long processing
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Fig. 3. Backstepping control on the singularly perturbed soft robot system with 10 discrete Cosserat pieces made up of 4 slow and 6 fast subsystems.

times for computing models and control policies is a signif-
icant drawback. To circumvent this, we studied the control
problem in a model-based setting and introduced a singu-
larly perturbed technique for decomposing system dynamics
to fast and slower subdynamics, respectively. Stabilizing
nonlinear backstepping controllers were introduced to the
respective subdynamics to stabilize and further improve
computation times. The fast subdynamics was controlled
at a finer resolution while the slower subdynamics was
controlled at a more coarse resolution, with the overall
scheme executed in a decentralized fashion. We found that
our results do not merely regulate strain and strain twist
states but also achieve desired equilibrium faster and better
compared to other reported schemes. Our approach takes a
further step towards replicating embodied intelligence [8]
in soft robots that mimic the behavior of living matter by
engrossing hierarchy layers in soft robots’ dynamics and
control computational schemes.
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