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Abstract— Soft robots featuring approximate finite-
dimensional reduced-order models (undergoing small
deformations) are increasingly becoming paramount in
literature and applications. In this paper, we consider the
piecewise constant strain (PCS) discrete Cosserat model whose
dynamics admit the standard Newton-Euler dynamics for a
kinetic model. Contrary to popular convention that soft robots
under these modeling assumptions admit similar mechanical
characteristics to rigid robots, the schemes employed to arrive
at the properties for soft robots under finite deformation
show a far dissimilarity to those for rigid robots. We set out
to first correct the false premise behind this syllogism: from
first principles, we established the structural properties of
soft slender robots undergoing finite deformation under a
discretized PCS assumption; we then utilized these properties
to prove the stability of designed proportional-derivative
controllers for manipulating the strain states of a prototypical
soft robot under finite deformation. Our newly derived results
are illustrated by numerical examples on a single arm of the
Octopus robot and demonstrate the efficacy of our designed
controller based on the derived kinetic properties. This work
rectifies previously disseminated kinetic properties of discrete
Cosserat-based soft robot models with greater accuracy in
proofs and clarity.

I. INTRODUCTION

Soft robots are increasingly becoming relevant in everyday
automation owing to their improved bending, torsion, re-
configurability, and compliance. They have fostered cus-
tomizable solutions in assistive wearable devices [23, 1],
robot grippers [12], and mobile robots [13] among others.

For a soft robot to be useful in the physical world, its
body deformation and internal motor system must be well-
regulated via a control system. A reliable control strategy
requires a high-fidelity mathematical model of the robot’s
dynamics –matching the robot’s complex internal dynamics
with external environmental interactions. While machine
learning (ML) do provide black-box models, in practice these
models are non-interpretable, lacking reliability, and failing
to account for the continuous coupled interaction between
the soft arm material, its internal actuators, and external
affordances. There is a growing consensus in the soft robotics
community that ML models are inefficient when integrating
body compliance [14] for embodied intelligence [24] in soft
robots that exploit their functional flexible nature to achieve
adept motion strategies [14]. It has recently been argued [7]
that a model-based control design is necessary to fully realize
the compliance and deformation efficacy for adaptive motion
strategies [7, 14].
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Nonlinear partial differential equations (PDEs) are the
standard mathematical machinery for modeling continuum
structures with distributed mass. And for soft robots ex-
hibiting infinite degrees-of-freedom (DoF), nonlinear PDEs
readily come in handy. However, scanty theory exists for
nonlinear PDE analyses. To circumvent the complexity of
PDE analyses, researchers have so far exploited approximate
finite-dimensional ordinary differential equations (ODEs) [7]
for analysis on spatially reduced models.

Tractable reduced-order mathematical models are typically
formulated by restricting the range of shapes of the con-
tinuum robot to a finite-dimensional functional space over
a curve that parameterizes the robot. This is equivalent
to taking finite nodal points on the soft robot’s body and
approximating the dynamics along discretized nodal sections
by an ODE. An aggregated ODE of all discretized sections
can then be used to model the dynamics of the entire
discretized continuum robot. A paramount example is the
discrete Cosserat model of Renda et al. [18] whereupon
the nonlinear PDE that describes the robot’s kinetics in
exact form is abstracted to standard Newton-Euler ODEs via
D’Alembert’s principle of virtual work. This rests under the
assumption of piecewise constant strain (PCS) sections on
discretized nodal points of the continuum structure. This PCS
mathematical model lends itself well to slender soft robots
that can be controlled to arbitrary accuracy depending on
the discretization resolution of the constant strain sections.
It is attractive for model-based control since it addresses
torsion, in-plane, and out-of-plane (multi-) bending motions
with finite ordinary differential equations (ODEs) in the form
of the standard Newton-Euler dynamic equations.
Contributions: In this paper, a strain-parameterized PCS
dynamics on a reduced special Euclidean-3 group (SE(3)) is
considered for analysis and control. This model outperforms
the common piecewise constant curvature (PCC) [22, 17]
and the constant curvature variants [9] used outside of finite
element modeling methods (FEM) [6]. In this sentiment,
we prove the structural properties of Renda et al. [18]’s
derived Newton-Euler (N-E) equations. It is noteworthy to
emphasize that our work establishes from first principles
the structural properties of the kinetic equations that are
assumed to be similar to those of rigid robots (see [16] and
[5]). We, in fact, establish that soft and rigid robots tensor
components are very different and the Lagrangian proofs
for soft robots utilize partial integro-differential equations
given their continuum nature and distributed mass densities.
We also exploit the geometric properties of the derived N-
E dynamics for control tasks. We consider a single arm



Fig. 1. Schematic of the kinematics of the piecewise constant strain model.
See Section II-B for the notations in this figure.

of the CyberOctopus [20] (configuration shown in Fig. 1)
to benchmark our controllers on the characteristic in-plane
bending deformation which is difficult to model with PCC
and control. The choice of the example is motivated by
the fact that the Octopus robot [11] blends the interplay
between continuum mechanics and sensorimotor control well
and offers a numerical simulation framework upon which we
can verify our theoretical results.

The rest of this paper is structured as follows: in §II,
we introduce notations and provide a non-exhaustive back-
ground. The theoretical machinery for the rest of the paper
are introduced in §III. A multivariable stabilizing feedback
controller for regulating the tip point and strain states is
presented in §IV. Section V describe our numerical results
and we conclude the paper in §VI.

II. PRELIMINARIES ON THE PCS MODEL

We describe the soft arm’s (Fig. 1) PCS model in what
follows.

A. Microsolid Configuration

The PCS model is derived from the continuous Cosserat
model [2] which views the soft robot arm as an ensemble of
infinitesimal microsolids. Let X ∈ [0, L] denote the material
abscissa along the robot arm, where L is the robot’s length.
Let p(X) describe the position vector and R(X) denote the
corresponding orientation matrix of a microsolid on the robot
arm. Then, the robot’s configuration space, parameterized by

a curve g(X) : X → SE(3), is g(X) =

(
R(X) p(X)
0⊤ 1

)
.

Suppose that the strain field and twist vectors are respectively
η ∈ R6 and ξ ∈ R6. The arm’s strain field is a state vector
along the curve g(X) defined as η̆(X) = g−1∂g/∂X , and
the velocity of g(X) is the twist vector field ξ̆(X) defined
as ξ̆(X) = g−1∂g/∂t. We denote η̆ (ξ̆) as the isomorphism
from η (ξ) ∈ R6 to its matrix representation in se(3), i.e.,
the Lie algebra of SE(3).

In what follows, for a configuration g(X) ∈ SE(3), its
adjoint and coadjoint representations are parameterized by

the material abscissa and denoted as Adg(X) and Ad⋆
g(X),

respectively. The corresponding adjoint and coadjoint rep-
resentation of the strain twist vector are adη,ξ(X) and
ad⋆

η,ξ(X), respectively.

As shown in Fig. 1, the transformation from the base to
the inertial frame is

gr =


0 −1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

 . (1)

The continuous Cosserat model is however computation-
ally intensive to employ in practical applications since it
requires modeling every particle on the body of the robot
and employs partial differential equations to develop a static
and dynamic model. Suppose that the deformation under
consideration is finite, one can make finite approximations of
the strain deformation along segments of the robot between
discretized spatial nodal points. Doing this, one obtains a
strain dynamics that is composed of the respective piecewise
strains of the individual segments of the robot. Discretizing
the strain on the robot’s body this way by assuming con-
stant strains along sections constitutes the popular piecewise
constant strain model [18]. We introduce the PCS model in
what follows.

B. Piecewise Constant Strain Model

As shown in Fig. 1, the PCS model divides the soft
robot arm into N sections {Mn}Nn=1 and assumes that
the respective strain ηn is constant for each section. The
material abscissa X ∈ [0, L] is divided into N intervals
[0, L1], [L1, L2], · · · , [LN−1, LN ] with LN = L, and the
i-th section Mn spans [Ln−1, Ln]. In generalized coordi-
nates, the joint vector of the soft robot is denoted q(η) =
[η⊤1 , . . . , η

⊤
N ]⊤ ∈ R6N .

Remark 1 (Notations in Fig. 1). The inertial frame is
signified by the basis triad (e1, e2, e3) and gr(X) is the
transformation from the inertial to the manipulator’s base
frame. For cable-driven arms, the point at which actuation
occurs is labeled X̄ . The configuration matrix that parame-
terizes curve X of length Ln is denoted gLn

. The cable runs
through the z-axis in the (micro) body frame (x-axis in the
spatial frame).

The piecewise constant strain assumption greatly simpli-
fies the representation of the kinematics and dynamics of the
soft robot. Importantly, it allows the following kinematics
relation, ξ(X) = J(X)q̇ where the geometric Jacobian
J(X) ∈ R6×6N is given by [18, Eq. (20)] (omitted here
due to space limitation) and can be directly calculated from
the strains ηn. Using d’Alembert’s principle, the generalized
dynamics for the PCS model under external and actuation



loads admits the weak form [18]:[∫ LN

0

JTMaJdX

]
︸ ︷︷ ︸

M(q)

q̈ +

[∫ LN

0

JT ad⋆Jq̇MaJdX

]
︸ ︷︷ ︸

C1(q,q̇)

q̇+

[∫ LN

0

JTMaJ̇dX

]
︸ ︷︷ ︸

C2(q,q̇)

q̇ +

[∫ LN

0

JTDJ∥Jq̇∥pdX

]
︸ ︷︷ ︸

D(q,q̇)

q̇

− (1− ρf/ρ)

[∫ LN

0

JTMAd−1
g dX

]
︸ ︷︷ ︸

N(q)

Ad−1
gr

G − J(X̄)TFp︸ ︷︷ ︸
F (q)

−
∫ LN

0

JT
[
∇xFi −∇xFa + ad⋆

ξn (Fi −Fa)
]
dX︸ ︷︷ ︸

τ(q)

= 0,

(2)

where Fi(X) is the wrench of internal forces, Fa(X) is
the distributed wrench of actuation loads, and Fe(X) is the
external distributed wrench of the applied forces. The screw
mass inertia matrix M(X) = diag (Ix, Iy, Iz, A,A,A) ρ
for a body density ρ, sectional area A, bending, torsion,
and second inertia operator Ix, Iy, Iz respectively. In (2),
Ma = M + Mf is a lumped sum of the microsolid mass
inertia operator, M, and that of the added mass fluid, Mf ;
D(X) is the drag matrix; ∥ · ∥p is the translation norm of
the expression contained therein; ρf is the density of the
fluid in which the material moves; ρ is the body density;
G = [0, 0, 0,−9.81, 0, 0]

T is the gravitational vector; and Fp

is the applied wrench at X̄ . Using the terms defined by the
underbraces in (2), we can rewrite the PCS dynamics in the
standard Newton-Euler form as:

M(q)q̈ + [C1(q, q̇) + C2(q, q̇)] q̇ = τ(q) + F (q)

+N(q)Ad−1
gr

G −D(q, q̇)q̇,
(3)

which has the structure of the Lagrangian model of rigid
serial manipulators. In the next section, we prove that the
PCS model dynamics (3) of soft robot arms, in addition to
its resemblance to the Lagrangian dynamics, also enjoys the
basic structural properties of Lagrangian dynamics.

III. STRUCTURAL PROPERTIES OF THE PCS MODEL

We now establish the Lagrangian properties of the PCS
model dynamics (3).

Theorem 1 (Structural properties of the kinetic equation).
Equation (3) satisfies the following properties:

Property 1 (Positive definiteness of the Inertia Operator).
The inertia tensor Ma(q) is symmetric and positive definite.
As a result M(q) is symmetric and positive definite.

Proof: [Proof of Property 1] The jacobian, J , is injec-
tive by [18, equation 20]. Thus, property 1 follows from its
definition.

Property 2 (Boundedness of the Mass Matrix). The mass
inertial matrix M(q) is uniformly bounded from below by

mI where m is a positive constant and I is the identity
matrix.

Proof: [Proof of Property 2] This is a restatement of
the lower boundedness of M(q) for fully actuated n-degrees
of freedom manipulators [19].

Remark 2. Both properties 1 and 2 are important when
deriving feedback control laws that exploit the manipulator’s
inertial dynamics. Note that results which exist in literature
make a naive assumption about the positive-definiteness of
M(q), often drawing similarity to those of rigid manipula-
tors. However, rigid manipulators do not have distributed
mass matrices as a discretized soft robot has (see (3)).

Property 3 (Skew symmetric property). The matrix Ṁ(q)−
2 [C1(q, q̇) + C2(q, q̇)] is skew-symmetric.

Proof: [Proof of Property 3] By Leibniz’s rule, we have

Ṁ(q)=
d

dt

(∫ LN

0

JTMaJdX

)
=

∫ LN

0

∂

∂t

(
JTMaJ

)
dX

≜
∫ LN

0

(
J̇TMaJ + JTṀaJ + JTMaJ̇

)
dX. (4)

Therefore, Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)] becomes

∫ LN

0

(
J̇⊤MaJ + J⊤ṀaJ + J⊤MaJ̇

)
dX

− 2

∫ LN

0

(
J⊤ad⋆

Jq̇MaJ + J⊤MaJ̇
)
dX (5)

≜
∫ LN

0

(
J̇⊤MaJ + J⊤ṀaJ − J⊤MaJ̇

)
dX

− 2

∫ LN

0

J⊤ad⋆Jq̇MaJdX. (6)

Similarly, −
[
Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)]

]⊤
expands as

− Ṁ⊤(q) + 2
[
C⊤

1 (q, q̇) + C⊤
2 (q, q̇)

]
=∫ LN

0

dX⊤
(
−J⊤MaJ̇ − J⊤ṀaJ − J̇⊤MaJ

)
+ 2

∫ LN

0

dX⊤
(
J⊤MaadJq̇J + J̇⊤MaJ

)
≜
∫ LN

0

(
J⊤MaJ̇ − J̇⊤MaJ − J⊤ṀaJ

)
dX

− 2

∫ LN

0

J⊤ad⋆
Jq̇MaJdX (7)

where the terms in equation (7) follow from the symmetry
of the matrices that constitute the integrands. Inspecting (6)
and (7), it is easy to see that their right hand sides verify



the identity∫ LN

0

(
J̇⊤MaJ + J⊤ṀaJ − J⊤MaJ̇

)
dX

− 2

∫ LN

0

J⊤ad⋆
Jq̇MaJdX = 2

∫ LN

0

J⊤ad⋆Jq̇MaJdX−∫ LN

0

(
J⊤MaJ̇ − J̇⊤MaJ − J⊤ṀaJ

)
dX (8)

or

Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)] =

−
[
Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)]

]⊤
. (9)

A fortiori, the skew symmetric property follows.

Remark 3. Since Ṁ(q) is symmetric (cref. (4)), another way
of stating the skew-symmetric property is to write

Ṁ(q) = C1(q, q̇) + C2(q, q̇) + [C1(q, q̇) + C2(q, q̇)]
⊤
.

(10)

Owing to the symmetry of the right-hand-side (rhs), we have
Ṁ = 2(C1 + C2).

This skew-symmetric property is a form of the conservation
of energy law for a soft robot that can be exploited when de-
riving Lyapunov-based control laws that achieves asymptotic
stability of all system states.

Property 4 (Linearity-in-the-parameters). There exists a
constant vector Θ ∈ Rl and an N × l dimensional regressor
function Y (q, q̇, q̈) ∈ RN×l such that

M(q)q̈ + [C1(q, q̇) + C2(q, q̇) +D(q, q̇)] q̇ − F (q)

−N(q)Ad−1
gr

G = Y (q, q̇, q̈)Θ.
(11)

Proof: [Proof of Property 4] Consider the generalized
constitutive law for the full Cosserat model derived in [3,
§6.3]. The reduced Lagrangian density in se(3) per unit of
deformed volume (for all configurations)1 for a configuration
B is L = T − U [3] where T,U respectively denote the
volume’s left-reduced kinetic and elastic potential energy
densities in B. From the Euler-Lagrange equation, we have

τn =
d

dt

∂T

∂η̇n
− ∂T

∂ηn
+

∂U

∂ξn
, n = 1, . . . , N. (12)

Suppose that the material mid-surface crosses the mi-
crostructures Mi which correspond to the mass center, then
the kinetic energy density per unit of deformed area and its
rate of change w.r.t η are [3]

T(η) =
1

2

〈(
ω
ν,

)
,

(
Īω
ρ̄ν

)〉
(13)

T(η̇) =
1

2

〈(
ω̇
ν̇,

)
,

(
Īω̇
ρ̄ν̇

)〉
(14)

1Note that the full Lagrangian density of the soft multisection manipulator
is Lm =

∫ L
0 L(g, ξ, η)dX .

where ρ̄ and Ī respectively denote the mass and angular
inertia density per unit volume. It follows that

∂ηT =

(
Īω
ρ̄ν

)
, ∂η̇T =

(
Īω̇
ρ̄ν̇

)
. (15)

In a similar vein, the left invariant density of internal energy
U is [4]

U(ξ) = ⟨Fint, (ξ − ξd)⟩ (16)

for a desired ξd and field of internal force constraints Fint :
X ∈ [0, L] → Fint(X) ∈ se(3). The potential energy per
unit of metric area of the deformed surface (assuming that
it is concentrated in the mid-surface) is [3]

∂ξU =

(
∂U/∂γ
∂U/∂ε

)
−
(

0
ε

)
L (17)

so that the Euler-Lagrange equation (12) becomes(
Īω̈ + ˙̄Iω̇
ρ̄ν̈ + ˙̄ρν̇

)
−
(

Īω
ρ̄ν

)
+

(
∂U/∂γ
∂U/∂ε

)
−
(

0
ε

)
L.

(18)

Observe: Under the PCS assumption, each microsolid is fixed
so that the energy density per unit section of metric volume is
akin to that of a rigid body. The kinetic and potential energies
for the PCS model per section i of N sections becomes

T =
1

2

N∑
i=1

〈(
i+1ωi
i+1νi,

)
,

(
i+1Īi

i+1ωi
i+1ρ̄i

i+1νi

)〉
(19)

where i+1ωi is the angular velocity of section i + 1 in the
frame of section i, i+1νi is the linear velocity of section
i+ 1 in the frame of section i e.t.c. Similarly, the sectional
potential energies are

U(ξi) =

N∑
i=1

⟨{Fint}i, (ξi − ξdi )⟩. (20)

Thus, the kinetic and potential energy are each linear in
configuration parameters so that

T =

N∑
i=1

∂T

∂Σi
Σi =

N∑
i=1

ΓTiΣi,

U =

N∑
i=1

∂U

∂Σi
Σi =

N∑
i=1

ΓUiΣi (21)

where Σi is an inertial parameter, ΓTi is a function of q, q̇
and ΓUi is a function of q. Using (21) and plugging (15) and
(17) into (12), we conclude that the sectionalized piecewise
Cosserat dynamics is also linear-in-the-inertial-parameters,
given as τ(q) = Y (q, q̇, q̈)Θ, where Y (q, q̇, q̈) is the matrix
function of q, q̇, q̈ and Θ is the matrix of parameters.

Remark 4. More often than not, the parameters that con-
stitute the mass intertia matrix and Coriolis forces may be
unknown. In such situations, it is desirable to identify these
parameters in a data-driven manner. This property states
that although the soft manipulator’s dynamics is naturally
described by a nonlinear PDE, if the robot is discretized into



piecewise constant strain sections, then its dynamics become
linear-in-the-parameters. And standard regression techniques
can be applied to identify these parameters (e.g. see [21]).

IV. MULTIVARIABLE CONTROL

Utilizing the Lagrangian properties established in § III,
we now propose a globally asymptotically stabilizing
proportional-derivative (PD) controller for the soft robot
arm. We show that regarding the generalized torque τ(q)
as a control input, u(q, q̇), feedback laws are sufficient for
attaining a desired joint configuration.

Theorem 2 (Cable-driven Actuation). For positive definite
diagonal matrix gains KD and Kp, without gravity/buoyancy
compensation, the control law

u(q, q̇) = −Kpq̃ −KD q̇ − F (q) (22)

under a cable-driven actuation globally asymptotically sta-
bilizes system (3), where q̃(t) = q(t)− qd is the joint error
vector for a desired equilibrium point qd.

Proof: Without gravity, the term N(q)Ad−1
gr G = 0. Let

C̆(q, q̇) = C1(q, q̇) + C2(q, q̇)

and write (3) for an arbitrary control input u(q) as

M(q)q̈ = u(q, q̇) + F (q)−
[
C̆(q, q̇) +D(q, q̇)

]
q̇. (23)

Consider the Lyapunov candidate function

V (q) =
1

2
q̇⊤M(q)q̇ +

1

2
q̃⊤Kpq̃. (24)

Observe: V (q) > 0,∀q ̸= qd, q̇ ̸= 0, and V (q) = 0 when
q = qd, q̇ = 0 in the joint space. Differentiating V (q) yields

V̇ (q) = q̇⊤M(q)q̈ +
1

2
q̇⊤Ṁ(q)q̇ + q̃⊤Kp

˙̃q,

= q̇⊤
(
u(q, q̇) + F (q)−

[
C̆(q, q̇) +D(q, q̇)

]
q̇
)

+
1

2
q̇⊤Ṁ(q)q̇ + q̃⊤Kpq̇,

= q̇⊤
(
u(q, q̇) + F (q)−

[
C̆(q, q̇) +D(q, q̇)

]
q̇
)

+ q̃⊤Kpq̇ + q̇⊤
[
1

2

(
Ṁ(q)− 2C̆(q, q̇)

)
+ C̆(q, q̇)

]
q̇,

= q̇⊤ [u(q, q̇) + F (q) +Kpq̃ −D(q, q̇)q̇] (25)

where the last line follows from the skew symmetric property
established in Remark 3. With the control law (22), we have

V̇ (q) = −q̇⊤ [KD +D(q, q̇)] q̇ ≤ 0 (26)

since KD is a positive diagonal matrix and the drag term
D(q, q̇) > 0. Thus, we have that V (q) is decreasing if q̇ is
non-zero. From (26), it is possible that q̇ = 0 when q ̸=
qd. To prove global asymptotic stability, suppose the domain
q ∈ Ω ⊂ R6N is the compact, positively invariant domain
with respect to (3). Let E be the set of all q ∈ Ω where V̇
is identically zero. Then, for any q ∈ E , (26) implies that
q̇ = 0 and q̈ = 0. From (23), we must have

M(q)q̈ +
[
C̆(q, q̇) +D(q, q̇)

]
q̇ = −Kpq̃ −KD q̇ (27)

which implies that 0 = −Kpq̃ and hence q = qd. If Υ is
the largest invariant set of E , then by LaSalle’s invariance
theorem [10], every solution starting in Ω approaches Υ as
t → ∞. Whence, the equilibrium qd is globally asymptoti-
cally stable.

Corollary 1 (Fluid-driven actuation). If the robot is operated
without cables, and is driven with a dense medium such as
pressurized air or water, then the term F (q) = 0 so that the
control law u(q, q̇) = −Kpq̃−KD q̇ globally asymptotically
stabilizes the system.

V. NUMERICAL RESULTS

Our goal is to regulate the strain and strain velocity states
of the robot per section under different constant tip loads
despite the inevitable non-constant loads due to gravity,
external forces, and inertial forces.

A. System Setup and Parameters

As seen in Fig. 1, the tip load acts on the +y-axis in
the robot’s base frame. We use Fy

p to represent the tip
load acting along the +y direction in what follows. We
assume a (near-incompressible) rubber material makes up
the robot’s body and set its Poisson ratio to 0.45. The mass
is chosen as M = ρ[Ix, Iy, Iz, A,A,A] for a cylindrical
soft shell’s nominal density of ρ = 2, 000kgm−3 as used
in [18]. We set the cross-sectional area as A = πr2 so that
Ix = πr4/2. The drag screw stiffness matrix D in (3) is a
function of each section’s geometry and hydrodynamics so
that D = −ρwν

T νD̆ν/|ν| where ρw is the water density set
to 997kg/m3, and D̆ is the tensor that models the geometry
and hydrodynamics factors in the viscosity model (see [18,
§II.B, eq. 6]). The curvilinear abscissa, X ∈ [0, L] was
discretized into 41 microsolids per section.

B. Discussion

We adopt the recursive articulated-body algorithm [8]
and integrate the right-hand-side of the differential equation
(23) using a Runge-Kutta-Fehlberg (RKF) adaptive scheme
implemented in Python and Torch [15] with relative and
absolute errors respectively set to 10−7 and 10−9. We found
these tolerance values to be crucial for a successful numerical
integration scheme as it avoids numerical instability. De-
picted on the vertical axes of each chart of Fig. 2 are the
strain positions or twists along +y-direction (on the robot’s
local frame) while the horizontal axes depict the number of
adaptive RKF (re-) integration steps per for every tenth of
a second. The trajectory evolution over time per discretized
Cosserat section is shown in the various “dash-dotted” lines,
while the “solid blue” lines denote the reference. The con-
troller parameters are annotated within the chart together
with the amount of constant tip load in Newtons. We see
that all joint configurations are stabilized to reference strain
twist states (q̇d) for respective constant tip loads. It can also
be inferred that more sections in the discretized Cosserat
model lead to less bumpy state regulation.

In (a1–a3), the strain twists are precisely regulated to zero
offset errors despite large constant tip loads (a1-a3); and



a1) Cable-driven, strain twist setpoint terrestrial control. a2) Fluid-actuated, strain twist setpoint terrestrial control.
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a3) Fluid-actuated, strain twist setpoint underwater control. a4) Cable-driven, strain twist setpoint regulation.
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a5) Cable-based position control with a small tip load, 0.2N. a6) Terrestrial position control.
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Fig. 2. (a1 – a3): Linear strain twist state regulation for a 4-section (41 microsolid pieces per section) soft arm under a 10N lateral tip load, Fy
p that is

(a1) cable-driven in a sparse medium (a2) fluid-actuated in a sparse medium. (a3) fluid-actuated in a dense medium such as water (i.e. with drag forces
compensation). (a4) Under a miniature tip-load of 0.2N , a cable-driven 4-section arm finely regulates strain twists to equilibrium over time. (a5): Linear
strain position regulation for a cable-driven arm operating in air and (a6) a fluid-actuated arm illustrating the effect of steady state errors. The horizontal
axes show the number of (re)-integration time-steps per second for the adaptive Runge-Kutta-Fehlberg integrator we utilized in computing the controllers.

with small tip disturbances (a4). Notably, the large value of
the proportional gain causes overdamping in the transients
before convergence. In (a5), with a small tip load of 0.2N ,
we notice a critically damped system response. For a fixed
setpoint, a reasonable proportional gain (3.5−4.0), followed
by a small derivative gain (0.3−0.5) is sufficient to regulate
all linear position and velocity states to equilibrium as seen
in the (a6) chart of Fig. 2.

VI. CONCLUSION

We have presented the Lagrangian properties for soft
robots under a discrete Cosserat model. These properties
were then exploited to cancel out nonlinearities in the de-
rived controllers for strain states regulation. Our numerical
experiments confirm the conclusions from our Lyapunov
analyses. Similar to rigid robots under PD control laws
with Lagrangian dynamics, we have observed strain position
steady state offsets. Position control efficacy are shown to
improve if gravity and/or buoyancy is compensated in the
control law.
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