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Research Overview

Safety Analysis
Head & Neck Cancer Immobiliza

An Agentic Collision-Free Mapping System

A Fast Universal Collision-free Agentic Model: Compact Illusory
Representation and Memory-Efficient Incremental Mapping.

Abstract—We present a generalistcollision-free computa-
tional agent that rapidly embeds acquired knowledge about
real world environments into its internal model or “head”
based on a pipeline of machine learning ensembles wrapped
around a sequence of GPU-accelerated approximate convex de-
composition, a probabilistic convex set polytopes computational
scheme, frontier-based planning schemes. and low-level non-
linear control for general computational geometry navigation
tasks The agent’ head stores  compact, memory-fficen, and
computa le internal model of the environment
That proaciively constructs 8 colldoncree. model based on
exogenous perception, updates and maintains acquired state,
whilt adaptivly modiying esstwhile computed states basd
on tricved from external stimuli. This
agentic design offers flexibility in many real-time applications
and encourages self-collision awareness, rapid fault diagnosis
and rcovery in complx environments, and provides aneficent
storage mechanism that makes it suited to long-range mappi
and e ey, We s o i e s Aptasnnd
erage machine larning in essoning through an cuscnble of
established and novel computationn geomet. conteal s,

and convex opti ol i e
ingly becoming in many ‘uulmdlul i o
emergent real-time Al applications. T ves as a first

ep in answering the
o uses all perception
SSloestioh & le. a
correct and mmmml environment npmmmnm that can then

I for a foundational gener
.Almn.n.nl.lhle forits a
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than its specific model instances that may lack complete-
ness or correetness. The internal model principle in neuro-
science [16] s a splendid inspiration in our work for mod-
cling autonomous reasoning agents with compact, memory-
efficient internal information on the external world. Tn this
internal model principle
model of “external reality and of its own possible actions
within its head, it is able to try out various alternatives,
conclude which is the best of them, react to future situations
before they arise, utilize the knowledge of past events in
dealing with the present and the furure, and in every way
ct in a much fuller, safer. and more compelent manner
" [16]. With Craik [16]'s
caleulating machine with
capacity for external events that
engenders thought and of explanation [16]. we seek to build
agents with the representation power above that generalize
into the diverse tasks carlier cnumerated
Large deep models and policies have emerged as vi
able mechanisms for encoding such perceptual experiences
and building these agentic systems [$8]. Two application
categories have broadly emerged in these large agentic
paradigms: (1) situated agents ie. agents trained on stored
information in the form of static data albeit without an

if an agent possesses a minimum

view that the nervous system is a
a modeling or parallclin

tion
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Research Overview

Safety Analysis
Head & Neck Cancer Immobilization System

Numerical safety analysis in dynamical Systems

LevelSetPy: A GPU-Accelerated Package for Hyperbolic
Hamilton-Jacobi Partial Differential Equations

LEKAN MOLU, Microsoft Research, USA

This article introduces a software package release for geometrically reasoning about the safety desiderata of
(complex) dynamical systems via level set methods. In emphasis, safety is analyzed with Hamilton-Jacobi
equations. In scope, we provide implementations of numerical algorithms for the resolution of Hamilton-Jacobi-
Isaacs equations: the spatial derivatives of the associated value function via upwinding, the Hamiltonian via Lax-
Friedrichs schemes, and the integration of the Hamilton-Jacobi equation altogether via total variation diminishing
Runge-Kutta schemes. Since computational speed and interoperability with other modern scientific computing
libraries (typically written in the Python language) is of essence, we capitalize on modern computational
frameworks such as CUPY and NUMPY and move heavy computations to GPU devices to aid parallelization and
improve bring-up time in safety analysis. We hope that this package can aid users to quickly iterate on ideas and
evaluate all possible safety desiderata of a system via geometrical simulation in modern engineering problems.

CCS Concepts: » Software and its engineering — Software libraries and repositories; * Applied computing
— Physical sciences and encineering: » Mathematics of computing — Solvers.
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Safety Analysis
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Patient Head Stabilization in IGRT
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Human
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Couch
Simulator
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Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representation in RL

State Representation in RL: Credits

S. Chen A. Koul

D. Misra

h A

R. Islam A. Lamb M. Dudik A. Krish.

J. Langford
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State Representation in RL

Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

Standard Reinforcement Learning

vy Y

Agent ||

state reward action
S; R, A,
= R.l+| [
_S.. | Environment
3
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State Representation in RL Agent Controllable State (AC State)

AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

Compact States without Exogenous Distractors

Reward- Reward-
Relevant Irrelevant
Uncontrollable .

Controllable // / @ \

(a) GOAL: Letting in as much sunlight as possible.

(b) Optimal control only relies on information that is both
controllable and reward-relevant. Good world models
should ignore other factors as noisy distractors.

Denoised MDPs: Learning World Models Better Than the World Itself<]5]
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Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representation in RL

Compact States without Exogenous Distractors

Environment with Exogenous State Observation Generalized Inverse Dynamics

Train a model to predict the index of roll-in path

End:‘%?gous%‘ Actgwon fg(idx (1/ o a) ‘ ;n/)

!
vV N> T ay
~ &
XOgenous -|
state B

v~ Uniform(\]'/y,.,l) a ~ Uniform(A)

Policy cover for the last time step Action sp-at:e

Learning s with [S] whilst ignoring temporally correlated ¢? Source: [3, Fig. 1].
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Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representation in RL

Exo-MDP Machinery

e Consider the tuple M := (X, Z, A, T,R, H)
e Starting distribution p € A(Z2);
o Agent receives observations {x}/__; € X’ from the emission
function g : Z — A(X);
e Agent transitions between latent states via
T:ZxA— A(S);

o And rewards by R: X x A — A([0,1])

o Trajectories: (z1,x1,a1, M, ,2ZH, aH, ry) from repeated
interactions;

@ Z1 ~ ﬂl(-), Zh+1 ™ T('|Zh7 ah), Xp ~ q(-\zh) and
rp ~ R(Xh, ah,th) for all h € [H]

o Define supp(q(:|z)) = {x € X|q(x|z) > 0} for any z.

Lekan Molu Embodied Intelligence in Open Embodiments



Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representation in RL

Exo-MDP Machinery

Block MDP assumption supp(q(-|z1)) N sup(q(:|z2)) = 0 for all
71 # 2.

@ Agent chooses a ~ m(zp|xp) o EXO-BMDP: Essentially
a Block MDP [1] such

@ There exists non-stationary
that the latent states

episodic policies

Mys == NH D (1, 7R); admits the form
z=(s,e), wheres € S,
@ Optimal policy e€E.
7 = argmaxVien s (7); o u(z) = p(s)ué and
e For T(Z|z,a) =
Veenus = 2. = 1n,. T(s'|s,a)Te(€|e)
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Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representation in RL

Literature comparison

1-Step AC-State

Algorithms PPE OSSR DBC CDL Denoised-MDP

Inverse  (Ours)
Exogenous Invariant State v v v v v v v
Exogenous Invariant Learning v v X X X v v
Flexible Encoder v X v X v v v
YOLO (No Resets) Setting X v v 4 4 4 v
Reward Free v v X 4 v 4 v

Control-Endogenous Rep. v v X 4 4 X v
Emphasis on robustness to exogenous information. Comparison with baselines
including PPE [3], OSSR [2], DBC [6] , Denoised MDP [5] and One-Step

Inverse Models [4].
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Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representation in RL

Rewards-agnostic Exogenous State Invariance in RL

AC-State Discovers the
smallest control-endogenous
state s assuming factorized

dynamics

AC-State collects data with a
single random action followed
by a high-coverage endogenous
policy for k-1 steps

/ \ . & (ftxak) - predict first action
- ACSue
\\y from x toreachx

AC-State learns an encoder f )

7

for s = f(x) by optimizing a Ll

multi-step inverse model with
abottleneck



Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representation in RL

Latent States Discovery — Multi-step Inverse Dynamics

o frarg minser Bt k [ﬁACS (f,x,a,t, k)+
La(F,x) + L, xe-4)]

Lacs (f,x,a,t; k) = —log(P (ar|f(xt), f(xe14): k) (1)
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Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representation in RL

AC State Algorithm

Algorithm 1 AC-State Algorithm for Latent State Discovery Using a Uniform Random Policy

1: Initialize observation trajectory z and action trajectory a. Initialize encoder fp. Assume any pair of
states are reachable within exactly K steps and a number of samples to collect T', and a set of actions
A, and a number of training iterations V.

2 21~ Ulp(z))

sfort=1,2.,7do

4 ag ~ f.,(fl)

5z~ Plafey, a)

6 forn=1,2.,Ndo

7 t~U(LT)and k~U(LK)

8 L= Lycseare (fo.1,7,0,k) + Lootttencek( fo. t) + Loottteneck fo. Tr+t)

9 Update § to minimize £ by gradient descent.
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Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representation in RL

AC State in Action

80
70+ o O
o © o o o
60 - o)
® 50r o O  Autoencoder
5 40 O Inverse
5 a0l O AC-State
20 o o (]
10} S O gLl

ob—— Bt 00 o
1 14 27 40 53 66 72 92
Training epochs
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Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representati

PCLAST: Agent Plannable Continuous Latent States

PcLast: Discovering Plannable Continuous Latent States

Anurag Koul ! Shivakanth Sujit>** Shaoru Chen' Ben Evans® Lili Wu' ByronXu' Rajan Chari'
Riashat Islam 3¢ Raihan Seraj ¢ Yonathan Efroni” Lekan Molu' Miro Dudik' John Langford' Alex Lamb '
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Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representation in RL

PCLAST Algorithm

T H u
Algorithm 1 n-Level Planner _”_ ” I ,I E

Require:
. a) Hallwa b) R S Spiral
Current observation @x; (a) Hallway (b) Rooms (c) Spiral

Goal observation x40
Planning horizon H
Encoder ¢(-)
PCLAST map (-)

Latent forward dynamics 6(-, -)
Multi-Level discrete transition graph: {G:
Ensure: Action sequence {a;}/1 5!
1: Compute current continuous latent state s; = ¢(x,) and
target latent state 3* = ¢(Zgoai)-
{See Appendix E for details of high-level planner and
low-level planner. }
2: fori =n,n—1,...,2do
3: §* = high-level planner(s;, §*, G;)
{Update waypoint using a hierarchy of abstraction. }
4: end for
5: {a;}1 5! = low-level planner(3., §*, H, 6, )
{Solve the trajectory opnmlzallon problem.}

(d) Sawyer Reach Environment

Lekan Molu Embodied Intelligence in Open Embodiments



Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representation in RL

PCLAST Results

METHOD REWARD TYPE HALLWAY RooOMS SPIRAL SAWYER-REACH |
PPO DENSE 6.7+ 0.6 25wl 1525757 86.00 + 5.367
PPO + ACRO DENSE 10.0 £4.1 23.3+94 233+11.8 84.00 + 6.066
PPO + PCLAST DENSE 66.7 + 18.9 43.3+19.3 61.7 £ 6.2 78.00 + 3.347
PPO SPARSE 1.7+£2.4 0.0£0.0 0.0£0.0 68.00 £ 8.198
PPO + ACRO SPARSE 21.7£8.5 50+4.1 11.7+8:5 92.00 + 4.382
PPO + PCLAST SPARSE 50.0 + 18.7 6.7+£6.2 46.7 £+ 26.2 82.00 + 5.933
cQL SPARSE 3:31£:4.7. 0.0£0.0 0.0£0.0 32.00+£5.93
CQL + ACRO SPARSE 19:0:"7:1 33.3+125 21.7 £10.3 68.00 £ 5.22
CQL + PCLAST SPARSE 40.0 = 0.5 2334125 20.0+ 8.2 74.00 + 4.56
RIG NONE 0.0£0.0 0.0£0.0 3.0+£0.2 100.0 = 0.0
RIG + ACRO NONE 15.0 +3.5 40%1. 12.0 £ 0.2 100.0 = 0.0
RIG + PCLAST NONE 10.0+0.5 40+ 1.8 10.0 £ 0.1 90.0£5
LOW-LEVEL PLANNER + PCLAST NONE 86.7+3.4 69.3+ 3.4 50.0+4.3 +
n-LEVEL PLANNER + PCLAST NONE 97.78 £ 4.91 | 89.52 + 10.21 | 89.11 + 10.38 95.0 £ 1.54

Lekan Molu




Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representation in RL

AC State in Action

Exogenous distractors riddance.
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Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representati

trollable States Representation
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Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representation in RL

PCLAST Segmentation Results

(a) Clusters ACRO (b) Clusters PCLAST
-;5,{?37 a) = ::h(':::s':‘ el
T s e low (ACRO)
— - & initial
m target

- e |




Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representation in RL

PCLAST Segmentation Results

7 15

3 14

B.-
5

K

(a) Clusters ACRO (b) Clusters PCLAST

8

(¢) State-transitions PCLAST  (d) Planning Trajectories

Figure 6. Clustering, Abstract-MDP, and Planning are shown for
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Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representation in RL

Iterative Dynamic Game in RL
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Agent Controllable State (AC State)
AC State — Exogenous Distractors
PCLAST

Iterative Dynamic Game

State Representation in RL

Inculcating robustness into multistage decision policies

adversary [

|_T

st;le ;:ward /a:mn W syslem T
R
[ i}
lr
u controller [~——
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Approach Problem Setup

Problem Setup

@ To quantify the brittleness, we optimize the stage cost

T

max c(x¢, uy) — v
%y | 2 SO )~ glv)

nominal adversarial

@ To mitigate lack of robustness, we optimize the cost-to-go

T-1
ct(Xe, m,10) = min max <Z Ce(Xe, Uy, ve) + LT(xT)) ,

et \ 150
@ and seek a saddle point equilibrium policy that satisfies
Ct(xta 7'['*, ¢) < Ct(xt7 7T*, ¢*) < Ct(xta T, ¢*)7
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Results

Results: Brittleness Quantification

unacceptable performance

adversary's policy. ¥ = 0.5

Tirb e S——
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Results

Iterative Dynamic Game

Gamma = 1e-5

Gamma = 0.001

Xx* [
2
End pose of the KUKA platform with our iDG formulation given different goal

Gamma = 10

B
[

states and ~y-values.
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Results

Mixed H,/H,, Policy Optimization in RL

“The scientist’s problem is to recognize basic facts even though
they are obscured by a wealth of extraneous material, and then to
apply creative imagination in their interpretation. This Karl Jansky

did.” — Cyril Jansky.
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Talk Outline and Overview

Continuous-
Time
Stochastic

Policy m Policy Optimization and Stochastic Linear Control

Optimization

m Connections to risk-sensitive control;
m Mixed Ha/Hoo control theory.

gutline and m The case for convergence analysis in stochastic PO.

Overview

Lekan Molu

m Kleinman's algorithm, redux.
m Kleiman's algorithm in an iterative best response setting;
m PO Convergence in best response settings.

m Robustness margins in model- and sampling- settings.
m PO as a discrete-time nonlinear system;
m Kleiman and input-to-state-stability;
m Robust policy optimization as a small-input stable state
optimization algorithm

Lekan Molu Cantinyous- Fime Stoghastic Palicy Optimization



Credits

Continuous-
Time
Stochastic
Policy
Optimization

Leilei Cui

Lekan Molu

Zhong-Ping Jiang

Outline and
Overview

Postdoc, MIT Professor, NYU
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Research Significance

Continuous-
Time
Stochastic
Policy
Optimization

m (Deep) RL and modern Al

outtine and m Robotic manipulation (Levine et al., 2016), text-to-visual
Overview processing (DALL-E), Atari games (Mnih et al., 2013),
e.t.c.

Lekan Molu

m Policy optimization (PO) is fundamental to modern Al
algorithms’ success.

m Major success story: functional mapping of observations to
policies.

m But how does it work?

Lekan Molu Cantinyous- Fime Stoghastic Palicy Optimization



Policy Optimization — Open questions

Continuous-
Time
Stochastic
Policy
Optimization

m Gradient-based data-driven methods: prone to divergence

Lekan Molu from true System gradients

Qutline and m Challenge I: Optimization occurs in non-convex objective
verview
landscapes.

m Get performance certificates as a mainstay for control
design: Coerciveness property (Hu et al., 2023).
m Challenge Il: Taming PG's characteristic high-variance
gradient estimates (REINFORCE, NPG, Zeroth-order
approx.).

m Hello, (linear) robust (Hoo-synthesis) control!

Lekan Molu Cantinyous- Fime Stoghastic Palicy Optimization



Policy Optimization — Open questions

Continuous-
Time
Stochastic
Policy .
Optimization m Challenge Ill: Under what circumstances do we have

Lekan Molu convergence to a desired equilibrium in RL settings?

Outline and ] Cha.IIenge IV: Stochastic control, not deterministic control
settings.

m models involving round-off error computations in floating
point arithmetic calculations; the stock market; protein
kinetics.

m Challenge V: Continuous-time RL control.

m Very little theory. Lots of potential applications
encompassing rigid and soft robotics, aerospace or finance
engineering, protein kinetics.

Lekan Molu Cantinyous- Fime Stoghastic Palicy Optimization



Continuous-
Time
Stochastic
Policy
Optimization

Lekan Molu

Outline and
Overview

Tools: Complexity, Convergence, Robustness.

m Risk-sensitive Hoo-control (Glover, 1989) and discrete-
and continuous-time mixed Hy/Hoo design (Khargonekar
et al., 1988; Hu et al., 2023):

®m min. upper bound on H; cost subject to satisfying a set of
risk-sensitive (often M) constraints (Basar, 1990):

minkexJ(K) := Tr(PxDD™) (2)
subject to K := {K|p(A— BK) < 1, | Taw(K)|loo <7}

m Pg: solution to the generalized algebraic Riccati equation
(GARE);

m A, B, D, K: standard closed-loop system matrices;

B || T2 (K)|loo: Hoo-norm of the closed-loop transfer

function from a disturbance input w to output z.

Lekan Molu Cantinyous- Fime Stoghastic Palicy Optimization



Tools: Complexity, Convergence, Robustness.

Continuous-
Time - .
Stochastic Infinite-horizon
Policy

Optimization m discrete-time deterministic LQR settings (Fazel et al.,
Lekan Molu 2018)

Outline and
Overview

o
: Z T T
min E X, Qx;+u, Ru;) s.t. x = Ax; +Bus, xg ~ P
Kek t,O( t t t t) t+1 t ty X0 0

m discrete-time LQ problems under multiplicative

noise (Gravell et al., 2021):

minren Exg, (5}, {31} 2oemo(Xe @e + uf Ruy)

SUbjeCt to Xt4+1 = (A—i—Zf):l 5tiAi)Xt+(B+Z,q:]_ ’Yt,'Bi)Ut;

Lekan Molu Cantinyous- Fime Stoghastic Palicy Optimization



Continuous-
Time
Stochastic
Policy
Optimization

Lekan Molu

Outline and
Overview

Literature
landscape

Fazel (2018)

Mohammadi
(TAC — 2020)

Zhang (2019)

Gravell (2021)
Zhang (2020)

Molu (2022)

Cui & Molu
(2023)

Cont. time Stochastic. LQR | Cont. Phase

(Kalman ‘61, (Kalman '60)
Luenberger ‘63)

No No Yes
Yes No Yes
Yes Yes (Gaussian) Yes
No Multiplicative Yes
No No Yes
Yes Yes (Brownian) Yes
Yes Yes (Brownian) Yes

Lekan Molu Cantinyous- Fime Stoghastic Palicy O

(Non-exhaustive) Lit. Landscape on PO Theory

Yes

No
Yes

Yes

Finite/Infinite
Mixed H;/H_co | Horizon

Finite-horizon

Finite-Horizon

Inf-horizon

Inf-horizon

Rand-horizon
Inf-Horizon

Inf-Horizon




Mainstay

Stochastic m Continuous-time infinite-dimensional linear systems.
Policy
Optimization m Disturbances enter additively as random stochastic Wiener

Lekan Molu processes.

Outline and m Many natural systems admit uncertain additive Brownian
Overview noise as diffusion processes.

m Theoretical analysis machinery: Ito’s stochastic calculus.

m Goal: keep controlled process, z, small i.e.

lel = ( [ Izte)er) "

m Under a minimizing u(x(t)) € U in spite of unforeseen
w(t) € W C RY.

Lekan Molu Cantinyous- Fime Stoghastic



Minimization Objective and Risk-Sensitive Control

Continuous-
Time
Stochastic
Policy

Gtz m Risk-sensitive linear exponential quadratic Gaussian
Lttt objective functional (Jacobson, 1973):

ex g - ZT z
ew 5 [ o],
subject to dx(t) = Ax(t)dt + Bu(t)dt + Ddw(t),

z(t) = Cx(t) + Eu(t), a > 0; (3)

[lnGIZD jexp(XO’ u, W) =K

m where dw/dt = N (0, W), xo = N(0, 1), and
(x0, w(t)) C (Q, F,P).

Lekan Molu Cantinyous- Fime Stoghastic Palicy Optimization



Minimization Objective and Risk-Sensitive Control

Continuous-
Time
Stochastic

Policy m A Taylor series expansion of (3) reveals:

Optimization

Lekan Molu jexp(X07 u, W) =

lim E

T—o0

N2
M"
N
_'
—~
=
N—r
N
—~
-
N—r

-
o? T
| o]
x0€Po t=0 t=0
(4)
. . OZ2 T
m Consider the variance term Ve {tho zT(t)z(t)} — €

m « a measure of risk-propensity if a > 0;
m « a measure of risk-aversion if o < 0;
m « = 0 implies solving a classic LQP.

Lekan Molu Cantinyous- Fime Stoghastic Palicy Optimization



RL PO as a Risk-Sensitive Control Problem

Continuous-
Time
Stochastic
Policy
Optimization

Ao RL (via PG) computes high-variance gradient estimates
from Monte-Carlo trajectory roll-outs and bootstrapping.
m If we set & > 0 in the LEQG problem (3), we have a

controlled setting where we can study the theoretical
properties of RL-based PO.

m Framework: an ADP policy iteration (Pl) in a continuous
PO setting.

LEQG also interprets as a risk-attenuation algorithm.
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Contributions

Continuous-
Time
Stochastic
Policy
Optimization

Lekan Molu . . .
m A two-loop iterative alternating best-response procedure

for computing the optimal mixed-design policy;

m Rigorous convergence analyses follow for the model-based
loop updates;

Contributions

m In the absence of exact system models, we provide an
input-to-state-stable hybrid robust stabilization scheme.
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Continuous-
Time
Stochastic
Policy
Optimization

Lekan Molu

Contributions
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Problem Setup

Continuous-
Time
Stochastic
Policy
Optimization For o > 0, the cost

Lekan Molu jexp(XO’ u) — E

exp [% [;° 2" (t)z(t)dt], becomes
x0€Po

E

with the associated closed loop transfer function,

Ton(K) = (C — EK) (sl — A+ BK)™1D.
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Nonconvexity and Coercivity in PG

m Coercivity: iterates remain feasible and strictly separated

Stochastic from the infeasible set as the cost decreases.

Policy
Optimization

Lekan Molu

Assumptions

(a) Landscape of LQR (b) Landscape of Mixed H,/H,, Control

Figure: Coercivity property of PG on LQR and in mixed-design settings.
Credit: (Zhang et al., 2019).
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PO and Dynamic Games: Finite-horizon Gain

Continuous-

Time m Coercivity: feasibility set of optimization iterates
Stochastic
Policy

Optimization K={K: X(A=BiK) <0, [[Taw(K)loc <7} (7)

Lekan Molu

m Finite-horizon optimization u*(t) = —Kj, X(t).
m KX =R BTP, and P, is the unique, symmetric,

leqg
positive definite solution to the algebraic Riccati equation

(ARE)
ATP.+P,A— P (BR'BT —a2DD")P, = —Q. (8)

(Cui and Molu, 2023a, Proposition 1), (Duncan, 2013) .

m oo-horizon case: P* £ P, = lim, o P,, and
Kieqe 2 Ky = lim; o0 K;[Theorem on limit of monotonic

operators (Kan, 1964)].
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Solving the LEQG Problem

Continuous-
Time
Stochastic
Policy
Optimization

Lekan Molu m Directly solving the LEQG problem (3) in policy-gradient
frameworks incurs biased gradient estimates during
iterations;

m Affects risk-sensitivity preservation in infinite-horizon LTI
settings (see (Zhang et al., 2021; Zhang et al., 2019));

m Workaround: an equivalent dynamic game formulation to
the stochastic LQ PO problem.
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Two-Player Zero-Sum Game and LEQG

Continuous-

Time m An equivalent closed-loop two-player game
Stochastic

Policy connection (Cui and Molu, 2023b, Lemma 1):

Optimization

Lekan Molu

min max 7 (xo, U
UGUEEWJ’Y( 0> 76)

subject to dx(t) = Ax(t)dt + Bu(t)dt + Ddw(t),
z(t) = Cx(t) + Eu(t) 9)

T (%0, 1,€) = Eyg oy (0 /0 [T (©@x(e) + T () Ru(e)] e

Earqn [ 17 (06(0)] dt
, &(= dw) ~ N(0,X), and v = «.
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Continuous-
Time
Stochastic
Policy
Optimization

Lekan Molu

Model-based

Kleinman's Algorithm

m An iterative algorithm for solving infinite-time Riccati
equations (Kleinman, 1968).

m Based on a successive substitution method.

m For a deterministic LTI system’s cost matrix Py, the value
iterations of Pfj are monotonically convergent to Pj.
m Kleinman's algorithm as policy iteration

m Choose a stabilizing control gain Ky, and let p = 0.

m (Policy evaluation) Evaluate the performance of K, from
the GARE's solution.

m (Policy improvement) Improve the policy:
K, =—R™BTPA.

m Advance iteration p < p + 1.
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Model-based Policy Iteration

Continuous-

Time Algorithm 1: (Model-Based) PO via Policy Iteration

Stochastic

Policy Input: Max. outer iteration p, ¢ = 0, and an € > 0;
Optimization Input: Desired risk attenuation level v > 0;
Lellem Wil Input: Minimizing player’s control matrix R = 0.

Compute (Ko, Lg) € K; > From [24, Alg. 1];
Set P;{;’.DL = Q%: > See equation (9);

1

2

3

4 Compute Q% and A% > See equation (9);

5 Obtain P% by evaluating K, on (10);

6 | while ||PE — P9 ||r < edo
Model-based 7 Compute L, 1(K,) :=~v2DT PR ;
8 Solve (11) until | P} — PE% [|lr <
9 g+—qg+1
10 end )
11 | Compute K,y =R 'B"PF% o See (l1b);
end
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Continuous-
Time
Stochastic
Policy
Optimization

Lekan Molu

Outer Loop Convergence: Exponential Stability of
Pi

For any h > 0 and Ky € Ky, there exists a(h) € R such that

Tr(PE™ — P*) < a(h) Tr(PE — P*). That is, P* is an
exponentially stable equilibrium.
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Convergence of the Inner Loop Iteration

Continuous-

Time
Stochastic Theorem 3

Policy

M For a K € K, and for any (p,q) € Ny, there exists (K) € R
Lekan Molu SUCh that

Tr(PE — PRTH) < B(K)Tr(PE — PEY). (24)

Remark 2

As seen from Lemma 5, Pp P,’;‘Z > 0. By the norm on a
matrix trace (Cui and Molu 2023a, Lemma 13) and the result
of Theorem 3, we have

1Pk = PRLIlF < Tr(Pk — PRT) < B(K)Tr(Px), ie. PR]
exponentially converges to Pk in the Frobenius norm.
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Algorithm as a Policy Iteration Scheme

Continuous-
Time
Stochastic

Polic . e . .
Optimization m Choosing a stabilizing K, we first evaluate u's

ek Mol performance by solving (14).

m This is the policy evaluation step in PI.
m The policy is then improved in a following iteration by
solving for the cost matrix in (15b);
m This is the policy improvement step.
m Essentially, a policy iteration algorithm whereupon

m Performance of an initial control gain K, is first evaluated
against a cost function.

m A newer evaluation of the cost matrix P,’?i is then used to

improve the controller gain K, in the outer loop.
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Sampling-based PO: Statement of the Problem

Continuous-
Time
Stochastic
Policy
Optimization

Lekan Molu

Problem 4 (Sampling-based Policy Optimization)

IfA,B,C,D, E,P are all replaced by approximate matrices

A, é C, D E P, under what conditions will the sequences

}Qi 8;3 B {Kp}p o {Lq} ° o converge to a small

ne/ghborhood of the optimal values {PKJ_}(g Zg:O AKS Yoo
and {Lg}o2

Sampling-
based PO
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Hybrid System Reparameterization

Continuous-
Time
Stochastic
Policy
Optimization

m Lump estimate errors as an input into the gain terms to be
computed in the PO algorithm.

Lekan Molu
m With inexact outer loop update, K1 becomes biased so
that the inexact outer-loop GARE value iteration involves
the recursions
AR PR+ PRAR 4+ Qg +7 “PRDD " Pg =0, (25a)
Kp+1 = R_IBTP;? + Kp+1 = Kp+1 + Kp+1, (25b)

= NB: A% = A— BK, and Qf = Q + K, RK,.
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Robustness Analyses

Continuous-

tochastic Th 6
o m Define P = Py — Py ey

Policy
Optimization e .
and K = K — K. The inexact outer loop is

Lekan Molu . small-disturbance ISS. That
m Keep |K| < e, start with

a K € K: iterates stay in
K.

is, for any h >0 and
Ko € Kp, if||K|| < f(h),
there exist a KKL-function

PN ARG AYM  51(-,") and a Koo-function
'23) v1() such that

For any K € K, there exists HPE - P <

an e(K) > 0 such that for a 0 . -
perturbation K, K+ K € K, BullPgz =PIl p) + (K1)
as long as |K|| < e(K). (37)
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Inner Loop Robustness

Continuous-
Time

Stochastic Theorem 7
Policy

SELERN  Assume ||L,(K,)|| < e for all g € N There exists
Lekan Molu /B(K) (= [07 1), and )\() S ]COOI SUCh that

q
L

’

1PRS — PEIIIF < BT H(K)Tr(PED) + ML) (42)

m From Theorem 7, as g — o0, Isﬁ’cl approaches the solution
Pk and enters the ball centered at PZ’?_ with radius

proportional to ||L|s.

m The proposed inner-loop iterative algorithm well
approximates PR7.
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Numerical Results — Car Cruise Control System

Continuous-
Time
Stochastic

Policy m (Astrom and Murray, 2021, §3.1):

Optimization

Lekan Molu dV 1
m— = aput(a,v) — mgCrsgn(u) — §pCdA|v|v — mgsinf

dt
(43)

m u(x(t)) = [u1(t), u2(t)] must maintain a constant velocity
v (the state), whilst automatically adjusting the car's
throttle, u1(t),t € [0, T]

m despite disturbances characterized by road slope changes
(us =10),

m rolling friction (F,), and

m aerodynamic drag forces (Fy).
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Road (Disturbance) Profile

Stochastic
Policy
Optimization Road curvature Identification Signal: 6

Lekan Molu 100

° g

Road curvature (deg)

-100

60 80
Time (X 100 secs)
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Search for initial stabilizing gain and H,.,-norm
bound.

C { _
onpnuous Propositio

Stochastic

e (?) For all w, € R, we have that jw, is an eigenvalue of the
Hamiltonian H(~1) if and only if 71 is a singular value of

Yapollieops )1

Algorithm 1 Search for the closed-loop H-norm
lefined step size 17 > 0
upper bound on 7 as 7 = cc.

for possible M., norms for cach K

Lekan Molu

1: Given a use

i ={}
4: Initiali ! l les P = € R <0li =
E ¢ laeiarcercl potes {p: € Rele) < 0]2:= Computed H., norms vs. Placed Poles

>p<py<-
5. for pi € Pdo
6 Place p; on (2); & (Tits and Yang, 1996) -y
7: Compute stabilizing K7
s: Find lower bound ~y, for H(y, K1*); b using (22)
9 Tpuy(i) = gethinf norm(T.w, v, KV').
i e ( o 5000
11: function get_hinf_norm(T, v, K1) £
12: i °
13; z.
14 Get \; (H(y o c.f. (14) 8
15 if Re(A) ““Au} then ]
16: Set Y 2000
17: else
18; Set buffer 'y, = {}
19 for A, € {Imag(A)y1}do bk=1to K 700
20; Set my = $(wk +wkt1)
21 Set Ty (k) = max{o [Tow (jmy)]}; 1m0 5 =) 5 0

end for
= max(Ts System Poles
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Cost Matrix and Gains Convergence

Continuous-
Time
Stochastic

Policy Cost matrix estimation error
Optimization

Lekan Molu ! — ”Pg_P’”F
1171l
5
m 140 |
2 :
& 100
2 |
50
-0.2 10.0 20.

Iterations
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Pendulums Experiment — Comparison to NPG

Continuous-
Time
Stochastic
Policy
Optimization

Lekan Molu

Cost Matrix Error

Gain Matrix Error Ho Norm

1 = = = = 5
< [|Ki — K*[|r/[|K*||F = ||Pk, — P*||r /|| P*llr =T (D).,
5 5 g
= £ 8
H g5 = 0.5 7, 4.8
5 10 15 20 5 10 15 20 5 10 15 20
Iterations Iterations Iterations

Model-free design: ||K|oo = 0.15.
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Double Pendulum and Acrobot Experiment —
Comparison to NPG

Continuous-
Time
Stochastic
Policy
Optimization

lefem Ml Table: Computational Time: Model-based PO vs. Model-free PO vs.
NPG.

Policy Optimization Computational time (secs)
Double Inverted Pendulum Triple Inverted Pendulum
Model- | Model- | NPG Model- Model- | NPG
based free based free
0.0901 | 0.3061 | 2.1649 0.1455 0.7829 | 2.3209
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Innovation and RAI
Discovery
Invention

. Innovation and RAI Attraction
Conclusion

Innovation in the Age of Foundation Models

Why am | Here?

If an idea begets a discovery, and if a discovery begets an
invention, | am interested in riding the complete innovation
circuit for intelligence:

@ The thorough and wholesale transformation of
fundamental scientific ideas in RL and automation into
technological products (or processes) capable of
widespread practical use.

Lekan Molu Embodied Intelligence in Open Embodiments



Innovation and RAI

Discovery

Invention

Innovation and RAI Attraction

Conclusion

Discovery for Physical Autonomy

Discovery: The fundamental unit of human progress.

BLOTS ON A FIELD?

BN i

Sagittarius A*, EHT Karl Jansky, Bell Labs AB*56 “undiscovery”

@ To wend straight and narrow path between discovery and
invention.
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Conclusion

Innovation and RAI

Discovery

Invention

Innovation and RAI Attraction

‘ Discovery & Invention for Physical Autonomy

Discovery: The fundamental unit of human progress.

Tlfs{,{ik You For o

: i
> Olalekan
Ogunmolu

Your Inventive

Contribution To
Microsoft

Lekan Molu

Controllable Latent
Space Discovery Using
Multi-Step Inverse
Model
11/4/22
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Innovation and RAI

Discovery
Invention

. Innovation and RAI Attraction
Conclusion

Foundation Models, Large Behavior Models

@ Large-scale transfer learning, behavior cloning, unsupervised
pre-training etc. a new scientific invention.

7 cross-embodiment
bot dataset

Zero-shot in-distribution tasks

>
illlll!ll!llglllliilillEiiiil'

Sneclalxzed e training to
ifficult tasks

Sepey Sy
P @ﬁﬁlﬂ

High-quality post-training data

Efficient post-training to
ks

mﬁig %.EHI ~iL

Credit: mo: A VLA Flow Model for General Robot Control.
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Innovation and RAI
Discovery
Invention

. Innovation and RAI Attraction
Conclusion

Innovation in the Age of Foundation Models

Why am | Here?

If an idea begets a discovery, and if a discovery begets an
invention, | am interested in riding the complete innovation
circuit for intelligence:

@ The thorough and wholesale transformation of
fundamental scientific ideas in RL and automation into
technological products (or processes) capable of
widespread practical use.
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Innovation and RAI
Discovery
Invention

. Innovation and RAI Attraction
Conclusion

Diffusion of Embodied Al

Jack Morton's Corollaries to Innovation

@ Three essentials to innovation: “reliability”,
“reproducibility”, and “designability”.
@ Innovation is a matter of economic imperatives:

e If you hadn’t sold anything you hadn't innovated;
e Without an affordable price you could never sell
anything.
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