Outline Research Overview State Representation in RL Approach Results Conclusion References

# Reinforcement Learning: States Representation, Policy Convergence, and Robustness.

Lekan Molu

Presented by **Lekan Molu** (Lay-con Mo-lu)

September 2, 2025



Outline
Research Overview
State Representation in RL
Approach
Results
Conclusion
References

#### **Technical Overview**

This page is left blank intentionally.

#### Controllable States Retrieval in RL



#### An Agentic Collision-Free Mapping System

A Fast Universal Collision-free Agentic Model: Compact Illusory Representation and Memory-Efficient Incremental Mapping.



Abstract-We present a generalist collision-free computational agent that rapidly embeds acquired knowledge about real world environments into its internal model or "head" based on a pipeline of machine learning ensembles wrapped around a sequence of GPU-accelerated approximate convex decomposition, a probabilistic convex set polytopes computational scheme, frontier-based planning schemes, and low-level nonlinear control for general computational geometry navigation tasks. The agent's head stores a compact, memory-efficient, and computationally tractable internal model of the environment that proactively constructs a collision-free model based on exogenous perception, updates and maintains acquired state, whilst adaptively modifying erstwhile computed states based on newly retrieved information from external stimuli. This agentic design offers flexibility in many real-time applications and encourages self-collision awareness, rapid fault diagnosis and recovery in complex environments, and provides an efficient storage mechanism that makes it suited to long-range mapping and tracking systems. We train the agent on diverse dataset and leverage machine learning in reasoning through an ensemble of established and novel computational geometry, control systems, and convex optimization algorithms. Such a model is increasingly becoming a necessity in many 'embodied agentic' and emergent real-time AI applications. This work serves as a first step in answering the call for a foundational generalist agent that uses all perception information available for its autonomous exploration (vision, tactile, ranging etc) in rapidly building a correct and minimal environment representation that can then 

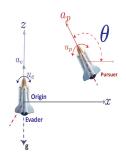
than its specific model instances that may lack completeness or correctness. The internal model principle in neuroscience [16] is a splendid inspiration in our work for modeling autonomous reasoning agents with compact, memoryefficient internal information on the external world. In this internal model principle, if an agent possesses a minimum model of "external reality and of its own possible actions within its head, it is able to try out various alternatives, conclude which is the best of them, react to future situations before they arise, utilize the knowledge of past events in dealing with the present and the future, and in every way to react in a much fuller, safer, and more competent manner to the emergencies which face it" [16]. With Craik [16]'s view that the nervous system is a calculating machine with a modeling or paralleling capacity for external events that engenders thought and of explanation [16], we seek to build agents with the representation power above that generalize into the diverse tasks earlier enumerated.

Large deep models and policies have emerged as viable mechanisms for encoding such perceptual experiences and building these agentic systems [88]. Two application categories have broadly emerged in these large agentic paradigms: (1) situated agents i.e. agents trained on stored information in the form of static data ableit without an

#### Policies' Brittleness Quantification in RL



#### Numerical safety analysis in dynamical Systems





### Numerical safety analysis in dynamical Systems

## LevelSetPy: A GPU-Accelerated Package for Hyperbolic Hamilton-Jacobi Partial Differential Equations

LEKAN MOLU, Microsoft Research, USA

This article introduces a software package release for geometrically reasoning about the *safety* desiderata of (complex) dynamical systems via level set methods. In emphasis, safety is analyzed with Hamilton-Jacobi equations. In scope, we provide implementations of numerical algorithms for the resolution of Hamilton-Jacobi-Isaacs equations: the spatial derivatives of the associated value function via upwinding, the Hamiltonian via Lax-Friedrichs schemes, and the integration of the Hamilton-Jacobi equation altogether via total variation diminishing Runge-Kutta schemes. Since computational speed and interoperability with other modern scientific computing libraries (typically written in the Python language) is of essence, we capitalize on modern computational frameworks such as CUPY and NUMPY and move heavy computations to GPU devices to aid parallelization and improve bring-up time in safety analysis. We hope that this package can aid users to quickly iterate on ideas and evaluate all possible safety desiderata of a system via geometrical simulation in modern engineering problems.

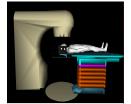
CCS Concepts: • Software and its engineering  $\rightarrow$  Software libraries and repositories; • Applied computing  $\rightarrow$  Physical sciences and engineering; • Mathematics of computing  $\rightarrow$  Solvers.

#### Patient Head Stabilization in IGRT













### State Representation in RL: Credits

6 61



T

R. Islam

A. Koul





A. Lamb

Y. Efroni







D. Misra





A. Krish.

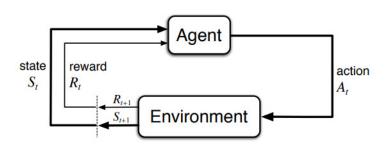
D. Foster





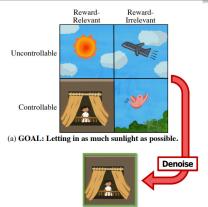
J. Langford

#### Standard Reinforcement Learning



Agent Controllable State (AC State) AC State – Exogenous Distractors PCLAST Iterative Dynamic Game

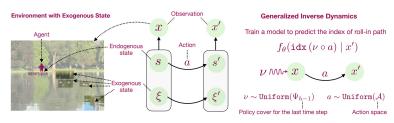
#### Compact States without Exogenous Distractors



(b) Optimal control only relies on information that is both controllable and reward-relevant. Good world models should ignore other factors as noisy distractors.

Denoised MDPs: Learning World Models Better Than the World Itself [5]

#### Compact States without Exogenous Distractors



Learning s with [S] whilst ignoring temporally correlated  $\xi$ ? Source: [3, Fig. 1].

#### **Exo-MDP Machinery**

- Consider the tuple  $\mathcal{M} := (\mathcal{X}, \mathcal{Z}, \mathcal{A}, T, R, H)$ 
  - Starting distribution  $\mu \in \Delta(\mathcal{Z})$ ;
  - Agent receives observations  $\{x_h\}_{h=1}^H \in \mathcal{X}$  from the emission function  $q: \mathcal{Z} \to \Delta(\mathcal{X})$ ;
  - Agent transitions between latent states via  $T: \mathcal{Z} \times \mathcal{A} \to \Delta(\mathcal{S});$ 
    - ullet And rewards by  $R: \mathcal{X} imes \mathcal{A} o \Delta([0,1])$
- Trajectories:  $(z_1, x_1, a_1, r_1, \dots, z_H, a_H, r_H)$  from repeated interactions;
  - $z_1 \sim \mu_1(\cdot)$ ,  $z_{h+1} \sim T(\cdot|z_h, a_h)$ ,  $x_h \sim q(\cdot|z_h)$  and  $r_h \sim R(x_h, a_h, x_{h+1})$  for all  $h \in [H]$ .
- Define  $supp(q(\cdot|z)) = \{x \in \mathcal{X} | q(x|z) > 0\}$  for any z.

#### **Exo-MDP Machinery**

Block MDP assumption  $supp(q(\cdot|z_1)) \cap sup(q(\cdot|z_2)) = \emptyset$  for all  $z_1 \neq z_2$ .

- Agent chooses  $a \sim \pi(z_h|x_h)$
- There exists non-stationary episodic policies  $\Pi_{NS} := \Pi^H \supseteq (\pi_1, \cdots, \pi_H);$
- Optimal policy  $\pi^* = \operatorname{argmax} V_{\pi \in \Pi_{NS}}(\pi);$ 
  - For  $V_{\pi \in \Pi_{NS}} = \sum_h = 1^H r_h$ .

- EXO-BMDP: Essentially a Block MDP [1] such that the latent states admits the form z = (s, e), where  $s \in S$ ,  $e \in E$ .
- $\mu(z) = \mu(s)\mu\xi$  and  $T(z'|z,a) = T(s'|s,a)T_e(e'|e)$

#### Literature comparison

| Algorithms                   | PPE | OSSR | DBC | CDL | Denoised-MDP | 1-Step<br>Inverse | AC-State<br>(Ours) |
|------------------------------|-----|------|-----|-----|--------------|-------------------|--------------------|
| Exogenous Invariant State    | 1   | 1    | ✓   | ✓   | ✓            | ✓                 | ✓                  |
| Exogenous Invariant Learning | ✓   | ✓    | ×   | X   | ×            | ✓                 | ✓                  |
| Flexible Encoder             | 1   | ×    | 1   | X   | ✓            | ✓                 | ✓                  |
| YOLO (No Resets) Setting     | ×   | 1    | 1   | ✓   | ✓            | ✓                 | ✓                  |
| Reward Free                  | 1   | 1    | ×   | ✓   | ✓            | ✓                 | ✓                  |
| Control-Endogenous Rep.      | /   | /    | X   | 1   | ✓            | X                 | ✓                  |

Emphasis on robustness to exogenous information. Comparison with baselines including PPE [3], OSSR [2], DBC [6], Denoised MDP [5] and One-Step Inverse Models [4].

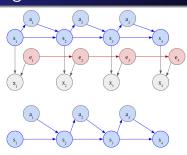
Agent Controllable State (AC State) AC State – Exogenous Distractors PCLAST Iterative Dynamic Game

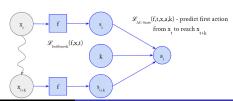
#### Rewards-agnostic Exogenous State Invariance in RL

AC-State Discovers the smallest control-endogenous state s assuming factorized dynamics

AC-State collects data with a single random action followed by a high-coverage endogenous policy for k-1 steps

AC-State learns an encoder f for s = f(x) by optimizing a multi-step inverse model with a bottleneck







### Latent States Discovery - Multi-step Inverse Dynamics

$$\begin{split} \bullet \ \hat{f} &\approx \mathop{\mathsf{arg\,min}}_{f \in \mathcal{F}} \mathop{\mathbb{E}}_{t,k} \left[ \mathcal{L}_{\mathrm{ACS}} \left( f, x, a, t, k \right) + \right. \\ \left. \mathcal{L}_{\mathrm{B}} (f, x_t) + \mathcal{L}_{\mathrm{B}} (f, x_{t+k}) \right] \end{split}$$

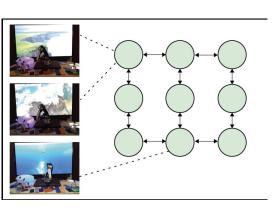
$$\mathcal{L}_{ACS}(f, x, a, t; k) = -\log(\mathbb{P}(a_t | f(x_t), f(x_{t+k}); k))$$
(1)

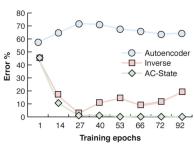
### AC State Algorithm

#### Algorithm 1 AC-State Algorithm for Latent State Discovery Using a Uniform Random Policy

- Initialize observation trajectory x and action trajectory a. Initialize encoder f<sub>θ</sub>. Assume any pair of states are reachable within exactly K steps and a number of samples to collect T, and a set of actions A, and a number of training iterations N.
- 2:  $x_1 \sim U(\mu(x))$
- 3: **for** t = 1, 2, ..., T **do**
- 4:  $a_t \sim U(A)$
- 5:  $x_{t+1} \sim \mathbb{P}(x'|x_t, a_t)$
- 6: for n = 1, 2, ..., N do
- 7:  $t \sim U(1,T)$  and  $k \sim U(1,K)$
- 8:  $\mathcal{L} = \mathcal{L}_{AC-State}(f_{\theta}, t, x, a, k) + \mathcal{L}_{Bottleneck}(f_{\theta}, x_t) + \mathcal{L}_{Bottleneck}(f_{\theta}, x_{t+k})$
- Update θ to minimize L by gradient descent.

#### AC State in Action

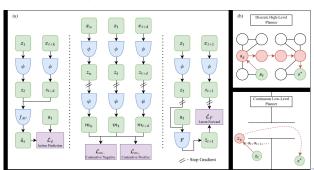




#### PCLAST: Agent Plannable Continuous Latent States

PcLast: Discovering Plannable Continuous Latent States

Anurag Koul\* <sup>1</sup> Shivakanth Sujit\* <sup>234</sup> Shaoru Chen <sup>1</sup> Ben Evans <sup>5</sup> Lili Wu <sup>1</sup> Byron Xu <sup>1</sup> Rajan Chari <sup>1</sup> Riashat Islam <sup>36</sup> Raihan Seraj <sup>36</sup> Yonathan Efroni <sup>7</sup> Lekan Molu <sup>1</sup> Miro Dudik <sup>1</sup> John Langford <sup>1</sup> Alex Lamb <sup>1</sup>





#### PCLAST Algorithm

#### Algorithm 1 n-Level Planner

#### Require:

Current observation  $x_t$ 

Goal observation  $x_{goal}$ 

Planning horizon H Encoder  $\phi(\cdot)$ 

PCLAST map  $\psi(\cdot)$ 

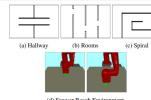
Latent forward dynamics  $\delta(\cdot, \cdot)$ 

Multi-Level discrete transition graphs  $\{G_i\}_{i=2}^n$ 

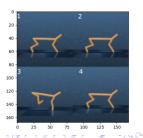
**Ensure:** Action sequence  $\{a_i\}_{i=0}^{H-1}$ 

- 1: Compute current continuous latent state  $\hat{s_t} = \phi(x_t)$  and target latent state  $\hat{s}^* = \phi(x_{aoal})$ . {See Appendix E for details of high-level planner and low-level planner.}
- 2: **for**  $i = n, n 1, \dots, 2$  **do** 
  - $\hat{s}^* = \text{high-level planner}(\hat{s}_t, \hat{s}^*, \mathcal{G}_i)$ {Update waypoint using a hierarchy of abstraction.}
- 4. end for

5:  $\{a_i\}_{i=0}^{H-1} = \text{low-level planner}(\hat{s}_t, \hat{s}^*, H, \delta, \psi)$ {Solve the trajectory optimization problem.}



(d) Sawver Reach Environment



#### **PCLAST** Results

| Метнор                     | REWARD TYPE | HALLWAY                           | Rooms                           | SPIRAL                            | SAWYER-REACH                       |
|----------------------------|-------------|-----------------------------------|---------------------------------|-----------------------------------|------------------------------------|
| PPO                        | DENSE       | $6.7 \pm 0.6$                     | $7.5 \pm 7.1$                   | $11.2 \pm 7.7$                    | $86.00 \pm 5.367$                  |
| PPO + ACRO                 | DENSE       | $10.0 \pm 4.1$                    | $23.3 \pm 9.4$                  | $23.3 \pm 11.8$                   | $84.00 \pm 6.066$                  |
| PPO + PCLAST               | DENSE       | $\textbf{66.7} \pm \textbf{18.9}$ | $43.3 \pm 19.3$                 | $\textbf{61.7} \pm \textbf{6.2}$  | $78.00 \pm 3.347$                  |
| PPO                        | SPARSE      | $1.7 \pm 2.4$                     | $0.0 \pm 0.0$                   | $0.0 \pm 0.0$                     | $68.00 \pm 8.198$                  |
| PPO + ACRO                 | SPARSE      | $21.7 \pm 8.5$                    | $5.0 \pm 4.1$                   | $11.7 \pm 8.5$                    | $92.00 \pm 4.382$                  |
| PPO + PCLAST               | SPARSE      | $\textbf{50.0} \pm \textbf{18.7}$ | $\textbf{6.7} \pm \textbf{6.2}$ | $\textbf{46.7} \pm \textbf{26.2}$ | $82.00 \pm 5.933$                  |
| CQL                        | SPARSE      | $3.3 \pm 4.7$                     | $0.0 \pm 0.0$                   | $0.0 \pm 0.0$                     | $32.00 \pm 5.93$                   |
| CQL + ACRO                 | SPARSE      | $15.0 \pm 7.1$                    | $33.3 \pm 12.5$                 | $21.7 \pm 10.3$                   | $68.00 \pm 5.22$                   |
| CQL + PCLAST               | SPARSE      | $40.0 \pm 0.5$                    | $23.3 \pm 12.5$                 | $20.0 \pm 8.2$                    | $\textbf{74.00} \pm \textbf{4.56}$ |
| RIG                        | None        | $0.0 \pm 0.0$                     | $0.0 \pm 0.0$                   | $3.0 \pm 0.2$                     | $100.0 \pm 0.0$                    |
| RIG + ACRO                 | None        | $15.0 \pm 3.5$                    | $4.0 \pm 1.$                    | $\textbf{12.0} \pm \textbf{0.2}$  | $100.0 \pm 0.0$                    |
| RIG + PCLAST               | None        | $10.0 \pm 0.5$                    | $4.0 \pm 1.8$                   | $10.0 \pm 0.1$                    | $90.0 \pm 5$                       |
| LOW-LEVEL PLANNER + PCLAST | None        | $86.7 \pm 3.4$                    | 69.3±3.4                        | $50.0 \pm 4.3$                    | ±                                  |
| n-Level Planner + PCLaST   | None        | $97.78 \pm 4.91$                  | $89.52 \pm 10.21$               | $89.11 \pm 10.38$                 | $95.0 \pm 1.54$                    |

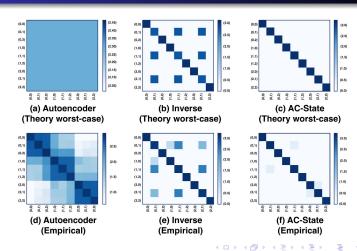
#### AC State in Action





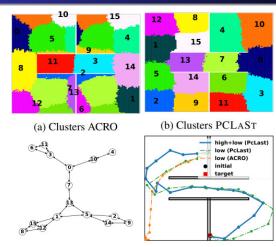
Exogenous distractors riddance.

#### Agent Controllable States Representation



Agent Controllable State (AC State) AC State – Exogenous Distractors PCLAST Iterative Dynamic Game

## **PCLAST Segmentation Results**



### PCLAST Segmentation Results

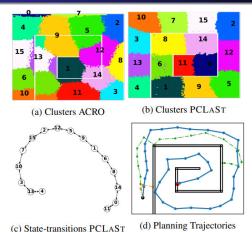


Figure 6. Clustering, Abstract-MDP, and Planning are shown for

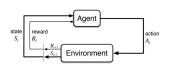
Agent Controllable State (AC State) AC State – Exogenous Distractors PCLAST Iterative Dynamic Game

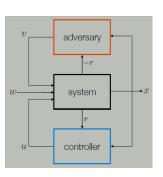
### Iterative Dynamic Game in RL

This page is left blank intentionally.

Agent Controllable State (AC State) AC State – Exogenous Distractors PCLAST Iterative Dynamic Game

### Inculcating robustness into multistage decision policies





#### Problem Setup

To quantify the brittleness, we optimize the stage cost

$$\max_{\mathbf{v}_t \sim \psi \in \Psi} \left[ \sum_{t=0}^T \underbrace{c(\mathbf{x}_t, \mathbf{u}_t)}_{\text{nominal}} - \gamma \underbrace{g(\mathbf{v}_t)}_{\text{adversarial}} \right]$$

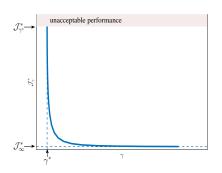
To mitigate lack of robustness, we optimize the cost-to-go

$$c_t(\mathbf{x}_t, \pi, \psi) = \min_{\mathbf{u}_t \sim \pi} \max_{\mathbf{v}_t \sim \psi} \left( \sum_{t=0}^{T-1} \ell_t(\mathbf{x}_t, \mathbf{u}_t, \mathbf{v}_t) + L_T(\mathbf{x}_T) \right),$$

• and seek a saddle point equilibrium policy that satisfies

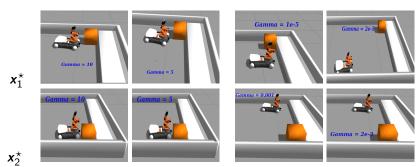
$$c_t(\mathbf{x}_t, \pi^*, \psi) \leq c_t(\mathbf{x}_t, \pi^*, \psi^*) \leq c_t(\mathbf{x}_t, \pi, \psi^*),$$

#### Results: Brittleness Quantification





### Results: Iterative Dynamic Game



End pose of the KUKA platform with our iDG formulation given different goal states and  $\gamma$ -values.

## Mixed $H_2/H_{\infty}$ Policy Optimization in RL

"The scientist's problem is to recognize basic facts even though they are obscured by a wealth of extraneous material, and then to apply creative imagination in their interpretation. This Karl Jansky did." — Cyril Jansky.

#### Talk Outline and Overview

Continuous-Time Stochastic Policy Optimization

Lekan Molu

#### Outline and Overview

Risk-sensitive control
Contributions

#### Assumptions

Optimal Gain

Model-based PO

Outer loop Stabilization an Convergence

Samplingbased PO

Discrete-time system Sampling-based

- Policy Optimization and Stochastic Linear Control
  - Connections to risk-sensitive control;
  - Mixed  $\mathcal{H}_2/\mathcal{H}_\infty$  control theory.
- The case for convergence analysis in stochastic PO.
  - Kleinman's algorithm, redux.
  - Kleiman's algorithm in an iterative best response setting;
  - PO Convergence in best response settings.
- Robustness margins in model- and sampling- settings.
  - PO as a discrete-time nonlinear system;
  - Kleiman and input-to-state-stability;
  - Robust policy optimization as a small-input stable state optimization algorithm

#### Credits

Continuous-Time Stochastic **Policy** Optimization

Lekan Molu

#### Outline and Overview

Leilei Cui

Postdoc, MIT

#### **Zhong-Ping Jiang**



Professor, NYU

### Research Significance

Continuous-Time Stochastic Policy Optimization

Lekan Molu

#### Outline and Overview

Risk-sensitive control Contribution

#### Setup

Optimal Gain

#### Model-based PO

Outer loop
Stabilization ar
Convergence

#### Sampling-Sased PO

Discrete-time

Sampling-based nonlinear system (Deep) RL and modern Al

- Robotic manipulation (Levine et al., 2016), text-to-visual processing (DALL-E), Atari games (Mnih et al., 2013), e.t.c.
- Policy optimization (PO) is fundamental to modern Al algorithms' success.
- Major success story: functional mapping of observations to policies.
- But how does it work?

#### Policy Optimization – Open questions

Continuous-Time Stochastic Policy Optimization

Lekan Molu

#### Outline and Overview

Risk-sensitive control
Contribution

Setup

#### Model-based

PO

Outer loop
Stabilization a
Convergence

Samplingbased PO

Discrete-time system

Sampling-based nonlinear system

- Gradient-based data-driven methods: prone to divergence from true system gradients.
  - Challenge I: Optimization occurs in non-convex objective landscapes.
    - Get performance certificates as a mainstay for control design: Coerciveness property (Hu et al., 2023).
  - Challenge II: Taming PG's characteristic high-variance gradient estimates (REINFORCE, NPG, Zeroth-order approx.).
    - Hello, (linear) robust ( $\mathcal{H}_{\infty}$ -synthesis) control!

## Policy Optimization - Open questions

Continuous-Time Stochastic Policy Optimization

Lekan Molu

### Outline and Overview

Risk-sensitive control
Contributions

Assumption

Model-base

Outer loop
Stabilization an

Samplingbased PO

Discrete-time system Sampling-based Challenge III: Under what circumstances do we have convergence to a desired equilibrium in RL settings?

- Challenge IV: Stochastic control, not deterministic control settings.
  - models involving round-off error computations in floating point arithmetic calculations; the stock market; protein kinetics.
- Challenge V: Continuous-time RL control.
  - Very little theory. Lots of potential applications encompassing rigid and soft robotics, aerospace or finance engineering, protein kinetics.

## Tools: Complexity, Convergence, Robustness.

Continuous-Time Stochastic Policy Optimization

Lekan Molu

### **Outline** and Overview

- Risk-sensitive  $\mathcal{H}_{\infty}$ -control (Glover, 1989) and discreteand continuous-time mixed  $\mathcal{H}_2/\mathcal{H}_{\infty}$  design (Khargonekar et al., 1988; Hu et al., 2023):
  - $\blacksquare$  min. upper bound on  $\mathcal{H}_2$  cost subject to satisfying a set of risk-sensitive (often  $\mathcal{H}_{\infty}$ ) constraints (Basar, 1990):

$$\min_{K \in \mathcal{K}} J(K) := Tr(P_K D D^\top)$$
subject to  $\mathcal{K} := \{K | \rho(A - BK) < 1, ||T_{zw}(K)||_{\infty} < \gamma\}$ 

- $P_K$ : solution to the generalized algebraic Riccati equation (GARE);
- A, B, D, K: standard closed-loop system matrices;
- $\|T_{zw}(K)\|_{\infty}$ :  $\mathcal{H}_{\infty}$ -norm of the closed-loop transfer function from a disturbance input w to output z.

## Tools: Complexity, Convergence, Robustness.

Continuous-Time Stochastic Policy Optimization

Lekan Molu

### **Outline** and Overview

### Model-based

Infinite-horizon

discrete-time deterministic LQR settings (Fazel et al., 2018):

$$\min_{K \in \mathcal{K}} \mathbb{E} \sum_{t=0}^{\infty} (x_t^\top Q x_t + u_t^\top R u_t) \text{ s.t. } x_{t+1} = A x_t + B u_t, x_0 \sim \mathcal{P}_0$$

discrete-time LQ problems under multiplicative noise (Gravell et al., 2021):  $\min_{\pi \in \Pi} \mathbb{E}_{\mathsf{x}_0, \{\delta_i\}, \{\gamma_i\}\}} \sum_{t=0}^{\infty} (\mathsf{x}_t^\top Q \mathsf{x}_t + \mathsf{u}_t^\top R \mathsf{u}_t)$ subject to  $x_{t+1} = (A + \sum_{i=1}^{p} \delta_{ti} A_i) x_t + (B + \sum_{i=1}^{q} \gamma_{ti} B_i) u_t$ ; Continuous-Time Stochastic Policy Optimization

Lekan Molu

### Outline and Overview

Risk-sensitive control

Setup

Optimal Ga

Model-base PO

Outer loop
Stabilization a

Sampling-

Discrete-time system

Sampling-based nonlinear system

### (Non-exhaustive) Lit. Landscape on PO Theory

| Literature<br>landscape | Cont. time<br>(Kalman '61,<br>Luenberger '63) | Stochastic. LQR<br>(Kalman '60) | Cont. Phase | LEQG or<br>Mixed <i>H</i> <sub>2</sub> / <i>H</i> <sub>_</sub> ∞ | Finite/Infinite<br>Horizon |
|-------------------------|-----------------------------------------------|---------------------------------|-------------|------------------------------------------------------------------|----------------------------|
| Fazel (2018)            | No                                            | No                              | Yes         | No                                                               | Finite-horizon             |
| Mohammadi<br>(TAC 2020) | Yes                                           | No                              | Yes         | No                                                               | Finite-Horizon             |
| Zhang (2019)            | Yes                                           | Yes (Gaussian)                  | Yes         | Yes                                                              | Inf-horizon                |
| Gravell (2021)          | No                                            | Multiplicative                  | Yes         | No                                                               | Inf-horizon                |
| Zhang (2020)            | No                                            | No                              | Yes         | Yes                                                              | Rand-horizon               |
| Molu (2022)             | Yes                                           | Yes (Brownian)                  | Yes         | Yes                                                              | Inf-Horizon                |
| Cui & Molu<br>(2023)    | Yes                                           | Yes (Brownian)                  | Yes         | Yes                                                              | Inf-Horizon                |

## Mainstay

Continuous-Time Stochastic Policy Optimization

Lekan Molu

## Outline and Overview

control Contribution

### Setup

Optimal Gain

### Model-based

Outer loop
Stabilization
Convergence

### Sampling based PO

Discrete-time system

Sampling-based nonlinear system

- Continuous-time infinite-dimensional linear systems.
  - Disturbances enter additively as random stochastic Wiener processes.
  - Many natural systems admit uncertain additive Brownian noise as diffusion processes.
    - Theoretical analysis machinery: Îto's stochastic calculus.
- Goal: keep controlled process, z, small i.e.

$$||z||_2 = \left(\int |z(t)|^2 dt\right)^{1/2},$$

■ Under a minimizing  $u(x(t)) \in \mathcal{U}$  in spite of unforeseen  $w(t) \in \mathcal{W} \subseteq \mathbb{R}^q$ .

### Minimization Objective and Risk-Sensitive Control

Continuous-Time Stochastic Policy Optimization

Lekan Molu

Outline an Overview

Risk-sensitive control

Contribution

Setup

Optimal Gain

PO

Outer loop
Stabilization ar
Convergence

based PO

Discrete-time system

Sampling-based nonlinear system Risk-sensitive linear exponential quadratic Gaussian objective functional (Jacobson, 1973):

$$\min_{u \in \mathcal{U}} \mathcal{J}_{exp}(x_0, u, w) = \mathbb{E} \bigg|_{x_0 \in \mathcal{P}_0} \exp \left[ \frac{\alpha}{2} \int_0^\infty z^\top(t) z(t) dt \right],$$

subject to 
$$dx(t) = Ax(t)dt + Bu(t)dt + Ddw(t)$$
,  

$$z(t) = Cx(t) + Eu(t), \ \alpha > 0; \tag{3}$$

where  $dw/dt = \mathcal{N}(0, W)$ ,  $x_0 = \mathcal{N}(0, \mu)$ , and  $(x_0, w(t)) \subseteq (\Omega, \mathcal{F}, \mathcal{P})$ .

## Minimization Objective and Risk-Sensitive Control

Continuous-Time Stochastic Policy Optimization

Lekan Molu

Risk-sensitive control

A Taylor series expansion of (3) reveals:

$$\mathcal{J}_{exp}(x_0, u, w) = \lim_{T \to \infty} \mathbb{E} \left| \sum_{x_0 \in \mathcal{P}_0} \left[ \frac{\alpha}{2} \sum_{t=0}^T z^\top(t) z(t) \right] + \frac{\alpha^2}{4} var \left[ \sum_{t=0}^T z^\top(t) z(t) \right]. \tag{4}$$

- Consider the variance term  $\frac{\alpha^2}{4} var \left[ \sum_{t=0}^T z^\top(t) z(t) \right] \to \epsilon$ .
  - $\alpha$  a measure of risk-propensity if  $\alpha > 0$ ;
  - $\alpha$  a measure of risk-aversion if  $\alpha$  < 0:
  - $\alpha = 0$  implies solving a classic LQP.

Continuous Time Stochastic Policy Optimization

### RL PO as a Risk-Sensitive Control Problem

Continuous-Time Stochastic Policy Optimization

Lekan Molu

Outline an Overview Risk-sensitive control Contributions

Assumption

Model-based

Outer loop
Stabilization ar
Convergence

Samplingbased PO

Discrete-time system Sampling-base  RL (via PG) computes high-variance gradient estimates from Monte-Carlo trajectory roll-outs and bootstrapping.

- If we set  $\alpha > 0$  in the LEQG problem (3), we have a controlled setting where we can study the theoretical properties of RL-based PO.
- Framework: an ADP policy iteration (PI) in a continuous PO setting.
- LEQG also interprets as a risk-attenuation algorithm.

### Contributions

Continuous-Time Stochastic Policy Optimization

Lekan Molu

Outline an Overview

Risk-sensitive control

Contributions

Assumption

Model-based

Outer loop
Stabilization ar
Convergence

Samplingpased PO

Discrete-time system

Sampling-based

- A two-loop iterative alternating best-response procedure for computing the optimal mixed-design policy;
- Rigorous convergence analyses follow for the model-based loop updates;
- In the absence of exact system models, we provide an input-to-state-stable hybrid robust stabilization scheme.

### Transition Slide

Continuous-Time Stochastic **Policy** Optimization

Lekan Molu

Contributions

This page is left blank intentionally.

## Problem Setup

Continuous-Time Stochastic Policy Optimization

Lekan Molu

Outline an Overview

Risk-sensitive control
Contributions

Assumptions

Optimal Gai

PO

Outer loop
Stabilization a
Convergence

based PO

Discrete-time system

Sampling-based nonlinear system

For  $\alpha > 0$ , the cost

$$\mathcal{J}_{\text{exp}}(x_0, u) = \mathbb{E} \bigg|_{x_0 \in \mathcal{P}_0} \exp \left[ \frac{\alpha}{2} \int_0^\infty z^\top(t) z(t) \mathrm{d}t \right], \text{ becomes}$$

$$\mathbb{E}\Big|_{x_0 \in \mathcal{P}_0} \exp\left\{\frac{\alpha}{2} \int_0^\infty \left[x^\top(t)Qx(t) + u^\top(t)Ru(t)\right] dt\right\}, \quad (5)$$

with the associated closed loop transfer function,

$$T_{zw}(K) = (C - EK)(sI - A + BK)^{-1}D.$$
 (6)

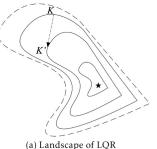
## Nonconvexity and Coercivity in PG

Continuous-Time Stochastic Policy Optimization

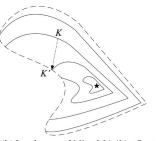
Lekan Molu

Assumptions

Coercivity: iterates remain feasible and strictly separated from the infeasible set as the cost decreases.







(b) Landscape of Mixed  $\mathcal{H}_2/\mathcal{H}_{\infty}$  Control

Figure: Coercivity property of PG on LQR and in mixed-design settings. Credit: (Zhang et al., 2019).

## PO and Dynamic Games: Finite-horizon Gain

Continuous-Time Stochastic Policy Optimization

Lekan Molu

Outline and Overview Risk-sensitive control

### Setup

Optimal Gain

Model-based PO

Outer loop
Stabilization a
Convergence

Samplingbased PO Discrete-time system

system
Sampling-based nonlinear system

Coercivity: feasibility set of optimization iterates

$$\mathcal{K} = \{ K : \lambda_i (A - B_1 K) < 0, \| T_{zw}(K) \|_{\infty} < \gamma \}.$$
 (7)

- Finite-horizon optimization  $u^*(t) = -K^*_{legg}\hat{x}(t)$ .
- $K_{leqg}^{\star} = R^{-1}B^{\top}P_{\tau}$ , and  $P_{\tau}$  is the unique, symmetric, positive definite solution to the algebraic Riccati equation (ARE)

$$A^{\top} P_{\tau} + P_{\tau} A - P_{\tau} (BR^{-1}B^{\top} - \alpha^{-2}DD^{\top}) P_{\tau} = -Q.$$
 (8)

(Cui and Molu, 2023a, Proposition I), (Duncan, 2013) .

■ ∞-horizon case:  $P^* \triangleq P_{\infty} = \lim_{\tau \to \infty} P_{\tau}$ , and  $K_{leqg}^* \triangleq K_{\infty} = \lim_{\tau \to \infty} K_{\tau}$  [Theorem on limit of monotonic operators (Kan, 1964)].

## Solving the LEQG Problem

Continuous-Time Stochastic Policy Optimization

Lekan Molu

Optimal Gain

Model-based

- Directly solving the LEQG problem (3) in policy-gradient frameworks incurs biased gradient estimates during iterations:
- Affects risk-sensitivity preservation in infinite-horizon LTI settings (see (Zhang et al., 2021; Zhang et al., 2019));
- Workaround: an equivalent dynamic game formulation to the stochastic LQ PO problem.

### Two-Player Zero-Sum Game and LEQG

Continuous-Time Stochastic Policy Optimization

Lekan Molu

Outline ar

Risk-sensitive control

Setup

Optimal Gain

Model-base PO

Outer loop
Stabilization a
Convergence

Samplingbased PO

Discrete-time system

Sampling-based nonlinear system  An equivalent closed-loop two-player game connection (Cui and Molu, 2023b, Lemma 1):

$$\min_{u \in \mathcal{U}} \max_{\xi \in W} \bar{\mathcal{J}}_{\gamma}(x_0, u, \xi)$$
subject to  $dx(t) = Ax(t)dt + Bu(t)dt + Ddw(t)$ ,
$$z(t) = Cx(t) + Eu(t)$$
(9)

$$ar{\mathcal{J}}_{\gamma}(x_0,u,\xi) = \mathbb{E}_{x_0\sim\mathcal{P}_0,\,\xi(t)}\int_0^\infty \left[x^{ op}(t)Qx(t)+u^{ op}(t)Ru(t)
ight]\mathrm{d}t \ -\mathbb{E}_{x_0\sim\mathcal{P}_0,\,\xi(t)}\int_0^\infty \left[\gamma^2\xi^{ op}(t)\xi(t)
ight]\mathrm{d}t$$

, 
$$\xi(\equiv dw) \sim \mathcal{N}(0, \Sigma)$$
, and  $\gamma \equiv \alpha$ .

## Kleinman's Algorithm

Continuous-Time Stochastic Policy Optimization

Lekan Molu

Outline and Overview Risk-sensitive control Contributions

Assumptions
Optimal Gain

### Model-based PO

Outer loop Stabilization a Convergence

Samplingbased PO

Discrete-time system Sampling-based ■ An iterative algorithm for solving infinite-time Riccati equations (Kleinman, 1968).

- Based on a successive substitution method.
- For a deterministic LTI system's cost matrix  $P_d$ , the value iterations of  $P_d^k$  are monotonically convergent to  $P_d^*$ .
- Kleinman's algorithm as policy iteration
  - Choose a stabilizing control gain  $K_0$ , and let p = 0.
  - (Policy evaluation) Evaluate the performance of  $K_p$  from the GARE's solution.
  - (Policy improvement) Improve the policy:  $K_p = -R^{-1}B^{\top}P_d^p$ .
  - Advance iteration  $p \leftarrow p + 1$ .

### Model-based Policy Iteration

```
Continuous-
Time
Stochastic
Policy
Optimization
```

Lekan Molu

Overview
Risk-sensitive control

### Setup

Assumptions
Optimal Gain

### Model-based

Outer loop
Stabilization and
Convergence

Samplingbased PO

system
Sampling-based

12 end

```
Algorithm 1: (Model-Based) PO via Policy Iteration
   Input: Max. outer iteration \bar{p}, q = 0, and an \epsilon > 0;
   Input: Desired risk attenuation level \gamma > 0;
   Input: Minimizing player's control matrix R \succ 0.
    Compute (K_0, L_0) \in \mathcal{K}; \triangleright From [24, Alg. 1];
2 Set P_{K,I}^{0,0} = Q_K^0;
                          ⊳ See equation (9);
3 for p = 0, \ldots, \bar{p} do
        Compute Q_K^p and A_K^p \triangleright See equation (9);
 5
        Obtain P_{\kappa}^{p} by evaluating K_{n} on (10);
        while ||P_K^p - P_{K,L}^{p,q}||_F \le \epsilon do
6
            Compute L_{q+1}(K_p) := \gamma^{-2}D^{\top}P_{K,I}^{p,q};
            Solve (11) until ||P_K^p - P_{K,L}^{p,q}||_F \le \epsilon;
8
            \bar{q} \leftarrow q + 1
0
        end
10
        Compute K_{p+1} = R^{-1}B^{\top}P_{K,I}^{p,\bar{q}} > \text{See (11b)};
11
```

# Outer Loop Convergence: Exponential Stability of

Continuous-Time Stochastic Policy Optimization

Lekan Molu

### Outer loop

### Theorem 2

For any h > 0 and  $K_0 \in \mathcal{K}_h$ , there exists  $\alpha(h) \in \mathbb{R}$  such that  $Tr(P_{\kappa}^{p+1}-P^{\star})\leq \alpha(h)Tr(P_{\kappa}^{p}-P^{\star})$ . That is,  $P^{\star}$  is an exponentially stable equilibrium.

## Convergence of the Inner Loop Iteration

Continuous-Time Stochastic Policy Optimization

Lekan Molu

Outline and Overview Risk-sensitive

Risk-sensitive control
Contributions

Assumptions
Optimal Gain

Model-based PO

Stabilization and Convergence

Samplingbased PO

Sampling-based nonlinear system

### Theorem 3

For a  $K \in \check{K}$ , and for any  $(p, q) \in \mathbb{N}_+$ , there exists  $\beta(K) \in \mathbb{R}$  such that

$$Tr(P_K^p - P_{K,L}^{p,q+1}) \le \beta(K)Tr(P_K^p - P_{K,L}^{p,q}).$$
 (24)

### Remark 2

As seen from Lemma 5,  $P_K^p - P_{K,L}^{p,q} \succeq 0$ . By the norm on a matrix trace (Cui and Molu, 2023a, Lemma 13) and the result of Theorem 3, we have

$$||P_K - P_{K,L}^{p,q}||_F \le Tr(P_K - P_{K,L}^{p,q}) \le \beta(K)Tr(P_K)$$
, i.e.  $P_{K,L}^{p,q}$  exponentially converges to  $P_K$  in the Frobenius norm.

## Algorithm as a Policy Iteration Scheme

Continuous-Time Stochastic Policy Optimization

Lekan Molu

Outline ar Overview Risk-sensitive control Contributions

Assumptions
Optimal Gair

Model-based PO

Outer loop
Stabilization and
Convergence

based PO

Discrete-time

Discrete-time system Sampling-based nonlinear system

- Choosing a stabilizing  $K_p$  we first evaluate u's performance by solving (14).
  - This is the policy evaluation step in PI.
- The policy is then improved in a following iteration by solving for the cost matrix in (15b);
  - This is the policy improvement step.
- Essentially, a policy iteration algorithm whereupon
  - Performance of an initial control gain  $K_p$  is first evaluated against a cost function.
  - A newer evaluation of the cost matrix  $P_{K,L}^{p,q}$  is then used to improve the controller gain  $K_{p+1}$  in the outer loop.

## Sampling-based PO: Statement of the Problem

Continuous-Time Stochastic Policy Optimization

Lekan Molu

Outline an Overview Risk-sensitive

Risk-sensitive control
Contribution

Setup

Assumptions Optimal Gain

Model-based PO

Outer loop
Stabilization a
Convergence

Samplingbased PO

Discrete-time system Sampling-bas Problem 4 (Sampling-based Policy Optimization)

If A, B, C, D, E, P are all replaced by approximate matrices  $\hat{A}, \hat{B}, \hat{C}, \hat{D}, \hat{E}, \hat{P}$ , under what conditions will the sequences  $\{\hat{P}_{K,L}^{p,q}\}_{(p,q)=1}^{(p,q)=\infty}, \{\hat{K}_p\}_{p=0}^{\infty}, \{\hat{L}_q\}_{q=0}^{\infty} \text{ converge to a small neighborhood of the optimal values } \{P_{K,L}^{\star}\}_{(p,q)=0}^{(p,q)=\infty}, \{K_p^{\star}\}_{p=0}^{\infty}, \text{ and } \{L_q^{\star}\}_{q=0}^{\infty}$ ?

## Hybrid System Reparameterization

Continuous-Time Stochastic Policy Optimization

Lekan Molu

Outline an Overview Risk-sensitive control Contributions

### Assumption

Optimal Gain

### Model-based PO

Stabilization a Convergence

### Sampling based PC

Discrete-time system

Sampling-based nonlinear system Lump estimate errors as an input into the gain terms to be computed in the PO algorithm.

• With inexact outer loop update,  $K_{p+1}$  becomes biased so that the inexact outer-loop GARE value iteration involves the recursions

$$\hat{A}_{K}^{p\top}\hat{P}_{K}^{p} + \hat{P}_{K}^{p}\hat{A}_{K}^{p} + \hat{Q}_{K}^{p} + \gamma^{-2}\hat{P}_{K}^{p}DD^{\top}\hat{P}_{K}^{p} = 0, \quad (25a)$$

$$\hat{K}_{p+1} = R^{-1}B^{\top}\hat{P}_{K}^{p} + \tilde{K}_{p+1} \triangleq \bar{K}_{p+1} + \tilde{K}_{p+1},$$
 (25b)

$$\blacksquare \ \mathsf{NB:} \ \hat{A}^p_K = A - B\hat{K}_p \ \mathsf{and} \ \ \hat{Q}^p_K = Q + \hat{K}_p^\top R\hat{K}_p.$$

### Robustness Analyses

Continuous-Time Stochastic Policy Optimization

Lekan Molu

Outline and Overview Risk-sensitive control Contributions

### Setup

Optimal Gain

Model-based PO

Stabilization ar Convergence

based PO

Sampling-based nonlinear system

- Define  $\tilde{P} = P_K \hat{P}_K$ and  $\tilde{K} = K - \hat{K}$ .
- Keep  $|\tilde{K}| < \epsilon$ , start with a  $K \in \mathcal{K}$ : iterates stay in  $\mathcal{K}$ .

# Lemma 7 (Lemma 10, C&M, '23)

For any  $K \in \mathcal{K}$ , there exists an e(K) > 0 such that for a perturbation  $\tilde{K}$ ,  $K + \tilde{K} \in \mathcal{K}$ , as long as  $\|\tilde{K}\| < e(K)$ .

### Theorem 6

The inexact outer loop is small-disturbance ISS. That is, for any h>0 and  $\hat{K}_0\in\mathcal{K}_h$ , if  $\|\tilde{K}\|< f(h)$ , there exist a  $\mathcal{KL}$ -function  $\beta_1(\cdot,\cdot)$  and a  $\mathcal{K}_\infty$ -function  $\gamma_1(\cdot)$  such that

$$||P_{\hat{K}}^{p} - P^{*}|| \le \beta_{1}(||P_{\hat{K}}^{0} - P^{*}||, p) + \gamma_{1}(||\tilde{K}||).$$
(37)

### Inner Loop Robustness

Continuous-Time Stochastic Policy Optimization

Lekan Molu

Outline and Overview

Risk-sensitive control
Contributions

### Setup

Assumptions Optimal Gair

Model-based PO

Outer loop
Stabilization a
Convergence

### Samplingbased PO Discrete-time

Sampling-based nonlinear system

### Theorem 7

Assume  $\|\tilde{L}_q(K_p)\| < e$  for all  $q \in \mathbb{N}_+$ . There exists  $\hat{\beta}(K) \in [0,1)$ , and  $\lambda(\cdot) \in \check{\mathcal{K}}_{\infty}$ , such that

$$\|\hat{P}_{K,L}^{p,q} - P_{K,L}^{p,q}\|_{F} \le \hat{\beta}^{q-1}(K) Tr(P_{K,L}^{p,q}) + \lambda(\|\tilde{L}\|_{\infty}).$$
 (42)

- From Theorem 7, as  $q \to \infty$ ,  $\hat{P}_{K,L}^{p,q}$  approaches the solution  $P_K$  and enters the ball centered at  $P_{K,L}^{p,q}$  with radius proportional to  $\|\tilde{L}\|_{\infty}$ .
- The proposed inner-loop iterative algorithm well approximates  $P_{K,I}^{p,q}$ .

## Numerical Results – Car Cruise Control System

Continuous-Time Stochastic Policy Optimization

Lekan Molu

(Åström and Murray, 2021, §3.1):

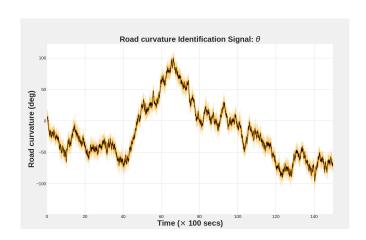
$$m\frac{dv}{dt} = \alpha_n u \tau(\alpha_n v) - mgC_r sgn(u) - \frac{1}{2}\rho C_d A|v|v - mg\sin\theta$$
(43)

- $u(x(t)) = [u_1(t), u_2(t)]$  must maintain a constant velocity v (the state), whilst automatically adjusting the car's throttle,  $u_1(t), t \in [0, T]$ 
  - despite disturbances characterized by road slope changes  $(u_3 = \theta)$ ,
  - rolling friction  $(F_r)$ , and
  - $\blacksquare$  aerodynamic drag forces  $(F_d)$ .

## Road (Disturbance) Profile

Continuous-Time Stochastic **Policy** Optimization

Lekan Molu



## Search for initial stabilizing gain and $\mathcal{H}_{\infty}$ -norm bound.

### Continuous-Time Stochastic

Policy Optimization

Lekan Molu

### Proposition 1

(?) For all  $\omega_p \in \mathbb{R}$ , we have that  $j\omega_p$  is an eigenvalue of the Hamiltonian  $H(\gamma_1)$  if and only if  $\gamma_1$  is a singular value of  $T_{zw}(j\omega_p)$ .

```
Algorithm 1 Search for the closed-loop \mathcal{H}_{\infty}-norm
 1: Given a user-defined step size n > 0

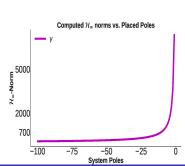
 Set the initial upper bound on γ as γ<sub>i,h</sub> = ∞.

 Initialize a buffer for possible H<sub>\infty</sub> norms for each K<sub>1</sub>

     to be found, \Gamma_{buf} = \{\}.

 Initialize ordered poles P = {p<sub>i</sub> ∈ Re(s) < 0 | i =</li>

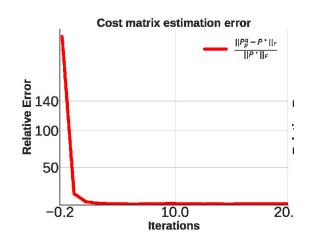
     1, 2, }
                                                             \triangleright p_1 < p_2 < \cdots
 5: for p<sub>i</sub> ∈ P do
          Place p_i on (2):
                                                 Compute stabilizing K_1^{p_i}
          Find lower bound \gamma_{th} for H(\gamma, K_1^{p_i}): \triangleright using (22)
          \Gamma_{buf}(i) = \text{get\_hinf\_norm}(T_{zw}, \gamma_{lb}, K_1^{p_i}).
10: end for
11: function get_hinf_norm(T_{zw}, \gamma_{lb}, K_1^{p_i})
          while \gamma_{uh} = \infty do
               \gamma := (1 + 2n) \gamma_{lh}:
14-
                Get \lambda_i(H(\gamma, K_1^{p_i}))
                                                                      ▷ c.f. (14)
               if Re(\Lambda) \neq \emptyset for \Lambda = \{\lambda_1, \dots \lambda_n\} then
16-
                    Set \gamma_{uh} = \gamma; exit
17-
18-
                    Set buffer \Gamma_{lh} = \{\}
                    for \lambda_k \in \{ \operatorname{Imag}(\Lambda)_{n-1} \} \operatorname{do} \triangleright k = 1 \operatorname{to} K
19:
                          Set m_k = \frac{1}{2}(\omega_k + \omega_{k+1})
20-
21-
                         Set \Gamma_{lb}(k) = \max\{\sigma [T_{rw}(im_k)]\}:
22:
                    end for
                    \gamma_{lh} = \max(\Gamma_{lh})
                                                      Lekan Molu
```



### Cost Matrix and Gains Convergence

Continuous-Time Stochastic **Policy** Optimization

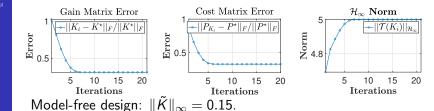
Lekan Molu



### Pendulums Experiment - Comparison to NPG

Continuous-Time Stochastic Policy Optimization

Lekan Molu



## Double Pendulum and Acrobot Experiment – Comparison to NPG

Continuous-Time Stochastic Policy Optimization

Lekan Molu

Table: Computational Time: Model-based PO vs. Model-free PO vs. NPG.

| Policy Optimization Computational time (secs) |        |        |                          |        |        |  |  |  |
|-----------------------------------------------|--------|--------|--------------------------|--------|--------|--|--|--|
| Double Inverted Pendulum                      |        |        | Triple Inverted Pendulum |        |        |  |  |  |
| Model-                                        | Model- | NPG    | Model-                   | Model- | NPG    |  |  |  |
| based                                         | free   |        | based                    | free   |        |  |  |  |
| 0.0901                                        | 0.3061 | 2.1649 | 0.1455                   | 0.7829 | 2.3209 |  |  |  |

### Innovation in the Age of Foundation Models

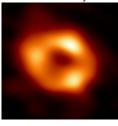
### Why am I Here?

If an idea begets a <u>discovery</u>, and if a discovery begets an <u>invention</u>, I am interested in riding the complete **innovation** circuit for intelligence:

 The thorough and wholesale transformation of fundamental scientific ideas in RL and automation into technological products (or processes) capable of widespread practical use.

## Discovery for Physical Autonomy

Discovery: The fundamental unit of human progress.



Sagittarius A\*, EHT



Karl Jansky, Bell Labs



 $A\beta^*56$  "undiscovery"

To wend straight and narrow path between discovery and invention.

Innovation and RAI Discovery Invention Innovation and RAI Attraction

## Discovery & Invention for Physical Autonomy

Discovery: The fundamental unit of human progress.







## Foundation Models, Large Behavior Models

• Large-scale transfer learning, behavior cloning, unsupervised pre-training etc. a new scientific invention.



Credit:  $\pi_0$ : A VLA Flow Model for General Robot Control.

### Innovation in the Age of Foundation Models

### Why am I Here?

If an idea begets a <u>discovery</u>, and if a discovery begets an <u>invention</u>, I am interested in riding the complete **innovation** circuit for intelligence:

 The thorough and wholesale transformation of fundamental scientific ideas in RL and automation into technological products (or processes) capable of widespread practical use.

### Diffusion of Embodied Al

### Jack Morton's Corollaries to Innovation

- Three essentials to innovation: "reliability", "reproducibility", and "designability".
- Innovation is a matter of economic imperatives:
  - If you hadn't sold anything you hadn't innovated;
  - Without an affordable price you could never sell anything.

### References I

- Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, and John Langford. Provably
  efficient rl with rich observations via latent state decoding. In *International Conference on Machine Learning*,
  pages 1665–1674. PMLR, 2019.
- [2] Yonathan Efroni, Dylan J Foster, Dipendra Misra, Akshay Krishnamurthy, and John Langford. Sample-efficient reinforcement learning in the presence of exogenous information. (Accepted for publication at) Conference on Learning Theory, 2022.
- [3] Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Langford. Provably filtering exogenous distractors using multistep inverse dynamics. In International Conference on Learning Representations. 2022. URL https://openreview.net/forum?id=RQLLzMCefQu.
- [4] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-supervised prediction. In *International conference on machine learning*, pages 2778–2787. PMLR, 2017.
- [5] Tongzhou Wang, Simon S Du, Antonio Torralba, Phillip Isola, Amy Zhang, and Yuandong Tian. Denoised mdps: Learning world models better than the world itself. arXiv preprint arXiv:2206.15477, 2022.
- [6] Amy Zhang, Rowan McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning invariant representations for reinforcement learning without reconstruction. arXiv preprint arXiv:2006.10742, 2020.

