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Exo-MDP Machinery

Consider the tupleM := (X ,Z,A,T ,R,H)

Starting distribution µ ∈ ∆(Z);
Agent receives observations {xh}Hh=1 ∈ X from the emission
function q : Z → ∆(X );
Agent transitions between latent states via
T : Z ×A → ∆(S);

And rewards by R : X ×A → ∆([0, 1])

Trajectories: (z1, x1, a1, r1, · · · , zH , aH , rH) from repeated
interactions;

z1 ∼ µ1(·), zh+1 ∼ T (·|zh, ah), xh ∼ q(·|zh) and
rh ∼ R(xh, ah, xh+1) for all h ∈ [H].

Define supp(q(·|z)) = {x ∈ X |q(x |z) > 0} for any z .
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Exo-MDP Machinery

Block MDP assumption supp(q(·|z1)) ∩ sup(q(·|z2)) = ∅ for all
z1 ̸= z2.

Agent chooses a ∼ π(zh|xh)
There exists non-stationary
episodic policies
ΠNS := ΠH ⊇ (π1, · · · , πH);

Optimal policy
π⋆ = argmaxVπ∈ΠNS

(π);

For
Vπ∈ΠNS

=
∑

h = 1H rh.

EXO-BMDP: Essentially
a Block MDP [1] such
that the latent states
admits the form
z = (s, e), where s ∈ S,
e ∈ E .

µ(z) = µ(s)µξ and
T (z ′|z , a) =
T (s ′|s, a)Te(e

′|e)
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Literature comparison

Algorithms PPE OSSR DBC CDL Denoised-MDP
1-Step

Inverse

AC-State

(Ours)

Exogenous Invariant State ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exogenous Invariant Learning ✓ ✓ ✗ ✗ ✗ ✓ ✓

Flexible Encoder ✓ ✗ ✓ ✗ ✓ ✓ ✓

YOLO (No Resets) Setting ✗ ✓ ✓ ✓ ✓ ✓ ✓

Reward Free ✓ ✓ ✗ ✓ ✓ ✓ ✓

Control-Endogenous Rep. ✓ ✓ ✗ ✓ ✓ ✗ ✓

Emphasis on robustness to exogenous information. Comparison with baselines
including PPE [3], OSSR [2], DBC [6] , Denoised MDP [5] and One-Step

Inverse Models [4].

Lekan Molu Embodied Intelligence in Open Embodiments



16/39

Outline
Research Overview

State Representation in RL
Approach

Results
Conclusion
References

Agent Controllable State (AC State)
AC State – Exogenous Distractors
PCLAST
Iterative Dynamic Game

Rewards-agnostic Exogenous State Invariance in RL

Lekan Molu Embodied Intelligence in Open Embodiments



17/39

Outline
Research Overview

State Representation in RL
Approach

Results
Conclusion
References

Agent Controllable State (AC State)
AC State – Exogenous Distractors
PCLAST
Iterative Dynamic Game

Latent States Discovery – Multi-step Inverse Dynamics

f̂ ≈ argminf ∈F Et,k

[
LACS (f , x , a, t, k) +

LB(f , xt) + LB(f , xt+k)
]

LACS (f , x , a, t; k) = − log(P (at |f (xt), f (xt+k); k)) (1)
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Problem Setup

To quantify the brittleness, we optimize the stage cost

max
vt∼ψ∈Ψ




T∑

t=0

c(xt ,ut)︸ ︷︷ ︸
nominal

−γ g(vt)︸ ︷︷ ︸
adversarial




To mitigate lack of robustness, we optimize the cost-to-go

ct(xt , π, ψ) = min
ut∼π

max
vt∼ψ

(
T−1∑

t=0

ℓt(xt ,ut , vt) + LT (xT )

)
,

and seek a saddle point equilibrium policy that satisfies

ct(xt , π
∗, ψ) ≤ ct(xt , π

∗, ψ∗) ≤ ct(xt , π, ψ
∗),
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End pose of the KUKA platform with our iDG formulation given different goal

states and γ-values.
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Mixed H2/H∞ Policy Optimization in RL

“The scientist’s problem is to recognize basic facts even though
they are obscured by a wealth of extraneous material, and then to
apply creative imagination in their interpretation. This Karl Jansky

did.” – Cyril Jansky.
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Talk Outline and Overview

Policy Optimization and Stochastic Linear Control

Connections to risk-sensitive control;
Mixed H2/H∞ control theory.

The case for convergence analysis in stochastic PO.

Kleinman’s algorithm, redux.
Kleiman’s algorithm in an iterative best response setting;
PO Convergence in best response settings.

Robustness margins in model- and sampling- settings.

PO as a discrete-time nonlinear system;
Kleiman and input-to-state-stability;
Robust policy optimization as a small-input stable state
optimization algorithm

Lekan Molu Continuous-Time Stochastic Policy Optimization 32/39



Continuous-
Time

Stochastic
Policy

Optimization

Lekan Molu

Outline and
Overview

Risk-sensitive
control

Contributions

Setup

Assumptions

Optimal Gain

Model-based
PO

Outer loop

Stabilization and
Convergence

Sampling-
based PO

Discrete-time
system

Sampling-based
nonlinear system

Robustness Analyses

Numerical
Results

References

3/96

Credits

Leilei Cui

Postdoc, MIT
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Research Significance

(Deep) RL and modern AI

Robotic manipulation (Levine et al., 2016), text-to-visual
processing (DALL-E), Atari games (Mnih et al., 2013),
e.t.c.

Policy optimization (PO) is fundamental to modern AI
algorithms’ success.

Major success story: functional mapping of observations to
policies.

But how does it work?

Lekan Molu Continuous-Time Stochastic Policy Optimization 32/39
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Policy Optimization – Open questions

Gradient-based data-driven methods: prone to divergence
from true system gradients.

Challenge I: Optimization occurs in non-convex objective
landscapes.

Get performance certificates as a mainstay for control
design: Coerciveness property (Hu et al., 2023).

Challenge II: Taming PG’s characteristic high-variance
gradient estimates (REINFORCE, NPG, Zeroth-order
approx.).

Hello, (linear) robust (H∞-synthesis) control!
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Continuous-
Time

Stochastic
Policy

Optimization

Lekan Molu

Outline and
Overview

Risk-sensitive
control

Contributions

Setup

Assumptions

Optimal Gain

Model-based
PO

Outer loop

Stabilization and
Convergence

Sampling-
based PO

Discrete-time
system

Sampling-based
nonlinear system

Robustness Analyses

Numerical
Results

References

9/96

Policy Optimization – Open questions

Challenge III: Under what circumstances do we have
convergence to a desired equilibrium in RL settings?

Challenge IV: Stochastic control, not deterministic control
settings.

models involving round-off error computations in floating
point arithmetic calculations; the stock market; protein
kinetics.

Challenge V: Continuous-time RL control.

Very little theory. Lots of potential applications
encompassing rigid and soft robotics, aerospace or finance
engineering, protein kinetics.
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Tools: Complexity, Convergence, Robustness.

Risk-sensitive H∞-control (Glover, 1989) and discrete-
and continuous-time mixed H2/H∞ design (Khargonekar
et al., 1988; Hu et al., 2023):

min. upper bound on H2 cost subject to satisfying a set of
risk-sensitive (often H∞) constraints (Basar, 1990):

minK∈KJ(K ) := Tr(PKDD
⊤) (2)

subject to K := {K |ρ(A− BK ) < 1, ∥Tzw (K )∥∞ < γ}

PK : solution to the generalized algebraic Riccati equation
(GARE);
A,B,D,K : standard closed-loop system matrices;
∥Tzw (K )∥∞: H∞-norm of the closed-loop transfer
function from a disturbance input w to output z .

Lekan Molu Continuous-Time Stochastic Policy Optimization 32/39
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Tools: Complexity, Convergence, Robustness.

Infinite-horizon

discrete-time deterministic LQR settings (Fazel et al.,
2018):

min
K∈K

E
∞∑

t=0

(x⊤t Qxt+u⊤t Rut) s.t. xt+1 = Axt+But , x0 ∼ P0

discrete-time LQ problems under multiplicative
noise (Gravell et al., 2021):
minπ∈Π Ex0,{δi},{γi}}

∑∞
t=0(x

⊤
t Qxt + u⊤t Rut)

subject to xt+1 = (A+
∑p

i=1 δtiAi )xt+(B+
∑q

i=1 γtiBi )ut ;

Lekan Molu Continuous-Time Stochastic Policy Optimization 32/39
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Mainstay

Continuous-time infinite-dimensional linear systems.

Disturbances enter additively as random stochastic Wiener
processes.

Many natural systems admit uncertain additive Brownian
noise as diffusion processes.

Theoretical analysis machinery: Îto’s stochastic calculus.

Goal: keep controlled process, z , small i.e.

∥z∥2 =
(∫
|z(t)|2dt

)1/2

,

Under a minimizing u(x(t)) ∈ U in spite of unforeseen
w(t) ∈ W ⊆ Rq.

Lekan Molu Continuous-Time Stochastic Policy Optimization 32/39
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Minimization Objective and Risk-Sensitive Control

Risk-sensitive linear exponential quadratic Gaussian
objective functional (Jacobson, 1973):

min
u∈U
Jexp(x0, u,w) = E

∣∣∣∣
x0∈P0

exp

[
α

2

∫ ∞

0
z⊤(t)z(t)dt

]
,

subject to dx(t) = Ax(t)dt + Bu(t)dt + Ddw(t),

z(t) = Cx(t) + Eu(t), α > 0; (3)

where dw/dt = N (0,W ), x0 = N (0, µ), and
(x0,w(t)) ⊆ (Ω,F ,P).
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Minimization Objective and Risk-Sensitive Control

A Taylor series expansion of (3) reveals:

Jexp(x0, u,w) =

lim
T→∞

E
∣∣∣∣
x0∈P0

[
α

2

T∑

t=0

z⊤(t)z(t)

]
+
α2

4
var

[
T∑

t=0

z⊤(t)z(t)

]
.

(4)

Consider the variance term
α2

4
var
[∑T

t=0 z
⊤(t)z(t)

]
→ ϵ.

α a measure of risk-propensity if α > 0;
α a measure of risk-aversion if α < 0;
α = 0 implies solving a classic LQP.

Lekan Molu Continuous-Time Stochastic Policy Optimization 32/39
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RL PO as a Risk-Sensitive Control Problem

RL (via PG) computes high-variance gradient estimates
from Monte-Carlo trajectory roll-outs and bootstrapping.

If we set α > 0 in the LEQG problem (3), we have a
controlled setting where we can study the theoretical
properties of RL-based PO.

Framework: an ADP policy iteration (PI) in a continuous
PO setting.

LEQG also interprets as a risk-attenuation algorithm.
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Contributions

A two-loop iterative alternating best-response procedure
for computing the optimal mixed-design policy;

Rigorous convergence analyses follow for the model-based
loop updates;

In the absence of exact system models, we provide an
input-to-state-stable hybrid robust stabilization scheme.
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Problem Setup

For α > 0, the cost

Jexp(x0, u) = E
∣∣∣∣
x0∈P0

exp
[
α
2

∫∞
0 z⊤(t)z(t)dt

]
, becomes

E
∣∣∣∣
x0∈P0

exp

{
α

2

∫ ∞

0

[
x⊤(t)Qx(t) + u⊤(t)Ru(t)

]
dt

}
, (5)

with the associated closed loop transfer function,

Tzw (K ) = (C − EK ) (sI − A+ BK )−1D. (6)

Lekan Molu Continuous-Time Stochastic Policy Optimization 32/39
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Nonconvexity and Coercivity in PG

Coercivity: iterates remain feasible and strictly separated
from the infeasible set as the cost decreases.

Figure: Coercivity property of PG on LQR and in mixed-design settings.
Credit: (Zhang et al., 2019).
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PO and Dynamic Games: Finite-horizon Gain

Coercivity: feasibility set of optimization iterates

K = {K : λi (A− B1K ) < 0, ∥Tzw (K )∥∞ < γ}. (7)

Finite-horizon optimization u⋆(t) = −K ⋆
leqg x̂(t).

K ⋆
leqg = R−1B⊤Pτ , and Pτ is the unique, symmetric,

positive definite solution to the algebraic Riccati equation
(ARE)

A⊤Pτ + PτA− Pτ (BR
−1B⊤ − α−2DD⊤)Pτ = −Q. (8)

(Cui and Molu, 2023a, Proposition I), (Duncan, 2013) .

∞-horizon case: P⋆ ≜ P∞ = limτ→∞ Pτ , and
K ⋆
leqg ≜ K∞ = limτ→∞ Kτ [Theorem on limit of monotonic

operators (Kan, 1964)].
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Solving the LEQG Problem

Directly solving the LEQG problem (3) in policy-gradient
frameworks incurs biased gradient estimates during
iterations;

Affects risk-sensitivity preservation in infinite-horizon LTI
settings (see (Zhang et al., 2021; Zhang et al., 2019));

Workaround: an equivalent dynamic game formulation to
the stochastic LQ PO problem.
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Two-Player Zero-Sum Game and LEQG

An equivalent closed-loop two-player game
connection (Cui and Molu, 2023b, Lemma 1):

min
u∈U

max
ξ∈W
J̄γ(x0, u,ξ)

subject to dx(t) = Ax(t)dt + Bu(t)dt + Ddw(t),

z(t) = Cx(t) + Eu(t) (9)

J̄γ(x0, u, ξ) = Ex0∼P0, ξ(t)

∫ ∞

0

[
x⊤(t)Qx(t) + u⊤(t)Ru(t)

]
dt

−Ex0∼P0, ξ(t)

∫ ∞

0

[
γ2ξ⊤(t)ξ(t)

]
dt

, ξ(≡ dw) ∼ N (0,Σ), and γ ≡ α.
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Kleinman’s Algorithm

An iterative algorithm for solving infinite-time Riccati
equations (Kleinman, 1968).

Based on a successive substitution method.

For a deterministic LTI system’s cost matrix Pd , the value
iterations of Pk

d are monotonically convergent to P⋆d .

Kleinman’s algorithm as policy iteration

Choose a stabilizing control gain K0, and let p = 0.
(Policy evaluation) Evaluate the performance of Kp from
the GARE’s solution.
(Policy improvement) Improve the policy:
Kp = −R−1B⊤Pp

d .
Advance iteration p ← p + 1.
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Model-based Policy Iteration
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Outer Loop Convergence: Exponential Stability of
Pp
K

Theorem 2

For any h > 0 and K0 ∈ Kh, there exists α(h) ∈ R such that
Tr(Pp+1

K − P⋆) ≤ α(h)Tr(Pp
K − P⋆). That is, P⋆ is an

exponentially stable equilibrium.
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Convergence of the Inner Loop Iteration

Theorem 3

For a K ∈ K̆, and for any (p, q) ∈ N+, there exists β(K ) ∈ R
such that

Tr(Pp
K − Pp,q+1

K ,L ) ≤ β(K )Tr(Pp
K − Pp,q

K ,L). (24)

Remark 2

As seen from Lemma 5, Pp
K − Pp,q

K ,L ⪰ 0. By the norm on a
matrix trace (Cui and Molu, 2023a, Lemma 13) and the result
of Theorem 3, we have
∥PK − Pp,q

K ,L∥F ≤ Tr(PK − Pp,q
K ,L) ≤ β(K )Tr(PK ), i.e. P

p,q
K ,L

exponentially converges to PK in the Frobenius norm.
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Algorithm as a Policy Iteration Scheme

Choosing a stabilizing Kp we first evaluate u’s
performance by solving (14).

This is the policy evaluation step in PI.

The policy is then improved in a following iteration by
solving for the cost matrix in (15b);

This is the policy improvement step.

Essentially, a policy iteration algorithm whereupon

Performance of an initial control gain Kp is first evaluated
against a cost function.
A newer evaluation of the cost matrix Pp,q

K ,L is then used to
improve the controller gain Kp+1 in the outer loop.
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Sampling-based PO: Statement of the Problem

Problem 4 (Sampling-based Policy Optimization)

If A,B,C ,D,E ,P are all replaced by approximate matrices
Â, B̂, Ĉ , D̂, Ê , P̂, under what conditions will the sequences

{P̂p,q
K ,L}

(p,q)=∞
(p,q)=1 , {K̂p}∞p=0, {L̂q}∞q=0 converge to a small

neighborhood of the optimal values {P⋆K ,L}
(p,q)=∞
(p,q)=0 , {K ⋆

p }∞p=0,

and {L⋆q}∞q=0?
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Hybrid System Reparameterization

Lump estimate errors as an input into the gain terms to be
computed in the PO algorithm.

With inexact outer loop update, Kp+1 becomes biased so
that the inexact outer-loop GARE value iteration involves
the recursions

Âp⊤
K P̂p

K + P̂p
K Â

p
K + Q̂p

K + γ−2P̂p
KDD

⊤P̂p
K = 0, (25a)

K̂p+1 = R−1B⊤P̂p
K + K̃p+1 ≜ K̄p+1 + K̃p+1, (25b)

NB: Âp
K = A− BK̂p and Q̂p

K = Q + K̂⊤
p RK̂p.
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Robustness Analyses

Define P̃ = PK − P̂K

and K̃ = K − K̂ .

Keep |K̃ | < ϵ, start with
a K ∈ K: iterates stay in
K.

Lemma 7 (Lemma 10, C&M,
’23)

For any K ∈ K, there exists
an e(K ) > 0 such that for a
perturbation K̃ , K + K̃ ∈ K,
as long as ∥K̃∥ < e(K ).

Theorem 6

The inexact outer loop is
small-disturbance ISS. That
is, for any h > 0 and
K̂0 ∈ Kh, if ∥K̃∥ < f (h),
there exist a KL-function
β1(·, ·) and a K∞-function
γ1(·) such that

∥Pp

K̂
− P⋆∥ ≤

β1(∥P0
K̂
− P∗∥, p) + γ1(∥K̃∥).

(37)
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Inner Loop Robustness

Theorem 7

Assume ∥L̃q(Kp)∥ < e for all q ∈ N+. There exists
β̂(K ) ∈ [0, 1), and λ(·) ∈ K̆∞, such that

∥P̂p,q
K ,L − Pp,q

K ,L∥F ≤ β̂q−1(K )Tr(Pp,q
K ,L) + λ(∥L̃∥∞). (42)

From Theorem 7, as q →∞, P̂p,q
K ,L approaches the solution

PK and enters the ball centered at Pp,q
K ,L with radius

proportional to ∥L̃∥∞.

The proposed inner-loop iterative algorithm well
approximates Pp,q

K ,L.
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Numerical Results – Car Cruise Control System

(Åström and Murray, 2021, §3.1):

m
dv

dt
= αnuτ(αnv)−mgCr sgn(u)−

1

2
ρCdA|v |v −mg sin θ

(43)

u(x(t)) = [u1(t), u2(t)] must maintain a constant velocity
v (the state), whilst automatically adjusting the car’s
throttle, u1(t), t ∈ [0,T ]

despite disturbances characterized by road slope changes
(u3 = θ),
rolling friction (Fr ), and
aerodynamic drag forces (Fd).
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Road (Disturbance) Profile
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Search for initial stabilizing gain and H∞-norm
bound.

Proposition 1

(?) For all ωp ∈ R, we have that jωp is an eigenvalue of the
Hamiltonian H(γ1) if and only if γ1 is a singular value of
Tzw (jωp).
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Cost Matrix and Gains Convergence
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Pendulums Experiment – Comparison to NPG

5 10 15 20

0.5

1

5 10 15 20

0.5

1

5 10 15 20

4.8

5

Model-free design: ∥K̃∥∞ = 0.15.
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Double Pendulum and Acrobot Experiment –
Comparison to NPG

Table: Computational Time: Model-based PO vs. Model-free PO vs.
NPG.

Policy Optimization Computational time (secs)

Double Inverted Pendulum Triple Inverted Pendulum

Model-
based

Model-
free

NPG Model-
based

Model-
free

NPG

0.0901 0.3061 2.1649 0.1455 0.7829 2.3209
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Innovation in the Age of Foundation Models

Why am I Here?

If an idea begets a discovery, and if a discovery begets an
invention, I am interested in riding the complete innovation
circuit for intelligence:

The thorough and wholesale transformation of
fundamental scientific ideas in RL and automation into
technological products (or processes) capable of
widespread practical use.
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Discovery for Physical Autonomy

Discovery: The fundamental unit of human progress.

Sagittarius A*, EHT Karl Jansky, Bell Labs Aβ⋆56 “undiscovery”

To wend straight and narrow path between discovery and
invention.
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Discovery & Invention for Physical Autonomy

Discovery: The fundamental unit of human progress.
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Foundation Models, Large Behavior Models

Large-scale transfer learning, behavior cloning, unsupervised
pre-training etc. a new scientific invention.

Credit: π0: A VLA Flow Model for General Robot Control.
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Innovation in the Age of Foundation Models

Why am I Here?

If an idea begets a discovery, and if a discovery begets an
invention, I am interested in riding the complete innovation
circuit for intelligence:

The thorough and wholesale transformation of
fundamental scientific ideas in RL and automation into
technological products (or processes) capable of
widespread practical use.
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Diffusion of Embodied AI

Jack Morton’s Corollaries to Innovation

Three essentials to innovation: “reliability”,
“reproducibility”, and “designability”.

Innovation is a matter of economic imperatives:

If you hadn’t sold anything you hadn’t innovated;
Without an affordable price you could never sell
anything.
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