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Accurate patient immobilization in conformal radiation therapy is crucial for efficient cancer

treatment. Good treatment outcomes require accurate patient immobilization and a good choice

of beam orientations. State-of-the-art immobilization systems rely on metallic or rigid masks

which lack morphological properties, attenuate ionizing radiation, degrade dose efficacy, and are

uncomfortable for the patient during treatment. The de-facto open-loop and deferred positioning

procedures sometimes cause eczema or brain damage. We synthesize system identification, finite

elastic deformation, and control systems to harness soft robot mechanisms for real-time motion

correction in cancer radiation therapy scenarios.

Additionally, in most inverse treatment planning schemes today, the “right” beam angles among

the myriad possibilities in beam space are usually determined through intuition and experience

by treatment planners in a time-consuming trial-and-error procedure. Existing mathematical

optimization techniques fail to meet a (near) real-time planning requirement. We propose a

supervised pre-training of a deep neural network to assure quality beam plans are predicted in a

real-time feasible manner. Our approach has the advantage of predicting feasible beam angles

in near real time, and it is adaptable to treatment modalities that require large beam plans, and

4π-noncoplanar radiation therapy such as VMAT.
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CHAPTER 1

INTRODUCTION

Cancer is a set of related diseases that continually splits some of the body’s cells and invades

surrounding healthy tissues in a process that mitigates the healthy growth and division of new

cells. Cells in a healthy body grow and divide as the body needs them. In a healthy body, as cells

become old, they die off and new cells are formed. When cancer is present in the body, however,

old cells stick around, becoming damaged over time, and newer cells are unnecessarily produced.

As the tumors spread, mitosis occurs, and the new cells travel to other parts of the body via the

blood or lymphatic nodes and form new tumors – replicating themselves in a distributed fashion.

Distributed cancer is very difficult to treat with traditional methods such as chemotherapy or surgery:

chemotherapy destroys benign cells along with malignant cells, and surgery is too painstaking for

the various locations where the tumor might have formed in the patient’s body.

Means of treating cancers include drugs, immunotherapy, targeted therapy, stem cell transplant,

precision therapy, radiation therapy, chemotherapy, and surgery. In this dissertation, our focus is

on the use of radiation therapy (RT) in cancer treatment. RT is an active area of research with

great potential for improving therapy and reducing the toxicity of radiation. It encompasses the

use of ionizing radiation as electron beams, photon beams or x-rays, conformed to a high-energy

dose-volume and shaped into the geometry of a tumor so as to render malignant DNAs necrotic

while sparing healthy cells. The radiation is produced by a moving linear accelerator machine

(LINAC), while precision-targeting and cross-firing of radiation beams from multiple directions

creates an ablative surgical procedure by which radiation beam destroys tumors.

A computer-controlled multi-leaf collimator (MLC), shown in Figure 1.1, constructed from

tungsten due to its high absorption properties for radiation, focuses and shapes the geometry of

the radiation beam in order to accurately target tumors. During the treatment planning procedure,

a planner may have to delineate the organs-at-risks (OARs) and three dimensional (3D) target

volumes; the 3D volumes are concatenations of 2D slices of the patients’ CT image. This is so that
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Figure 1.1: A multi-leaf collimator (MLC) used in IMRT and 3DCRT. ©Varian Medical Systems.

a physician can unambiguously define treatment objectives. Before treatment, a patient needs to

be properly calibrated – to sub-millimeter translational and sub-degree geometrical accuracy – on

a treatment couch (see Figure 1.7). Studies have shown that the rotational angle misalignment

between a patient’s pose and a registered dose that conforms to the tumor of interest often affects

dose delivery efficacy, which in turn reduces the quality of a treatment (Takakura et al., 2009; Xing,

2000a).

IMRT is a cancer treatment method that delivers geometrically-shaped, high-precision x-rays or

electron beams to tumors by modulating the intensity of the radiation beam. A multileaf collimator

shapes a conventional geometrical field, and the intensity of the geometric field shape is varied

bixel-wise in order to modulate the “fluence” (influence matrix) profile around a tumor. This is

done while the patient lies in a supine position on a treatment table. Before an IMRT treatment is

scheduled, critical structures (or tumors) within a target volume, and OARs are contoured. Doses
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that must be delivered are then prescribed . Each beam to be delivered consists of beamlets, aimed

from the same angle, where each beamlet may be of a different intensity from that of its neighbors.

Radiation intensities may be delivered from about 5− 15 different beam orientations with multiple

collimator units. The process of choosing what beam angle is best for delivering beamlet intensities

is termed beam orientation optimization (BOO) while the process of determining what intensity

meets a prescribed fluence profile by a doctor is termed fluence map optimization (FMO).

1.1 Treatment Planning and Radiation Therapy

The treatment planning process in radiation therapy involves the careful and deliberate employment

of available tools and treatment procedures needed to realize a desirable cancer treatment outcome.

The radiation therapy procedure in itself does not necessarily guarantee a favorable outcome without

the skillful and careful exertion of all available treatment options necessary for harnessing the

potential benefits of radiation therapy (Khan et al., 2016). Treatment planning encompasses finding

the optimal parameters of a treatment. These parameters may include dose-limiting structures,

OARs within a target volume, doctor’s dose prescription, dose fractionation, dose distribution,

patient positioning on the treatment machine, and the machine’s parameters. These parameters are

carefully specified as a treatment blueprint, which is to be precisely followed over several weeks of

frationated treatment procedure.

1.2 Treatment Planning Parameters

In this section, we will examine the parameters of the treatment planning process that will allow us

to answer the research questions posed in this work. What follows is not an exhaustive overview of

the parameters related to treatment planning but only those ones that concern this work. Readers

are referred to (Khan et al., 2016) for a detailed exposition on treatment planning.

Target volume. As soon as radiation therapy is determined to be the treatment modality for a

particular patient, the location and spread of the tumor need to be thoroughly delineated. OARs
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and critical structures within a target volume are contoured slice-wise in the 3D volume so that a

doctor can prescribe doses that must be delivered to each structure prior to treatment. A crucial

aspect of the treatment planning process is the local or regional control of a tumor. Localization of

a tumor may be achieved via computed tomography (CT) or magnetic resonance imaging (MRI)

scan, ultrasound, single photon emission computed tomography (SPECT) or positron emission

tomography (PET) (Khan et al., 2016; Webb, 2001). The outline of the microscopic and visible

portion of the tumorous cells in a patient is the target-volume. This contains the tumor and its

possible spread to regions surrounding the tissues. The most sophisticated imaging devices do not

often reveal the geometric details of the microscopic spread of a tumor to surrounding tissues. The

part of the tumor that is visible under the imaging device is the gross target volume (GTV), while the

invisible microscopic part of the tumor, typically estimated during treatment planning, is referred

to as the clinical target volume (CTV). If microscopic diseases (invisible to imaging devices) are

missed during contouring, one may encounter radiation therapy failure, which is undesirable. Since

CTV boundaries are estimated, their spatio-temporal location are constantly changing, dependent

on respiratory motion, internal displacement of body organs, or treatment setup. Therefore, a

geometrical planning target volume (PTV) is often defined to contain the CTV within a margin of

error in order to account for treatment planning under uncertainty. The PTV is the recommended

target volume by the International Commission on Radiation Units and Measurements (ICRU) for

guaranteeing a clinically acceptable probability that an adequate dose will be delivered to all parts of

the CTV. ICRU defines the CTV and GTV as purely oncological concepts, while the PTV accounts

for patient motion and inaccuracies in patient beam positioning. Figure 1.2 illustrates these concepts

as defined by the ICRU.

Isodose distribution. In practice, the isodose distribution is determined by iteratively optimiz-

ing doses so that tumor cells are (ideally) completely irradiated with the right amount of dose whilst

sparing normal tissues. The complexities of balancing the physical constraints of dose delivery

machines, the uncertainty of the CTV coverage region and the specific characteristics of beams may
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Figure 1.2: Schematic of the various components that constitute an ICRU volume.

mean that certain healthy cells be sacrificed at the expense of providing an ideal dose distribution.

Isodose planning includes the optimization of beam weights, beam modifiers, beam placement and

beam energy. IMRT optimizes isodose distribution in a reverse engineering process where a uniform

conformal target dose spares OARs from incident beam intensities in a technique called inverse

planning.

Intensity Modulation. Conventional radiotherapy seeks to destroy malignant cancer cells by

targeting a uniform-intensity profile of high energy x-rays on cancer tumors while minimizing the

amount of radiation to normal cells. Uniform intensity is achieved with rectangular fields, blocks,

and wedges to specify flatness and symmetry (Webb, 2001). While useful, conventional radiotherapy

may cause unwanted effects on surrounding tissues. Three-dimensional conformal radiation therapy

(3-DCRT) leverages the advantage of multi-leaf collimators (MLCs) by engineering geometric

field-shaping to avoid sustained damage to normal tissues during radiotherapy. It matches the spatial
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Figure 1.3: [Left - Right]: Conventional radiotherapy, conformal radiotherapy (CFRT) without
intensity modulation, and 3D-CRT with intensity modulation. Reprinted from (Webb, 2001).

localization of a high-dose volume to the target volume while avoiding normal tissues. A further

advancement in 3-DCRT is intensity-modulated radiation therapy (IMRT). IMRT constitutes a

broad class of cancer treatment modalities where local control of tumor is improved by controlling

an external beam’s physical delivery. Advancements in CT technology enables the shaping of

internally uniform fields with MLCs that conform the projection of a treatment target volume onto a

radiation beam that is then made incident on a tumor (Boyer et al., 1992). Essentially, a MLC shapes

a conventional geometrical field and varies its intensity bixel-wise so that the fluence (influence

matrix of the incident radiation) intensity is modulated. This has proven useful, especially when the

target volume has a concave surface or is close in distance to organs at risks (OARs) (Webb, 2001).

Figure 1.3 illustrates the geometrical properties of these three forms of radiation therapy treatment.
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1.3 Robotic Radiotherapy and Patient Positioning Mechanisms

Robotic radiation therapy is a form of radiation therapy that seeks to accurately irradiate a moving

patient and a moving target with the aid of robots (Schweikard et al., 1995; Webb, 1999, 2001). This

may involve using multiple degrees of freedom (DOF ) robotic arms to overcome the limitations

of cylindrical radiation beams of fixed cross section in delivering radiation (Schweikard et al.,

1995). A rotating linear accelerator gantry is mounted on a robot’s end effector, thereby generating

high-energy photons in order to create high-dose volumes of radiation (Webb, 2000). A patient

positioned on a 6-DOF translational and rotational robotic couch for motion alignment gets the

incident radiation at appropriate times during treatment (Gevaert et al., 2012; Lee et al., 2012). By

developing a geometric method for planning the beam’s adaptable shape as well as the beam motion,

treatment time can be evaluated as well as the transparency of the interactive treatment planning.

The robot aims radiation beams given any orientation relative to the target volume, thus giving

IMRT greater flexibility than most traditional radiation delivery methods. Alongside IMRT, image

guided radiotherapy (IGRT) is used to assure the precision of dose targets. IGRT methods employ

ultrasound, 3D imaging systems, 2D X-ray devices and/or computed tomography to instantly amend

positioning errors, and improve daily radiotherapy fractions’ precision. Image guidance in the

radiation therapy process is an important tool in the treatment value chain that enables advancements

in the delivery of improved dose distributions (Verellen et al., 2008).

In order to avoid dose miss, guarantee precision of dose delivery, repeatable positioning when

escalation of dose is necessary in a target volume or when OARs’ exposure to toxicity need be

minimized, a patient’s position on the treatment machine should not fluctuate. In a geometric miss,

for instance, highly conformal potent dose increases the risk of underdose to tumors or undesirable

high dose to critical organs and nearby tissues. Studies have shown that patient displacement and

beam angle misalignment during IMRT produced a 38% decrease in minimum target dose or 41%

increase in the maximum spinal cord dose (Xing, 2000b). While image-guided radiotherapy (IGRT)

has improved IMRT accuracy while reducing set-up times (Ahn et al., 2009; Robb et al., 2013;
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Figure 1.4: Masks and frames used for head immobilization in IMRT

Takakura et al., 2010), current IGRT practices focus on using images acquired before treatment

to confirm beam placement (Jaffray, 2012). As such, rigid frames and masks (see Figure 1.4) are

used to keep the patient immobilized on the machine so as to mitigate these errors. However, the

discomfort caused by head and neck masks and frames in prolonged IMRT treatment can increase

patients voluntary and involuntary motion. Studies show that translational errors caused by patient

motion can be larger than 6mm, and rotational errors can be as high as 2◦ (Kang et al., 2011). These

can compound over the treatment duration with potential harmful effects. More so, these rigid

positioning systems are time-consuming to calibrate on a treatment machine since doses are usually

delivered in fractions over many weeks or months: each time a patient comes to the clinic, they

need to be re-calibrated on the machine, as it is impractical for patients to wear frames/masks in and

out of clinics during elongated periods of treatment. Rigid frames and masks lack real-time position

correction of patient’s head motion and have been known to cause patient discomfort after treatment,

in spite of their strong stiffness properties. When involuntary motions occur during treatment,

post-treatment disorders may arise such as eczema, brain lesions and tissue toxicity (Takakura et al.,

2009; Xing, 2000a).

Setup errors (interfractional) or patient motion (intrafractional) errors often need to be accounted

for during RT. While intrafractional errors can be minimized by highlighting the importance of
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Figure 1.5: SI anatomical axis location. Reprinted from Wikipedia.

voluntary stillness to the patient, suitable means of immobilization and adaptive positioning are

necessary when the patient moves involuntarily or sleeps. A good immobilization system should

assure precise and accurate targeting of critical organs, ensure dose delivery precision whilst keeping

the patient comfortable during treatment. Frameless and Maskless (F&M) RT is promising because

it minimizes invasiveness and reduces setup times while comfortably positioning the patient. Before

we review the state-of-the-art in frameless and maskless radiation therapy, we briefly introduce the

correspondence between the axes of motion used in anatomy and how they correspond to rotational

motion in robotics.

1.3.1 Anatomical Motion Axes of the Human Body

In anatomical taxonomy relating to radiation oncology, three major axes are generally employed

to describe the relative locations of organs in the human body, namely the left-right (LR) axis, the

anterior-posterior (AP) axis, and the superior-inferior (SI) axis. A complete motion about these

three axes define a complete 6-DOF motion of a part of the human body. The posterior-anterior

axis runs from the front of the body through the back of the body, while the superior-inferior axis

runs from the cranial location of the head through the pelvis region of the body. These are both

illustrated in Figure 1.5.
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Figure 1.6: LR anatomical axis. Reprinted from Wikipedia.

Rotations around the LR, SI, and AP axes respectively describe motions along the yaw, roll,

and pitch axes respectively in the aircraft principal axes coordinate system. These three axes are

attached to the body and move as the body executes torque motions along each axial direction.

Finally, the left-right axis runs laterally from left to right across the human body, as illustrated in

Figure 1.6.

1.3.2 Frameless and Maskless Radiation Therapy

During radiosurgery, it is important to keep the patient immobilized on the treatment machine in

order to avoid translational and rotational errors. Accurate control is required so that healthy tissue

around a tumor is not excessively irradiated to the point where such tissues are damaged or killed.

Frame-based stereotaxy immobilizes regions of the patient’s body and head so that sensitive organs

be properly irradiated to render, e.g. , brain tumor cells necrotic. Accomplishing this typically
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involves positioning the patient on the treatment bed while a frame is securely attached to the

patient’s head. Such treatments are not suitable for fractionated, small doses, which are repeatedly

given to the patient from a few weeks to a couple of months. These fractionated doses are necessary

when previously irradiated tissues are required to heal while other organs are irradiated. It becomes

impractical to leave the frame on the patient’s head, since treatment usually lasts several rounds

for weeks or months. The complex process of removing and reattaching the frame would result in

different positions of the frame each time – defeating the purpose of accurate positioning. Therefore,

while frame-based stereotaxy gives desired accuracy, it is not feasible for fractionated treatment

plans.

To circumvent attaching frames with screws over the cranial region of the patient as well as the

need to focus radiation on regions outside the cranium, frameless stereotaxy was developed (Murphy

and Cox, 1996). In frameless stereotaxy, a 3D patient mapping is created for the body region of

interest and stored away as reference. Two or more diagnostic beams are then passed through

the mapping region where the beams are at predetermined non-zero angles from one another. At

predetermined time intervals, the stored and diagnostic images are compared to reference data, and

the error between them is used to adjust the beam used on the target region; this ensures alignment

with the dose of the surgical prescription.

Frameless and maskless positioning systems aim to immobilize the patient without the rigid

masks and frames that are often fraught with patient discomfort and usually lack real-time position

correction. We briefly review related works that attempt to control a patient’s head and neck motion

in frameless and maskless scenarios in radiation therapy. We then provide a general overview of

soft robot actuators in subsection § 1.3.3, describe the typical hardware designs in § 1.3.4 and

modeling/control approaches in § 1.3.5.

Initial research into F&M radiation therapy procedures consisted of investigations of soft

immobilizing devices around the patient’s head and neck region without a real-time controller in

the loop. These techniques were mostly evaluative studies meant to investigate the feasibility of
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non-rigid immobilization techniques in treatment planning. We provide a general overview of prior

investigative studies on these techniques in what follows.

Cervino et al. (Cerviño et al., 2012) fitted expandable foams around the sides and the back

of a patient’s head while leaving the face exposed. Essentially, the immobilization mechanism

was a customized head mold that minimally immobilized the patient while leaving the face free.

Patient set-up was performed using computed tomographic (CT) scans before treatment. Simulated

treatment accuracy showed an average treatment time of 26 minutes, with patients who slept

during experiments taking longer as a result of involuntary movements. In (Cerviño et al., 2010),

the authors evaluated the accuracy of a head mold that minimally immobilized a patient’s H&N

region while leaving the face free in a controlled positioning experiment with volunteers. A 3D

surface reconstruction imaging system was used in monitoring patients’ position, and treatment

was stopped whenever motion exceeded a defined threshold. While the monitoring system showed

great clinical accuracy, it assumed and required high patient cooperation in order to achieve the

desired immobilization. (Murphy et al., 2008) analyzed the position and velocity components

of a Calypso electromagnetic localization system in order to capture normal free breathing. In

(Navarro-Martin et al., 2015), the authors assessed the differences in interfractional setup accuracy

in stereotactic radiation therapy by evaluating the mean displacements for a vacuum cushioning

system and thermoplastic masks. With tests on 73 patients for a total of 246 cone beam CTs, it

was found that thermoplastics provided a lower deviation in average displacement compared to the

vacuum cushioning system. Using a head mold, an open face-mask, and a mouthpiece, (Li et al.,

2015) quantified the residual rotation and positioning errors in an open-loop setting to ascertain the

reduction in setup time during patient positioning setup. The head mold and open face mask system

restricted head motions to within 0.6◦ ± 0.3◦ with the time spent on motion corrections limited

to 2.7 ± 1.0 min. With advances in mechanical designs and image-guided adaptive techniques,

radiation therapy is increasingly witnessing the incorporation of real-time imaging and positioning

devices to manipulate patient motion (Krauss et al., 2011).
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Real-time patient-positioning systems employed in F&M radiotherapy until now have been

mostly rigid electro-mechanical links connected at discrete joints. Robotic stages are generally

used in correcting motions of test patients and manikin phantoms in a controlled setting. Example

implementations include steel-cast assembled4-DOF robot link components (Liu et al., 2015),

HexaPOD parallel manipulators (Herrmann et al., 2011), or in-house fabricated Stewart-Gough

platforms such as proposed by (Belcher, 2017). Approaches in feedback control typically employ

a vision-based sensing system in monitoring and measuring real-time patient motion. The vision

systems may include one or all of infra-red markers, polaroid sensors or a highly sensitive vision

tracking system such as the AlignRT (London, UK) 3D vision sensor1 to measure deviation of a

tumor or the isocenter of the patient from a reference configuration. These measurements are then

used in a feedback control loop to control the patient’s motion or tumor motion.

The robotic stage of (Liu et al., 2015) consisted of 4-axis motor controllers and a power amplifier.

The authors derived a 6-DOF calibration framework that transformed the position of a patient head

into the coordinate system of an IR tracking camera. The vision-based setup was then used in a

real-time feedforward and feedback control of the translational (x, y, z) and the rotational (pitch)

motion of a phantom and some human trials; the optical sensing system tracked the pose of the

head while a decoupling control law regulated the xyz-translational and pitch motions of the head.

A stepper motor controlled the motion of the pitch axis about a pivot point at the base of the

mechanical platform. The authors reported that they achieved a correction accuracy of 0.5mm along

the L − R(X), S − I(Y ), A − P (Z) axes and a 0.2◦ rotational accuracy about the pivot to the

Z-translation axis. (Herrmann et al., 2011) utilized a 6-DOF robotic HexaPOD treatment couch

for motion compensation of lung tumors. Leveraging the fast and precise positioning of heavy

payloads, the authors implemented a linear auto-regressive exogenous parameter-identification

system to identify the HexaPOD’s dynamics; a model predictive controller then manipulated a

lung tumor with respect to a treatment beam under low frequencies to accomplish real-time motion

1AlignRT: https://www.visionrt.com/product/alignrt.
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Figure 1.7: The Cyberknife radiation delivery and 6-DOF robotic couch systems. ©Accuray Inc.

compensation. (Haas et al., 2012) used an Elekta 4-DOF (3 translation and one rotational) parallel

robot to first simulate and then control couch-based motion in real-time. The authors used a linear

state-space model to approximate the rigid body dynamics of the patient support system earlier

proposed in (Haas et al., 2005). The state-space model, and an asymmetric dead zone model of the

patient support system predicted patient motion, while the velocity response of the patient to voltage

input was implemented in a lookup table between a nonlinear gain and a second-order transfer

function with asymmetric deadzone. Finally, a Kalman filter acted as a redundant motion prediction

for the computationally complex prediction model scheme described. Afterwards, a PID controller

was implemented to achieve necessary control along the relevant axes of motion for the system.

There are advances in motion-tracking systems in industrial systems such as Cyberknife and

Novalis (see Figures 1.7 and 1.8). Cyberknife ensures complete non-invasive radiotherapy by using

implanted tiny gold fiducials to differentiate tumors from healthy tissues. These machines employ

a light-weight linear accelerator fitted to a robotic arm in order to direct the beam along 6-DOF .

These machine systems are not compatible with the conventional linear particle accelerators used

at the majority of cancer treatment centers, they are very expensive to use, and they are limited

in consistent treatment planning given their basic assumption that a patient’s body is rigid during
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Figure 1.8: Noninvasive RT. ©Novalis.

motion tracking and compensation. Being non-compliant, they are incapable of safe interaction

with human beings, and it is typical in manufacturing environments, where they are widely used, to

separate human workspaces from rigid robotic workspaces. The human body is a natural system

that needs to be manipulated with materials that can absorb much of the energy arising out of

collisions, rather than rigid electro-mechanical components. We therefore explored the integration

of soft-bodied robots made out of compliant materials in building our actuation system for cranial

manipulation in robotic radiotherapy.

A major drawback of most of these systems is that they do not address the attenuation of

ionizing beams during treatment caused by the rigid electro-mechanical systems that they employ

in immobilization. The presence of EM stages can significantly reduce the intensity of incident

radiation. One of the goals of this dissertation is to investigate the effectiveness of radio-transparent

soft robots in IMRT in order to provide real-time motion correction for patients in RT whilst

guaranteeing patient comfort.
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1.3.3 Soft Elastomeric Actuators: An Overview

The approaches described in this section involve the manipulation of head and neck phantoms

on a treatment table using radio-transparent soft actuators that exhibit extensional deformation

compression. Continuum-based models are described in the next chapter where we analyze and

synthesize the homogeneous deformation of the soft elastomers.

Soft robots or soft actuators are deformable enclosures typically filled with fluid membranes

to enable manipulation or locomotion tasks by controlling the fluid in the robot’s chamber. They

generally exhibit a distributed deformation when they are transformed between configurations. This

means they exhibit infinite DOFs , possess hyper-redundancy in their configuration space, thus

making them capable of flexible manipulation wherein the tip-point of the actuator can achieve

multiple shapes and configurations in a three-dimensional workspace. Given their minimal or

non-resistance to compressive shear strain, their compliance make them suitable for biomedical

applications where delicate manipulation may be required, as opposed to rigid mechanical platforms

that exhibit a high load-to-weight ratio coupled with high stiffness – impractical in enabling

articulation of human body parts. Soft robots have the capability of bending, deforming, and twisting

with high curvatures, thus enabling their use in confined spaces and radio-transparent required

manipulation settings. If carefully designed, they can continuously deform their bodies and emulate

biological motions, as well as adapt their geometry to an environment – employing their embodied

intelligence and morphological computation property in order to manipulate objects (Zambrano

et al., 2014). The shape, geometry, location, and compliance properties of an organism’s body parts

that exist in nature define the perception and environmental interaction that enable the synergistic

morphological connection of these features with expressed behaviors (Zambrano et al., 2014). This

morphological computation enables the emergence of behaviors that are aided by the mechanical

properties of a physical system.
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1.3.4 Design of Soft Robots

Hardware design of soft robots generally consists of fluidic-based designs or hydraulic-based

designs. We focus mainly on fluidic-based systems in this work. Systems such as (Katzschmann,

Marchese, and Rus, Katzschmann et al.) utilized a lost-wax casting process to fabricate a planar

soft manipulator gripper that was then used in an autonomous manipulation of diverse objects of

different geometry within the soft manipulator’s workspace. This manipulator had six bidirectional

segments with cylindrical cavities forming an arm with a pleated shape. (Ilievski et al., 2011)

developed a starfish-shaped soft robot that employed pneumatic networks within an elastomer to

manipulate a living mouse without harming it. Soft lithography (Xia and Whitesides, 1998) is

increasingly being used to design soft robots due to its capacity for replicating microstructures on a

non-planar surface and the manner in which it provides access to three-dimensional structures. Soft

lithography tolerates a wide range of materials and chemistry surfaces. Soft lithograph was used

by (Shepherd et al., 2011) to fabricate a pneumatically-actuated robot that generated dexterous

gaits and complex motions including crawling as well as undulation gaits. McKibben actuators and

electro-active polymers are used for extension-based manipulation of objects (Pujana-Arrese et al.,

2007).

Embodied intelligence, inspired from the behavior of natural organisms in nature, have inspired

the prototype of a robot arm based on an artificial muscular hydrostat (Laschi et al., 2012). With

tentacles made out of silicone conical arms, inspired from the muscular hydrostat of the Octopus

vulgaris, the platform can change its shape around various geometrically-shaped objects. Bending

fluidic actuators have garnered large attention in soft robotics owing to their robustness, continuous

interaction with the environment, high force density, and large deformations. The FASTT (Cacucci-

olo et al., 2015) soft robot capitalizes on the compliance of bending fluidic actuators to realize a

self-stabilizing locomotion on terrains with varying surface geometry. A recent class of elastomeric

actuators are the fiber reinforced elastomeric enclosures (FREEs). These materials consists of

cylindrical rubber or silicone pneumatic cavities that have fiber windings around them in specific
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helical configurations to create sophisticated motions (such as compression, axial rotation, and

twisting) when pressurized (Bishop-Moser et al., 2012; Demirkoparan and Pence, 2007; Holzapfel

et al., 2000; Sedal et al., 2018). These actuators tend to be robust for linear extension, and twisting

moments based manipulation.

1.3.5 Soft Actuators: Modeling and Control Approaches

Soft robots are notoriously difficult to control, given their continuum-based mechanical properties.

Schemes for controlling these class of robots are a very active area of research with mixed successes.

In what follows, we present a review of the modeling and control schemes that have erstwhile been

employed in soft robotics. Approaches range from finite element modeling (Bern et al., 2017; Gent,

2012; Nesme et al., 2006, 2005), system identification and function-approximator based approaches

(Giorelli et al., 2015; Ogunmolu et al., 2017), homogeneous continuum approaches (Holzapfel et al.,

2000; Ogden, 1997), non-homogeneous continuum approaches (Ogden, 1997), to non-constant

curvature approaches. Non-constant curvature approaches belong largely to three categories namely,

the continuum approximation of hyper-redundant sytems such as found in (Chirikjian, 1994;

Chirikjian and Burdick, 1995; Mochiyama, 2005), spring-mass models for semi-rigid robots such

as (Yekutieli et al., 2005; Zheng et al., 2012), and geometric continuum models (Boyer et al., 2006;

Demirkoparan and Pence, 2007; Gent, 2012; Holzapfel et al., 2000; Ogden, 1997; Rucker et al.,

2010; Sedal et al., 2018). Cosserat approaches for semi-rigid soft robots, whereupon the strains

of the Cosserat model are derived from stress-strain laws have been used by (Renda et al., 2014).

In (Renda and Seneviratne, 2018), the authors derived a discrete Cosserat model for a soft-rigid

multi-body system using the geometrical framework of the rigid robotics based on the exponential

map.

For an extensive literature review of the design, fabrication, and control of continuum soft

robots, we refer readers to (George Thuruthel et al., 2018; Rus, Daniela; Tolley, Michael T., 2015;

Trivedi et al., 2008). Our goal in this dissertation is not the explicit design of soft robots per se but
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the continuum modeling of individual soft robots, their kinematic configuration and dynamics in

multi-DOF assembly modes and their control.

Aside from the need to develop the hardware consistent for a feedback control of patient position

correction system, a separate treatment planning optimization problem is solved in order to assure a

near-optimal treatment dose. Given an ideal dose description by a doctor as a biological statement

of objectives, the treatment planning optimization problem uses inverse planning to generate a best

set of intensity-modulated beams in a process often referred to as beam orientation optimization.

1.4 Beam Orientation Optimization

Radiation intensities are generally delivered from different beam orientations using multiple colli-

mators – generating concave dose distributions that precisely spare sensitive normal organs with

complex treatment geometries (Webb, 2001). Each beam is divided into beamlets, where beamlets

in a beam are aimed from the same angle; it is noteworthy to add that a beamlet may be of a

different intensity from that of its neighbor – helping generate the non-uniform radiation profiles on

a target volume. The process of selecting the best combination of beam angles among the cardi-

nality of beam orientations from which radiation could to be delivered is termed beam orientation

optimization (BOO), while the process of optimizing the resulting beams so as to fit a doctor’s

prescribed dose by determining the intensity (influence) to assign each beamlet is termed fluence

map optimization (FMO). Both of these are part of the so-called inverse-planning problem that

uses optimization techniques to generate intensity distributions across a beam’s eye-view and the

geometric field shape of a target volume. When just the gantry of the LINAC machine is rotated

with respect to the other angles of the robot, this results in a set of coplanar beams being swept out

by the gantry.

Finding the optimum physically deliverable fluence profile to obtain a desirable dose is a key

problem in IMRT. Mostly, this problem proceeds manually in a time-consuming scenario in most

clinics. The success of this manual procedure depends on he treatment planner’s experience. A
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favorable radiation “influence” (fluence) profile is typically found by simultaneously maximizing

and minimizing the dose delivered to tumors and OARs respectively, while generating sharp dose

gradients at the transition between tumors and OARs. Since tumors often intersect with OARs,

and the dose deposition’s physics changes with every beam orientation, BOO is a non-convex

problem (Craft, 2007), (Södertröm and Brahme, 1993) with myriad possible beam combinations

within a setup’s phase space. One may consider the BOO problem as a set cover or combinatorial

optimization search problem, where given a universe of all candidate beam angles, U , we seek to

find from a subset family S of U , a cover subfamily, C ⊆ S whose union is an optimal beam set

that meets a doctor’s prescription.

Techniques that have so far been proffered for numerically solving the BOO problem elongate

the treatment planning process and lack adequate real-time feasibility. The reason is largely two-

fold: first, a large, ill-conditioned dose influence matrix, Dij , for all discretized beam angles

within the setup’s phase continuum must be computed for every candidate beam angle in a very

computationally demanding scheme; second, the respective beamlet’s dose per angle must be used

to solve the FMO solution for myriad beam combinations during search before the “best” beam

angle set is chosen. Dij(θk) is interpreted as the dose delivered to a discretized voxel i by a unit

intensity beamlet j, incident from angle θk, where k are the indices of beamlets in a beam B.

Linear programming duality theory alongside gradient descent have been used in computationally

finding desirable beam angles and beamlet intensities (Bertsimas et al., 2013; Craft, 2007; Stein

et al., 1997). These methods employ local search to evaluate the structure of an IMRT plan’s

objective function in order to improve a global plan quality. (Bertsimas et al., 2013) defined a

linear programming problem with constraints that capture a doctor’s preference for dose delivery:

a gradient-based approach searched the neighborhood of angles earlier found from global beams

search. In (Craft, 2007), the author found a beam angle set in the global beam angle space and then

refined the angles locally with gradient descent optimization.

A popular computational approach is simulated annealing (SA), where gantry angles are sampled

in the global beam space and corresponding beam profiles are optimized using local neighborhood
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search. The local neighborhood search may consist of deterministic or stochastic search algorithms

so as to improve a current solution. A fixed subset of a gantry angle’s neighbors, or the complete

neighborhood can be traversed at each iteration so as to find a better solution in the deterministic

case, while in the stochastic case, SA arbitrarily chooses neighboring solutions so as to find an

improved solution at each iteration (Aleman et al., 2008a). We refer readers to (Aleman et al.,

2008a; Bortfeld and Schlegel, 1993; Pugachev et al., 2000; Pugachev and Xing, 2002; Stein et al.,

1997) for BOO treatments using SA. We note that while SA may find a good solution, this usually

comes at the expense of a long iteration of escaping local minima.

In approaches such as (Pugachev and Xing, 2001), a score function characterizes the maximum

dose that a planning target volume (PTV) can receive from a beamlet, such that the dose tolerance of

OARs and normal tissues along a beamlet’s path are not exceeded. In (Djajaputra et al., 2003), the

authors accelerated the IMRT optimization process using a fast SA approach to select beam angles

from a set of predefined directions, while (Bortfeld and Schlegel, 1993) employed a frequency-

domain paradigm for optimizing least-square-like objective functions using Parseval’s theorem to

the end of speeding up the simulation process. They reported being able to solve the nonconvex

BOO problem within a “few minutes on a minicomputer”. However, (Bortfeld and Schlegel,

1993)’s algorithm is restricted to l2-like objective functions, and it assumes approximations on

the mathematical model of the problem. Our approach in this work is adaptable to any family of

objectives and solves the beam selection problem within the fraction of a minute.

Feature-based machine learning approaches are also used, whereupon the high dimensionality of

the 3D treatment volume for a patient is divided into pencil beams such that an input-output mapping

between the patients and the corresponding intensities are modeled using regression techniques

such as support vector regression, or local regression (Lu et al., 2006). Such methods need a lot

of training data to efficiently learn a good principal model that accurately maps the relationship

between a patient’s geometry and beam intensity. In (Li and Lei, 2010), DNA-computing and a

genetic algorithm was implemented: beam angles were encoded with a DNA computing framework,
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which generated genetic operators that were employed to search for feasible beam solutions. Other

lines of work have treated IMRT treatment planning as an inverse optimization problem, with

techniques ranging from adaptive l21 optimization (Jia et al., 2011), and mixed integer linear

programming (D D’Souza et al., 2004; Lim et al., 2007; Wang et al., 2003).

1.5 Research Motivation

Being a relatively new form of cancer treatment, the full development of radiation therapy requires

the interdisciplinary effort of engineers, physicists, and physicians in order to improve the treatment

planning process. This is in part the purpose of this dissertation. Given the stringent requirements

for accurate and precise delivery of dose for disease locations, as well as the elongated treatment

planning process due to the heavy computational requirement of BOO, IMRT treatment planning

require a sizable investment in clinical time from trained medical physicists, physicians, dosimetrists,

and radiation therapists inter alia. The instrumentation and automation procedures in IMRT are in

their infancy: from the 3D multimodal medical imaging of tumor sites to the robotic manipulation

of patients on the treatment couch. More robustness and automation mechanisms are needed to

improve the treatment of disease sites (Boyer et al., 2001). As such, the complete development of

IMRT will require the multidisciplinary concerted effort of physicists, mathematicians, oncologists,

roboticists, and broadly engineers.

We address the following concerns:

• How can we improving the time required for finding beam angles whilst preserving treatment

quality?

• Can multi-DOF soft manipulator mechanisms function as positioning mechanisms in non-

invasive radiosurgery such that radiation dose is not attenuated and motion-correction is

comfortable compared with the rigid metallic masks that are used in most research clinics?
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Given the inconvenience of frame- and mask-based immobilization devices currently used in

IMRT, and the exposure of OARs to toxicity given the gyrations in patient motion as a result of

respiratory motion, interfractional and intrafractional calibration errors (Sterzing et al., 2011), we

synthesize, analyze and evaluate soft robot actuator position-correction mechanisms in non-invasive

head and neck radiation therapy.

On a second note, we design an approximate policy iteration scheme (Bertsekas, 2013) for the

time-exhausting IMRT inverse planning optimization process. Being a machine learning based

model, we aim to avoid the manual feature selection for classifying the characterization of the

mapping from patient geometries to beam orientation. Approximate policy iteration automation

scheme has attractive sub-optimal control properties (Bertsekas et al., 2017a) when combined with

recent function approximator breakthroughs in large state spaces (Levine et al., 2016; Mnih et al.,

2015; Silver et al., 2016, 2017). Having a near-optimal automated tool for choosing beam angles

will reduce the current trial and error process, and jump-start the beam angles set from which

treatment planners could further fine-tune predicted beams given a patient’s CT geometry in little

time.

1.6 Dissertation Structure

The first part of this work treats the automation of the patient’s motion correction system with

arrangements of nonlinear elastic soft robot (in geometric primitive forms) around the patient’s head

and neck region. Some of this work have previously appeared in the following publications (Ogun-

molu et al., 2015, 2017, 2015b, 2016b), and (Almubarak et al., 2018). Our additional contribution

is the continuum mechanical model of the kinematics of strain deformation for a soft robot and a

multi-dof analysis of motion of the head region under the influence of multiple soft robots to adjust

infinitesimal patient motion on a treatment table. These can be found in Chapters 2 and 3.

In the second part of this work, we formally introduce the beam orientation optimization problem,

and then prescribe an approximate dynamic programming approach that reduces the treatment
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planning time for dosimetrists, radiation therapists and physicians during treatment. Some of the

work described pertaining to this have appeared at radiation therapy conferences and algorithms

for robotics venues e.g. (Sadeghnejad Barkousaraie et al., 2019a), (Sadeghnejad Barkousaraie

et al., 2019b), (?), (Barkousaraie et al., 2019), (Ogunmolu et al., 2018), (Sadeghnejad Barkousaraie

et al., 2019), (Ogunmolu et al., 2019), (Ogunmolu et al., 2018), (?), (Sadeghnejad Barkousaraie

et al., 2019b). The new contributions here are the approximate policy iteration formulation which

encompasses a column-generation supervised machine learning of correct beam angles (Bertsekas,

2013), which is in turn followed by a single agent Monte-Carlo tree search formulation. This is

presented in Chapter ??.

In the course of my degree, I did some other work on embedding robustness into deep policies

for robot navigation. These works are not discussed in this thesis but the reader can find them in

the following publications: (Ogunmolu et al., 2018; Summers et al., 2017) and (Ogunmolu et al.,

2017). All the codes for the experiments presented in this thesis as well as throughout my graduate

degree are indexed on github.
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CHAPTER 2

DEFORMATION ANALYSIS OF A SOFT CONTINUUM MANIPULATOR

In this chapter, we analyze a soft continuum manipulator molded in a spherical form using nonlinear

elastic theory of deformations. Specifically, we abstract the system of motion interaction between

multiple IABs and a representative head of a patient using the simple interaction between a

single IAB and the head. We then write out the contact force equations of the head-neck-IAB

system in order to analyze the forward kinematic equations of the patient’s motion on a treatment

table/machine. Unlike link lengths and joint angles used in parameterizing the motion of rigid

robots, soft robots present unique challenges with respect to the nonlinearity of their elastic material

properties, their potential infinite degrees of freedom, their morphological properties under strain

and torsion (Sedal et al., 2018; Zambrano et al., 2014), and the lack of a well-developed framework

for capturing their dynamical behavior and control (George Thuruthel et al., 2018).

In addition to the modeling methods described in § 1.3.5, we briefly describe our motivation

for devising a finite elastic model for our robot mechanism. The constant curvature approach for

parameterizing the deformation soft continuum robots (Hannan and Walker, 2000, 2003; Jones

and Walker, 2006) has played significant role in the kinematic synthesis of deformable continuum

models over the past two decades. Under this framework, it is assumed that the configuration

space of a continuum module can be parameterized by three variables that relate the curvature

of an arc projected on the soft robot’s body to the length of the arc, and the angle subtended by

a tangent along that arc. The relationship between these parameters are typically found using

differential kinematic analysis with a Frenet-Serret frame that models the behavior of a curve on

the soft robot’s surface with or without torsion. By abstracting an infinite dimensional structure

to 3D, large portions of the manipulator dynamics are discarded under the assumption that the

actuator design is symmetric and uniform in shape. When multiple soft robots are arranged in

a kinematic chain, the constant curvature sections can be stitched together to form the so-called

piece-wise constant curvature model (Jones and Walker, 2006). For finite elastic deformations such
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as continuum models made out of materials with Poisson ratio close to 0.5, the constant curvature

model is an overly simplified model that exhibits poor performance in position control (Kapadia

et al., 2014). It is noteworthy that the Cosserat brothers’ beam theory has been relatively successful

in modeling soft continuum dynamics (Renda et al., 2014; Trivedi et al., 2008). However, their

heavy computational requirement given a more complex model and the added sensing cost does

not scale well compared to simpler models. Finite element modeling methods, while accurate,

require heavy computation and time-consuming calculations so that they are not very useful for our

application.

Therefore, we rigorously analyze the deformation and kinematics of a soft continuum module

built out of materials with incompressible walls, henceforth called inflatable air bladders (IAB),

using nonlinear finite elastic deformation theory (Mooney, 1940; Ogden, 1997; Rivlin and Saunders,

1950; Treloar, 1975). This would enable us to build a broad hook for the model of the deformation

of soft continuum robot modules under stress, strain, internal pressurization, and an arbitrary

hydrostatic pressure. This model and kinematic decomposition will then be used to develop

the kinematics of a 16 assembly mode (Merlet, 2015) soft robot motion correction mechanism.

Foundational readings may be found in (Demirkoparan and Pence, 2007; Gent, 2012; Murray, 2017;

Ogden, 1997; Treloar, 1975), but in the next section we introduce the basic principles.

2.1 Foundations

Let E be a set of elements, which we shall refer to as points. A set of points, a body B, describe

particles that have a one-to-one mapping with a region, B, of a Euclidean point space, E . The body

B is said to occupy B. During motion, the region occupied by B in E continuously varies. The

configuration of a body B is a mapping χ : B → E which takes B’s particles to their occupied

locations in E . The location occupied by a particle X ∈ B in the configuration χ is

x = χ(X) =⇒ X = χ−1(x). (2.1)
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We take χ and χ−1 to be C2-diffeomorphisms i.e. they exist on twice continuously differentiable

manifolds. The motion of B is parameterized by the configuration χt : B → E for time t ⊂ R, and

can be written as

x = χt(X) or x = χ(X, t). (2.2)

For a given particle, X , equation (2.2) describes a curve in E , which is a path of X in the motion.

A time-independent fixed configuration describes the reference configuration of a body B, and is

written as

X = χ0(X), X = χ−1
0 (X), (2.3)

where X denotes the location of the particle X in the reference configuration, χ0. When a body

deforms in the reference configuration, it enters a current configuration, which from (2.3) becomes,

x = χt{χ−1
0 (X)}. (2.4)

It therefore follows that x = χt(X). A motion in the current configuration x = χt(X) is rigid if

and only if

x = c(t) +Q(t)X ∀ X ∈ B0, (2.5)

where the translatory motion of the body is encoded by c(t) while the pure rotatory motion of

the body is defined by the proper second-order orthogonal tensor Q(t). We are concerned with

the motion of a body from an initial configuration to a final configuration; we do not require the

knowledge of transitory stages in the motion. Thus, abusing notation, we drop the t arguments and

write the component form of (2.4) as

xi = χi(X), i = 1, 2, 3. (2.6)

with an arbitrary choice of reference configuration such that B0 = χ0(B). If a material body has all

deformations for each material point in the body constrained to be isochoric (the material deforms
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locally but volume is preserved globally), the material becomes incompressible, and the constraints

condition is referred to as incompressibility (Ogden, 1997). The isochoric property is an important

one, whereupon for finite stress-strain deformations and a class of large elastic deformations, it

can model the physical property of the material in exact closed-form equations. Some results on

isotropic finite elasticity have been laid out in the works of (Ogden, 1997; Rivlin and Saunders,

1950; Treloar, 1975) inter alia.

2.1.1 Group Theory Fundamentals

The special structure of a group, called the displacement group {D}, can be used to represent the

motion of a soft body. The special orthogonal group SO(3) is a subgroup of the general linear group

SO(3) = {R ∈ GL(n,R) : RRT = I, det R = ±1}. (2.7)

A group with a topology operation on its set of elements such that the group can be given the

structure of a differential manifold with the property that group multiplication and inversion is

continuous is called a Lie group. The special Euclidean matrix group SE(3) is a differentiable

manifold, comprised of all the translations and proper rotations that moves a body from one point to

another in the ordinary cartesian 3-space E3 (Brockett, 1990). An isomorphism mapping maps open

set of elements of SE(3) onto an open set of R6. The special Euclidean group SE(3) is composed of

matrices of the form

g =

R p

0T 1

 ∈ SE(3). (2.8)

R ∈ SO(3) is a rotation matrix , and p ∈ R3 represents the linear position of the particle. The

Lie algebra is a vector space L with the antisymmetric bilinear operation [, ] : L× L→ L which

satisfies the Jacobi identity, [L1, [L2, L3]] + [L2, [L3, L1]][L3, [L1, L2]] = 0. The Lie algebra of

SE(3) is the vector space of all instantaneous velocities whose elements are 6-dimensional vectors
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of the form (v, ω), where ω is the infinitesimal angular generator of the soft robot body, and v is the

infinitesimal linear generator of the rigid body. It the representation

se(3) =

L|L =

ŵ v

0 0

 , ŵ = −ŵT

 (2.9)

where ŵ is the skew-symmetric matrix,

ŵ =


0 −wz wy

wz 0 −wx

−wy wx 0

 ∈ so(3). (2.10)

The Lie algebra line element can be otherwise written as a 6-vector

se(3) =

[
wT vT

]T
∈ R6.

where v, w ∈ R3.

2.1.2 Screws and Twists

The twist is a screw and an amplitude, denoting an infinitesimal displacement. Forces and torques

that produce velocity and acceleration are 3D vectors pairs, (F,M), called wrench. A twist and a

wrench are reciprocal when ω.M + v.F = 0. The screw is a geometrical object consisting of a line

in space together with the pitch. The pitch is given by

h =
w · v
w · w

.

The twist, ξ, defined in generalized coordinates as a function of the body velocity, ġ ∈ se(3) is

ξ = ġ g−1, (2.11)

from which the generalized velocity of a motion in world coordinates is defined as

ξ =

ṘRT ṗ− ṘRTp

0 0

 =

ŵ v

0 0

 ∈ se(3). (2.12)
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The isomorphism of the twist matrix in the Lie algebra to R6 can be represented as

ξ̂ =

(
vT wT

)T
(2.13)

2.1.3 The deformation gradient

Consider a reference configuration B0 of a body B, which deforms to a current configuration Bt.

From (2.5), the rectangular Cartesian coordinates component form become

xi = χi(Xα). (2.14)

From (2.14), we have the rate of deformation as

dxi =
∂xi
∂Xα

dXα, (2.15)

with invariant form

dx = FdX (2.16)

where F is a second-order tensor (using (Ogden, 1997)’s notation),

F = ∇⊗ χ(X), (2.17)

and ⊗ denotes the outer product. For a material line element or fiber (a vector dX) on a soft body,

we require that F be non-singular since F dX = 0 is not physically realistic. Thus, FdX 6= 0 for

all dX 6= 0 so that det F 6= 0 is a restriction that is generally imposed on F. We define the left and

right Cauchy-Green deformation tensors as

B = F FT and C = FTF

respectively.
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2.2 Deformation of a Single IAB

In this section, we present the spherical polar coordinate representation of IAB deformations, derive

the deformation gradient under assumptions of isochoric deformations and incompressibility of

the IAB material skin. We then parameterize the configuration space of IAB kinematics based

on a relationship between internal pressure, Cauchy stress, stored strain energy, and the radii of

the IAB. The IABs are made out of rubber or elastomeric components. These materials have the

distinct property of incompressibility with a Poisson ratio of approximately 0.5 (Gent, 2012). Our

overarching assumption is that volume does not change locally during deformation at X i.e. the

deformation obeys isochoricity.

2.2.1 Invariants of Deformation

A consistent mathematical theory that describes the deformation of highly elastic, incompressible,

and isotropic materials under the action of applied forces was established by (Rivlin and Saunders,

1950) in terms of stored energy function, W . This stored strain energy, W , captures the physical

properties of the material. It is a function of two invariants namely I1, and I2, described in terms

of the principal extension ratios of the strain ellipsoids, λr, λφ, λθ,

Stored Energy Invariants

I1 = λ2
r + λ2

φ + λ2
θ, and I2 = λ−2

r + λ−2
φ + λ−2

θ . (2.18)

Under the incompressibility assumptions of the IAB material body, we have λrλφλθ = 1 (Treloar,

1975). In spherical coordinates, the change in polar/azimuth angles as well as radii in the reference

and current configurations are as illustrated in Figure 2.1. Forces that produce deformations can be

derived using the strain energy-invariants relationship, particularly using the rates of change of the

strain energy with respect to these invariants, i.e. ∂W
∂I1

and ∂W
∂I2

.
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Figure 2.1: Deformation in spherical polar coordinates.

2.2.2 Analysis of Strain Deformations

Suppose a particle on the IAB material surface in the reference configuration has coordinates

(R,Θ,Φ) defined in spherical polar coordinates, where R represents the radial distance of the

particle from a fixed origin, Θ is the azimuth angle on a reference plane through the origin and

orthogonal to the polar angle, Φ (see Figure 2.1). Denote the internal and external radii asRi, and Ro

respectively. We define the following constraints,

Ri ≤ R ≤ Ro, 0 ≤ Θ ≤ 2π, 0 ≤ Φ ≤ π, (2.19)

Now, suppose that the IAB undergoes deformation under the application of pressure to the internal

walls of the tube as depicted in Figure 2.2. Arbitrary points A and A′ in the reference configuration

become Q and Q′ in the current configuration. Suppose that the vector that describes the material

line element that connects points A and A′ is a = aRer + aΘeΘ + aΦeΦ where eR, eΘ, eΦ are

respectively the basis vectors for polar directions R,Θ,Φ. We assume that there are internal

constraints such that spherical symmetry is maintained during deformation of the incompressible

material shell. This assumption helps in the simplification of the contact dynamics of the IAB
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Figure 2.2: Radii change under deformation.

with the head as we shall see later on. More complicated deformation are left to a future work.

With the spherical symmetry of the IAB preserved, we have the following constraints in the current

configuration

ri ≤ r ≤ ro, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π. (2.20)

The radial vectors R and r are given in spherical coordinates

R =


R cos Θ sin Φ,

R sin Θ sin Φ,

R cos Φ

 and r =


r cos θ sinφ,

r sin θ sinφ,

r cosφ

 . (2.21)

The material volume 4
3
π (R3 −R3

i ) contained between spherical shells of radii R and Ri remains

constant throughout deformation, being equal in volume to 4
3
π (r3 − r3

i ) so that

4

3
π
(
R3 −R3

i

)
=

4

3
π
(
r3 − r3

i

)
=⇒ r3 = R3 + r3

i −R3
i . (2.22)

The homogeneous deformation between the two configurations imply that

r3 = R3 + r3
i −R3

i , θ = Θ, φ = Φ, (2.23)
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where the coordinates obey the constraints of equations (2.19) and (2.20). Owing to the preservation

of spherical symmetry, the Lagrangean and Eulerian axes coincide, with one axis aligned to

the radial axis of the sphere and the other pair oriented arbitrarily normal to it so as to form a

mutually orthogonal triad. The principal stretch along the azimuthal and zenith axes is therefore

λ = λθ = λφ = r/R. Since for an isochoric deformation, λr ·λθ ·λφ = 1 (Treloar, 1975), it follows

that the principal extension ratios are

λr =
R2

r2
;λ = λθ = λφ =

r

R
,

where λ is the azimuthal and polar principal stretch. It is noteworthy that in the reference configu-

ration, the principal stretches are {λi}i=1,2,3 = 1 such that I1, I2, I3 = 3. The Mooney-Rivlin strain

energy for small deformations as a function of the strain invariants of (2.18), is,

W ′ = C1(I1 − 3) + C2(I2 − 3). (2.24)

where C1 and C2 are appropriate choices for the IAB material moduli. The Mooney form (2.24)

has been shown to be valid even for large elastic deformations, provided that the elastic materials

exhibit incompressibility and are isotropic in their reference configurations (Mooney, 1940). For

mathematical scaling purposes that will soon become apparent, we rewrite (2.24) as W = 1
2
W ′ so

that

W =
1

2
C1(I1 − 3) +

1

2
C2(I2 − 3). (2.25)

Note that equation(2.24) or (2.25) becomes the neo-Hookean strain energy relation when C2 = 0.

The deformation gradient F in spherical polar coordinates, may be written as

F = λrer ⊗ eR + λφeφ ⊗ eΦ + λθeθ ⊗ eΘ

=
R2

r2
er ⊗ eR +

r

R
eφ ⊗ eΦ +

r

R
eθ ⊗ eΘ. (2.26)

The invariant equations, in polar coordinates, are therefore a function of the right Cauchy-Green,

and finger (Kaye et al., 1998) deformation tensors given as
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Figure 2.3: Body stress distribution on continuum’s differential surface, dS.

IAB Invariants

I1 = tr(C) =
R4

r4
+

2 r2

R2
(2.27a)

I2 = tr
(
C−1

)
=

r4

R4
+

2R2

r2
. (2.27b)

2.2.3 Stress Laws and Constitutive Equations

At issue is the magnitudes of the differential stress in the IAB in spherical polar coordinates from

a mechanical point of view; we will assume that thermodynamic properties such as temperature

and entropy have little to no contribution. The IAB material stress response, G , at any point in the

IAB at time t is instrumental in defining the Cauchy stress, σ, and the history of the motion up to

and including time t. The constitutive equation that relates the stress to an arbitrary motion will be

determined using (Truesdell and Noll, 1965)’s determinism for the stress principle. The constitutive
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relation for the nominal stress deformation for an elastic IAB material is given by

σ = G(F) + qF
∂Λ

∂F
(F), (2.28)

where G is a functional with respect to the configuration χt, q acts as a Lagrange multiplier, and Λ

denotes the internal constraints of the IAB system. For an incompressible material, the indeterminate

Lagrange multiplier becomes the hydrostatic pressure i.e. q = −p (Holzapfel et al., 2000). The

incompressibility isotropic assumption of the IAB material properties imply that Λ ≡ det F− 1.

As such, we find from (2.28) that

σ = G(F)− pFadj T (F)

= G(F)− pFF−Tdet(F)

= G(F)− pI (2.29)

where the last part of the equation follows from the isochoricity, det(F) = 1. In terms of the stored

strain energy, we can rewrite (2.29) as

σ =


σrr σrφ σrθ

σφr σφφ σφθ

σθr σθφ σθθ

 =
∂W

∂F
FT − pI, (2.30)

where I is the identity tensor and p represents an arbitrary hydrostatic pressure. A visualization of

the component stresses of (2.30) on the walls of the IAB material is illustrated in Figure 2.3. It

follows that

σ =
∂W

∂I1

· ∂I1

∂F
FT +

∂W

∂I2

· ∂I2

∂F
FT − pI

=
1

2
C1
∂I1

∂F
FT +

1

2
C2
∂I2

∂F
FT − pI

=
1

2
C1

∂tr
(
FFT

)
∂F

FT +
1

2
C2

∂tr(
[
FT F

]−1
)

∂F
FT − p I

= C1FFT − C2

(
FTF

)−2T − pI (2.31)

= C1B− C2C−2 − pI
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where as before, C = FTF and B = FFT . Thus, the constitutive law that governs the Cauchy

stress tensor is
Stress-Strain Constitutive Law

σ = C1B− C2C−2 − pI. (2.32)

It follows that the normal stresses are

σrr = −p+ C1
R4

r4
− C2

r8

R8
(2.33a)

σθθ = σφφ = −p+ C1
r2

R2
− C2

R8

r8
(2.33b)

2.3 Contact-Free IAB Boundary Value Problem

Here, for didactic purposes, we analyze the stress and internal pressure equations of the IAB at

equilibrium. Later on, we describe the boundary value problem when the IAB is in contact with the

head. Consider the IAB with boundary conditions given by,

σrr|R=Ro = −Patm, σrr|R=Ri
= −Patm − P (2.34)

where Patm is the atmospheric pressure (which may be set to 0) and P > 0 is the internal pressure

exerted on the walls of the IAB above Patm i.e. , P > Patm. Suppose that the IAB stress components

satisfy hydrostatic equilibrium, the equilibrium equations for the body force b′s physical component

vectors, br, bθ, bφ are

−br =
1

r2

∂

∂r
(r2σrr) +

1

r sinφ

∂

∂φ
(sinφσrφ) +

1

r sinφ

∂

∂θ
(σrθ)−

1

r
(σθθ + σφφ) (2.35a)

−bφ =
1

r3

∂

∂r
(r3σrφ) +

1

r sinφ

∂

∂φ
(sinφσφφ) +

1

r sinφ

∂

∂θ
(σθφ)− cotφ

r
(σθθ) (2.35b)
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−bθ =
1

r3

∂

∂r
(r3σθr) +

1

r sin2 φ

∂

∂φ
(sin2 φσθφ) +

1

r sinφ

∂

∂θ
(σθθ) (2.35c)

(see (Fung et al., 2001)). From the equation of balance of linear momentum (Cauchy’s first law of

motion), we have

div σT + ρb = ρv̇ (2.36)

where ρ is the IAB body mass density and v(x, t) = χ̇t(X) is the velocity gradient. Owing to the

incompressibility assumption, we remark in passing that the mass density is uniform throughout

the body of the IAB material. When the IAB is at rest, v̇t(x) = 0∀ x ∈ B such that equation

(2.36) loses its dependence on time. The assumed regularity of (2.1) thus leads to the steady state

conditions for Cauchy’s first equation; the stress field σ becomes self-equilibrated by virtue of the

spatial divergence and the symmetric properties of the stress tensor, so that we have

1

r

∂

∂r
(r2σrr) = (σθθ + σφφ). (2.37)

Expanding, we find that

1

r

[
r2∂σrr

∂r
+ σrr

∂(r2)

∂r

]
= (σθθ + σφφ)

1

r

[
r2∂σrr

∂r
+ 2rσrr

]
= (σθθ + σφφ)

r
∂σrr
∂r

= σθθ + σφφ − 2σrr (2.38)

∂σrr
∂r

=
1

r
(σθθ + σφφ − 2σrr).

Integrating the above equation in the variable r, taking σrr(r◦) = 0, and carrying out a change of

variables from r to R, we find that

σrr(δ) = −
∫ r◦

δ

1

r
(σθθ + σφφ − 2σrr)dr, ri ≤ δ ≤ r◦

= −
∫ R◦

∆

1

r
(σθθ + σφφ − 2σrr)

dr

dR
dR, Ri ≤ ∆ ≤ R◦
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= −
∫ R◦

∆

R2

r2
(σθθ + σφφ − 2σrr)dR, Ri ≤ ∆ ≤ R◦

= −
∫ R◦

∆

[
2C1

(
1

r
− R6

r7

)
− 2C2

(
R6

r7
− r

R2

)]
dR. (2.39)

In the same vein, using the boundary condition of (2.34)|2 and taking the ambient pressure Patm = 0,

we find that

P =

∫ R◦

Ri

R2

r2
(σθθ + σφφ − 2σrr)dR, Ri ≤ R ≤ R◦

=

∫ R◦

Ri

r2

R2

[
2C1

(
1

r
− R6

r7

)
− 2C2

(
R6

r7
− r

R2

)]
dr

≡
∫ r◦

ri

[
2C1

(
r3

R4
− R2

r3

)
− 2C2

(
R4

r5
− r3

R4

)]
dr (2.40)

where ri ≤ r ≤ r◦. Equations (2.39) and (2.40) completely determine the deformation kinematics

of the IAB material at rest. In the next chapter, we relate the head and neck force to the contact

forces on the IAB surface boundary using the component stress laws just derived when the overall

system is at rest.

2.3.1 Example: Radially symmetric deformation under gravity and applied internal pres-

sure

For an isochoric deformation of a Cauchy-Elastic IAB material with material moduli and configura-

tion radii as stated in the tables beneath the figures Figure 2.4, we would like to calculate and apply

the pressure from (2.40) such that the soft robot radially deforms to ri = Ri + δcm for a given δ

with a corresponding change in ro as given by the relation ro = 3
√
R3
◦ + r3

i −R3
i .

Figures 2.4, 2.5, 2.6, and 2.7 respectively illustrate the behavior of a representative volume of

an isotropic and incompressible IAB material under the application of the derived internal pressures

for a desired radial stretch. Whereas in 2.4 and 2.5, we are interested in a uniform expansion of the

walls of the IAB material, in 2.6 and 2.7, we are concerned with a uniform contraction of the walls

of the IAB skin. For each desired expansion of contraction in the figures, the calculated pressure is
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C1 C2 Ri(cm) ri(cm) R◦(cm) r◦(cm) P (psi) ν Tmesh(s) Ttot(s) ρ(kg/m3)

11, 000 22, 000 10 13 15 16.60 14.552 0.45 0.8838 4.7782 9.8446× 10−4

Figure 2.4: IAB Deformation (Extension)

as given in the tables beneath the figure. A negative pressure signifies air being pumped out of the

bladder. In all, we notice a uniform displacement along the three Cartesian axes of the spherical

bodies, demonstrating the utility of the derived kinematics for the IAB systems under hydrostatic

equilibrium.
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C1 C2 Ri(cm) ri(cm) R◦(cm) r◦(cm) P (psi) ν Tmesh(s) Ttot(s) ρ(kg/m3)

5e5 1e6 7.5 12 10 13.21 14.5193 0.4995 0.9143 4.1445 10−4

Figure 2.5: IAB Deformation (Extension)
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C1 C2 Ri(cm) ri(cm) R◦(cm) r◦(cm) P (psi) ν Tmesh(s) Ttot(s) ρ(kg/m3)

500, 000 1, 200, 000 12 10 15 13.83 −27.3631 0.45 0.8625 4.5338 12× 10−4

Figure 2.6: IAB Deformation (Compression)
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C1 C2 Ri(cm) ri(cm) R◦(cm) r◦(cm) P (psi) ν Tmesh(s) Ttot(s) ρ(kg/m3)

1.1× 1012 2.2× 1010 10 8 19 18.54 −27.3631 0.495 0.8236 4.5098 2× 10−5

Figure 2.7: IAB Deformation (Compression)
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CHAPTER 3

KINEMATICS AND DYNAMICS OF A MULTI-DOF SOFT ROBOT

In this chapter, we will present systematic syntheses and analyses of parallel soft robot manipulator

for head and neck immobilization. We will then derive the kinematics and dynamics necessary

for motion planning and control of patients’ head and neck on a treatment machine. Synthesizing

multi-DOF parallel soft robots is challenging given the inter-dependency of the parameters that

characterize the deformation, the individual robot constraints’ relative three dimensional orientation,

permitted motion orientations, the three dimensional relation between constraints and allowed

motions, and the possibility of multiple assembly modes that may result in the same end-effector

pose (Merlet, 2015). The configurations that we treat consists of soft robot links connected with

extensible spring-like couplings; these spring-like couplings are chosen to exploit the soft structures’

design for impedance control of the head and neck region of a patient. We analyze the manipulation

map, kinematics and dynamics of the respective closed-loop chains, and analyze the contact

equations between the IAB system and head.

3.1 A Soft Actuator Assembly for Patient Immobilization

Figure 3.1 shows the kinematic arrangement of the soft robots around the head. The geometry of

this material has inflatable internal cavities that pressurize under the influence of fluids that flow

via pneumatic hoses/tubes. These soft robot mechanisms consists of joints modeled by elastic

springs to allow their adjustment around varying patient head sizes. The models are composed of

three closed kinematic chains: one consisting of four soft actuators, connected to one another by

2-DOF spring-like flexible joints to allow the desirable range of motions. The other two chains

are symmetric about the L-R plane (as described in Figure 1.6). The stiffness of these closed-loop

kinematic chains is much higher than the common open-loop kinematic structures; deformation

from passive compliance can be easily measured, the inherent elasticity of the rubber components
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Figure 3.1: Soft Robots around Patient’s Head and Neck Region on a Planar Table

increase passive compliance, and the controlled actuators can be used to generate a fixed behavior

model.

The degrees of freedom of the configurations of Figure 3.1 can be determined using Gruëbler-

Kutzbach’s mobility condition, wherein the number of degrees of freedom of a mechanism is given

by (when the actuation results in a non-planar workspace configuration)

F = 6(N − g) +

g∑
i=1

fi (3.1)
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where N is the number of links in the mechanism, g is the number of joints, fi is the total number

of degrees of freedom for the ith joint. Equation (3.1) is only valid when the joints are independent.

When the inflation of each soft robot in the configuration results in a planar workspace configuration,

we have,

F = 3(N − g) +

g∑
i=1

fi. (3.2)

where through equations (3.1) and (3.2), the mechanism of Figure 3.1 have 16 DOFs since there are

N = 8 links, g = 8 joints, and each joint has 2 DOFs .

3.2 Analysis of Contact Kinematics

We describe the contact between an IAB and the head through a mapping between the force exerted

by the IAB at the contact point and the resultant forces at the center of mass of the head. We

model the contact type between the head and an IAB similar to the soft finger contact primitive

of (Nguyen, 1988). Here, our soft contact is the convex sum of point contacts with friction over

the small area of contact. IAB forces and torques are modeled within a “cone of forces” about the

direction of the surface normal from a patient’s head (see Figure 3.2). The trajectory of the head

under the influence of motion of an IAB is influenced by the position vector r of (2.21). When the

IAB is pressurized, body forces over its current configuration and contact (traction) forces over its

boundary ∂B impact an motion of the head. Constrained by the frictional coefficient, we define the

soft contact force inside the friction cone as

F̃ci =

I 0

0 nci


fci
τci

 , (3.3)

where fci ∈ R3 denotes the amount of force exerted by the IAB along the direction of contact,

τci ∈ R is the moment of the contact force, and nci is the normal map or Gauss map1 for a manifold

1A normal map for a manifold S is a continuous map g : S → S2 ⊂ R3such that for every s ∈ S, g(s) is orthogonal
to S at s (Montana, 1988).
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Figure 3.2: Illustration of the IAB Soft Contact Type

S ⊂ R3 of a head surface. For contact models with friction, we require that all contact forces lie

within the friction cone, determined by the friction coefficient. The set of forces within or on the

boundary of the friction cone is

FC = {fc ∈ Rn : ‖f tcij‖ ≤ µij‖fnci‖, i = 1, . . . , k, j = 1, . . . ,mi} (3.4)

where f tcij denotes the tangent component of the jth element of the contact force, fnci is ith contact’s

normal force, and µij is fcij ’s coefficient of friction.
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3.2.1 Contact-Based Boundary Value Problem for IAB

We now solve the boundary-value problem for the IAB deformation when in contact with the head

as a follow-up to the analysis of § 2.3. Again, we assume a spherically-symmetric deformation

constraint imposed on the IAB when the head rolls or slips on an IAB. This may be achieved

through an appropriate vulcanization of the IAB rubber material, for example (see (Mooney, 1940)

and (Gent, 2012)). We leave the analysis of spherical harmonics when the head dents the IAB such

that the azimuthal symmetry of the IAB is not preserved to a future work. When the soft robots are

in contact with the head, the applied forces on the current configuration of the IAB body B are

• the body forces, b, of equation (2.35),

• the contact forces, fc, at the IAB boundary, ∂B, and

• the gravitational force of the head mass acting along the direction of contact, fg.

We make the explicit assumption that the head maintains contact with the IAB throughout deforma-

tion. Suppose that for the ith IAB, rci represents the direction vector perpendicular from the point

of contact to the center of the head cone of forces, it follows that the three equations that governs

the motion of the IAB continuum are given as

ρ̇+ ρdivv = 0 (3.5a)

σT = σ (3.5b)

divσT + ρb = ρv̇ (3.5c)

being respectively the conservation of mass (3.5a), the symmetry of the stress tensor (3.5b), and

Cauchy’s first law of motion (3.5c) respectively, (see (Ogden, 1997, pp. 150), for the derivation).

In general, we expect that the mass of the body will be conserved given the incompressibility

assumption of the IAB material, thus guaranteeing that (3.5a) is fulfilled. We have from (3.5c) and
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the symmetric properties of the stress tensor that

1

r2

∂

∂r
(r2σrr) +

1

r sinφ

∂

∂φ
(sinφσrφ) +

1

r sinφ

∂

∂θ
(σrθ)−

1

r
(σθθ + σφφ) + ρbr = ρr̈x (3.6a)

1

r3

∂

∂r
(r3σrφ) +

1

r sinφ

∂

∂φ
(sinφσφφ) +

1

r sinφ

∂

∂θ
(σθφ)− cotφ

r
(σθθ) + ρbφ = ρr̈y (3.6b)

1

r3

∂

∂r
(r3σθr) +

1

r sin2 φ

∂

∂φ
(sin2 φσθφ) +

1

r sinφ

∂

∂θ
(σθθ) + ρbθ = ρr̈z (3.6c)

where r̈x, r̈y, and r̈z are as defined in (B.2) and the body forces br, bφ, bθ are components of

the gravitational force of the head acting on the IAB body B. If the deformation is spherically

symmetric, we expect that the shear stress component contributions σrφ, σrθ, σφθ would vanish in

(3.6). It follows that the forces on the head (see derivation in Appendix C) are in part

P =

∫ r◦

ri

[
1

r

(
−2p+ 2C1

r2

R2
− 2C2

R8

r8

)
− ρbr + ρ cos θ

(
2ṙφ̇ cos θ + r cos θφ̈− 2rθ̇φ̇ sin θ

)
−ρ sinφ

(
cos θ(−r̈ + rθ̇2 + rφ̇2) + sin θ(2ṙθ̇ + rθ̈)

) ]
dr (3.7a)

σφφ(ε) = −
∫ π

ε

[
rρ
[
cosφ

(
2rθ̇φ̇ cos θ + (2ṙφ̇+ rφ̈) sin θ

)
+

sin θ
(

2ṙθ̇ cos θ + rθ̈ cos θ + (r̈ − rθ̇2 − rφ̇2)
)

sinφ
]
− ρrbθ

]
dφ, 0 ≤ ε ≤ π (3.7b)

σθθ(ζ) = −
∫ 2π

ζ

[
−rρbθ sinφ+ rρ sinφ cosφ

(
r̈ − rφ̇2

)
− rρ sin2 φ

(
2ṙφ̇+ rφ̈

)]
dθ, 0 ≤ ζ ≤ 2π,

(3.7c)

the internal pressurization, and component stresses {Pi, σφφ(ε), σθθ(ζ)}, where 0 ≤ ε ≤ π, 0 ≤

ζ ≤ 2π.

3.2.2 Contact Forces, IAB Stress Components, and Head Gravitational Force

We assume that the stress vector σ at a point on the IAB surface is uniform and continuous through-

out the IAB boundary so that it linearly depends on the normal map (this follows from Cauchy’s

theorem; readers may see the proof in (Ogden, 1997, §3.3.1)). Recall that the correspondence

between material line elements in the reference and current configuration is

dx = F dX =⇒ F−Tdx = dX.
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Let H = F−T and dA represent an infinitesimal vector element on the material surface at a

neighborhood of point X in B such that dA = NdA, where N is the unit outward normal to the IAB

boundary ∂B◦ in the reference configuration. The corresponding deformed surface of the IAB with

normal n from a surface, da, of the IAB in the current configuration is da = n da. Using Nanson’s

formula, we have the following relation between surfaces in the reference and current configuration

da = J H dA =⇒ n da = J H N dA. (3.8)

where J = det F. Multiplying throughout equation (3.8) by the stress tensor of (2.32), the resultant

contact force on the boundary ∂B in the current configuration may be written as (owing to the

volume preservation on the boundary of the IAB material)∫
∂B
σ n da =

∫
∂B◦

J σH N dA. (3.9)

The Piola-Kirchoff stress tensor field is defined as

S = J HT σ. (3.10)

(see (Ogden, 1997, §4.2)). It follows that the force on an element surface da of the IAB in a

configuration B is

σda = STdA.

Thus, the contact force fci on the boundary ∂B of the ith IAB in a configuration B (as in (3.3)) is

fci = STi dAi = JiσiHidAi = JiσiF−1
i dAi (3.11)

where (3.11) follows from the symmetric property of Fi and σi. For the ith IAB, at the region of

contact, we have the contact force as

fci = Ji

(
R2
i

r2
i

Pi +
Ri

ri
σφφi(ε) +

Ri

ri
σθθi(ζ)

)
dAi (3.12)
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where σjji(υ) are the definite integrals of (3.7). Owing to the isochoric deformation assumption,

we have from (3.12) that

fci =

(
R2
i

r2
i

Pi +
Ri

ri
σφφi(ε) +

Ri

ri
σθθi(ζ)

)
ncidAi. (3.13)

where we have set the outward normal map N to nci of (3.3). The torque is the moment of the

contact force on the ith IAB,and it is given by

τci = fci × rci (3.14)

where rci ∈ R3 is the unit vector between the head reference point and the contact. The soft

contact force of equation (3.3) can be re-stated in terms of the derived stress tensor of (2.32), the

deformation gradient of (2.26) and the Piola-Kirchoff stress field of (3.10) i.e.

Friction Cones’ Contact Force

F̃ci =

I 0

0 nci


 fci

fci × rci

 . (3.15)

where fci and τci are as given in equations (3.13) and (3.14).

3.2.3 Contact Coordinates and Head Velocity

The head will make contact with the IAB at multiple points on its surface, so we describe the

kinematics of these contact points using an atlas2 of contact coordinate charts. In this sentiment,

let Cr1 and Crh respectively represent a fixed reference frame with respect to the IAB and head,

H (see Figure 3.3). Furthermore, let S1 ⊂ R3 and Sh ⊂ R3 denote the respective orientable

manifold3 embeddings of the IAB and head surfaces with respect to frames Cr1 and Crh . We

2An atlas S̃ is a set of surfaces where each surface S ∈ S̃ has an invertible map f(u) from an open subset U of R2

to a surface S ⊂ R3 such that the partial derivatives ∂f
∂u (u),

∂f
∂v (v) are linearly independent for all u = (u, v) ∈ U .

3An orientable manifold is a manifold S for which the Gauss map exists.
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Figure 3.3: Sliding and rolling contact illustration of a single IAB and the Head

shall let S1 and Sr belong to the atlases {S1i}
n1
i=1, {Shi}nr

i=1 respectively. Suppose (f1, U1) and

(fr, Ur) are coordinate systems for the IAB and the head respectively, where fi is an invertible map,

fi(ui, vi) : U → Si ⊂ R3

fi(ui, vi) : {U → Si ⊂ R3|i = 1, h},

from an open subset U of R2 to a coordinate patch Si ⊂ R3 such that the partial derivatives ∂fi
∂ui

and

∂fi
∂vi

are linearly independent. Let p1(t) ∈ S1 and ph(t) ∈ Sh represent the positions of the contact

points with respect to frames Cr1 and Crh respectively at time t. In general, the contact points p1(t)

and ph(t) will not remain in the coordinate systems S1 and Sh for all time. Thus, we choose an

interval I where p1(t) ∈ S1i and ph(t) ∈ Shj for all t ∈ I and some i and j. As seen in Figure 3.3,
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Cp1 and Cph denote the contact frames that coincide with the normalized Gauss frames at p1 and ph

for all t ∈ I , and α1, αh are local coordinate frames that describe the IAB motion with respect to

the head such that

α1 = (u1, v1) ∈ U1, and αh = (uh, vh) ∈ Uh.

Let the angle between the tangent planes of α1, and αh be ψ. The transformation matrix g ∈ Ω ⊂

SE(3) encodes the relative orientation and position of the IAB with respect to the head where Ω is

the set of all relative positions and orientations in the atlasses {S1i}
n1
i=1, {Shi}

nh
i=1 for which the IAB

and head remain in contact. We let the contact coordinates be described by η = (α1, αh, ψ). The

head’s motion is governed by traction forces arising from the friction tangential to the IAB surface

and the pressure normal to the IAB surface. Thus, at the points of contact, if R ∈ SO(3) is the

rotatory component of g, η must satisfy

g ◦ f1(α1) = fh(αh) (3.16a)

Rn1(α1) = −nh(αh) (3.16b)

since the contact locations must coincide for the IAB and the head, and the tangent planes must

coincide so that the outward normal maps n1 : S1 → S2 ⊂ R3 and nh : Sh → S2 ⊂ R3 agree.

Furthermore, the orientation of the tangent planes of α1 and αh is the unique angle ψ ∈ [0, 2π)

between the x-axes of Cp1 and Cph such that

R
∂f1

∂α1

M−1
1 Rψ =

∂fh
∂αh

M−1
h (3.17)

where Mi is a 2× 2 square root of the Riemannian metric tensor (Spivak, 1979) that normalizes the

columns of ∂f
∂α

, i.e.

Mi =

‖ ∂fi∂ui
‖ 0

0 ‖∂fh
∂vi
‖

 (3.18)
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and Rψ is chosen such that a rotation of Cp1 about its z-axis through −ψ radians aligns the x-axes

of the local coordinate system α1 to that of the head’s local coordinate system αh i.e.

Rψ =

 cosψ − sinψ

− sinψ − cosψ

 . (3.19)

Notice that Rψ = RT
ψ = R−1

ψ . We define the normalized Gauss frame at a point u on the surface U

of the orthogonal coordinate system (f, U) as,[
xu yu zu

]
=

[
∂f
∂u
/‖∂f

∂u
‖ ∂f

∂v
/‖∂f

∂v
‖ nu(f(u))

]
(3.20)

where xu, yu, and zu are functions mapping U ⊂ R2 → R3 and nu is the continuous Gauss map

nu : S → S2 ⊂ R3. The motion of the contacts η̇ as a function of components of the twist vector

ξ̂ = (v, w)T is given in (3.21) as the respective first, second, and third equations of contact. Our

derivation, which closely follows (Murray and Sastry, 1990) multi-fingered kinematics’ proof, may

be found in Appendix A.

Equations of Contact

α̇h = M−1
h (Kh + K̃1)−1

(
ωt − K̃1vt

)
(3.21a)

α̇1 = M−1
1 Rψ(Kh + K̃1)−1 (ωt −Khvt) (3.21b)

ψ̇ = ωn + ThMhα̇h + T1M1α̇1 (3.21c)

where

Th = yTh
∂xh
∂αh

M−1
h , T1 = yT1

∂x1

∂α1

M−1
1 , ωn = zTh ω (3.22a)

Kh =

[
xTh , yTh

]T
∂nTh
∂αh

M−1
h , K1 = Rψ

[
xT1 , yT1

]T
∂nT1
∂α1

M−1
1 Rψ (3.22b)

ωt =

[
xTh , yTh

]T [
nh × ω

]T
, vt =

[
xTh , yTh

]T [
(−fh × ω + v)

]T
. (3.22c)
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Note that ωt is the rolling velocity of the head projected onto the tangent plane of the contact and vt

is the sliding velocity; ωn is the relative rotational velocity projected to the contact’s surface normal,

and K̃1 = RψK1Rψ is the curvature of the IAB with respect to the contact frame that coincides with

the normalized Gauss frame at p1(t). The matrix (Kh + K̃1)−1 is the so-called relative curvature

originally coined by (Montana, 1988). Simplifying equations (3.22), we find that

xh =
∂f

∂uh
/‖ ∂f
∂uh
‖, yh =

∂f

∂vh
/‖ ∂f
∂vh
‖, zh = nu(f(u))

Th = yh

[
∂xTh
∂uh

/‖ ∂f
∂uh
‖, ∂x

T
h

∂vh
/‖ ∂f

∂vh
‖
]
, T1 = y1

[
∂xT1
∂u1

/‖ ∂f
∂u1
‖, ∂x

T
1

∂v1
/‖ ∂f

∂v1
‖
]

Kh =

[
xTh , yTh

]T [
∂nT

h

∂uh
/‖ ∂f

∂uh
‖, ∂n

T
h

∂vh
/‖ ∂f

∂vh
‖
]
, K1 =

[
xT1 , yT1

]T [
∂nT

1

∂u1
/‖ ∂f

∂u1
‖, ∂n

T
1

∂v1
/‖ ∂f

∂v1
‖
]

We see that for the contact interaction between an IAB and the head, for a U ⊂ R2 we must choose

an appropriate fi : Ui → Si ⊂ R3 in order to characterize the setup.

3.2.4 Contact Kinematics Examples

On a spherical surface of an IAB with the following coordinate system,

U = {(u, v) : −π/2 ≤ u ≤ π/2, −π ≤ v ≤ π}, f : U → R3

f(u, v) =⇒ (R cosu cos v,−R cosu sin v,R sinu) (3.23)

for some radius R of the sphere. We choose the normal nu = 1/R f . We find that the normalized

Gauss coordinate is

xh =


− sin(u) cos(v)

sin(u) sin(v)

cos(u)

 yh =


− sin(v)

− cos(v)

0

 zh =


cosu cos v

− cosu sin v

sinu

 (3.24)

Going by equations (3.22), the curvature, metric and torsion tensor forms are

K1 =

 1
R

0

0 1
R

 Kh =

0 0

0 0

M1 =

R 0

0 R cosu

Mh =

1 0

0 1

T1 =

 0

− 1
R

tanu


T

Th =

0

0


T

.
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3.2.5 Case I: Rolling contact

If the IAB rolls on the head, and for simplicity, assume that the head is a unit sphere, then the

equations of contact are

α̇1 =

 1
2
ω1

1
2

secu1 ω2

 , α̇h =

 1
2

cosψ ω1 − 1
2

sinψ ω2

−(1
2
v sinψ secuh ω1 + 1

2
cosψ secuh ω2)

 ,
ψ̇ =

1

2
sinψ tanuh ω1 +

1

2
(cosψ tanuh − tanu1)ω2. (3.26)

3.2.6 Case II: Sliding contact

Suppose that the head slides on the IAB, then {ωi}3
i=1 = 0, such that we have the following contact

dynamics,

α̇1 =

−v1

−v2

 , α̇h =

0

0

 , ψ̇ = 0. (3.27)

3.2.7 Case III: Rolling without slipping

If the relative motion between the head and the IAB consists of rolling without slipping, then we

have v1 = v1 = ω3 = 0 so that the contact dynamics are

α̇1 =

−ω2

−ω1

 , α̇h =

 −ω2

ω1 secu2

 , ψ̇ = ω1 tanu2. (3.28)

3.2.8 Case IV: Rotation about normal

Finally, suppose the motion is about the normal, it follows that ω1 = ω2 = v1 = v2 = 0, so that we

have

α̇1 =

0

0

 , α̇h =

0

0

 , ψ̇ = ω3. (3.29)
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3.2.9 General Notes

If the curvature of the head is unknown, we can continually estimate it using proprioceptive sensors

to measure the velocity of the IAB with respect to to its fixed reference frame and consequently

with respect to the head. Tactile sensing can then be used to measure the position of the region

of contact on the IAB surface. Examples for estimating the curvature of the head can be found in

(Montana, 1988).

3.3 Multi-IAB Forward Kinematics

At a material point, r, of the IAB surface in the configuration B, the 3D position of a point based on

the radial distance r from the origin and the angles φ and θ is given by (2.21). The configuration

space of the IAB with respect to the spatial frame at a certain time can then be described by

gst(r) : r→ gst(r) ∈ SE(3) while the strain state of the IAB is characterized by the strain field

ξ̂i(r) = g−1
i

∂gi
∂r
∈ se(3) = g−1

i g′i (3.30)

with the respective g′is being the tangent vector at gi such that g′i ∈ Tgi(r)SE(3). For an incompress-

ible IAB, the strain field becomes

gi(r) = exp‖r‖ξ̂i = I + ξ̂i ‖r‖+
ω̂

‖ω‖2
(1− cos(‖r‖‖ω‖)) ξ̂2

i +
ω̂3

‖ω‖3
(‖r‖‖ω‖ − sin(‖r‖‖ω‖)) ξ̂3

i .

(3.31)

From the derived relationship between the head contact coordinates and the relative motion (vt, ωt)

of the IAB i.e. equation (3.21), we can associate a Jacobian that maps IAB velocities to head

position and orientation. This can be easily constructed since we have the form of the contact

equations (3.21).

We assume that the IABs make a contact with the head throughout manipulation to ease control.

In addition, we assume that the manipulation is stable and prehensile. A forward kinematic map

Kiabi(ri) : Rni → SE(3) maps from respective IAB positions to head position and orientation. The
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velocity of the head with respect to a fixed base frame in terms of IAB velocities can be written in

terms of the forward kinematics Jacobian: viabi

ωiabi

 =
∂Kiabi

∂ri
dr
dt
K−1
iabi

= Ji(ri)ṙi (3.32)

where ri is the spatial position of IAB i, and (vTiabi , ω
T
iabi

) ∈ R6 represents the linear and angular

velocity of the ith IAB about its screw basis. In essence, ri ∈ R3 with its rows of mapped to scalars

by an appropriate choice of norm. The contact between the head and the IABs is mapped by the

Jacobian

Jci(ξh, ξiabi) =

I ŵ(rci)

0 I

 Jri , (3.33)

where Jci : ξ̇ri →
[
vTci , wTci

]T
, rci ∈ R3 is a vector between the head reference point (e.g. the

center of mass) and the contact with the ith IAB, ξh is the position and relative orientation of the

head, ξiabi is the position and relative orientation of the ith soft robot in world coordinates, ŵ(rci) is

an anti-symmetric matrix for the vector rci as defined in equation (2.10), and ξr = (ξr1 , ξr2 , · · · , ξr8)

are the positions and orientations for each of the 8 IABs. where the manipulation map, Gi is made

up of matrices of the form

Gi(ξh, ξr) =

 I 0

ŵ(rci) I

Bi(ξh, ξr), (3.34)

and again rci is a function of object orientation. The net force on the head is a sum of the individual

forces arising from each IAB. Owing to the linearity of each individual IAB’s contact force, the

resultant head force can be stitched together to form G, i.e.

F̃h =

[
G1, . . . , G8

] F̃c1

F̃c8

 = GF̃c, (3.35)
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where Fh ∈ R6 and Fc ∈ Rm1 × Rm2 × . . .× Rm8 . The internal or null forces is captured by the

null spaceN (G) of the manipulation map G; this forces correspond to zero net force on the head of

the patient. Each F̃ci in (3.35) is of the form (3.15).

Following (Murray and Sastry, 1990), we define the velocity constraint dual of (3.34) as the

constraint between the relative velocity of the head and that of the twist velocities of the contact

point  ṽci

ω̃ci

 =

I ω̂(rci)

0 I


 vch

ωch

 . (3.36)

For a conjugate twist vector (vTc , ω
T
c )T to the the forces exerted by the IABs, fc, we have the

following  vc

ωc

 = GT

 vch

ωch

 . (3.37)

Given a selection matrix BT
i (ξh, ξiabi) ∈ Rm

i for a particular manipulation task, where mi is the

range of all the forces and moments for the chosen contact primitive (or union of contact primitives),

the manipulation map for the ith IAB can be written as,

GT
i (ξh, ξiabi)ξh = BT

i (ξh, ξiabi)Jci(ξh, rri)ξ̇iabi (3.38)

where Jci is the contact Jacobian for the ith soft robot, and ξh denotes the velocity of the head. In

the arrangement of Figure 3.1, for the 8 soft robots, the manipulation constraint of the system can

be written as 

GT
1

GT
2

...

GT
8


 vh

wh

 =



BT
1 Jc1 0 · · · 0

0 BT
2 Jc2 · · · 0

...
... . . . ...

0 0 · · · BT
8 Jc8





ṙiab1

ṙiab2
...

ṙiab8


, (3.39)

59



Below, we give examples of the composition of the head manipulation map under different

scenarios on a treatment table. These would be helpful when we use (3.38) to determine the head

velocity in world coordinates. In these examples, there is an implicit assumption that the angle of

tilt of the head around the axis of normal is measurable by a gyroscope or a vision sensor or other

sensors of similar facsimile. We show how to find the manipulation map of the head when the IAB

kinematic chain underneath the head are passive, and only the four IABs surrounding the head are

actuated (see Figure 3.1) i.e. roll motion of the head. We then present finding the manipulation map

of th ehead when all 8 IABs are simultaneously active i.e. the pitch, roll and yaw motion of the

head.

3.3.1 Case I: Planar and Roll Manipulation

Consider a planar manipulation of the head as shown in Figure 3.4. Again, we use the cone of

forces to model a point contact (Nguyen, 1988) between the head and soft robots. In this case, the

robots beneath the head are passive while the side robots are actuated. For each IAB, the orientation

of the vector rci with respect to the vertical, measured counterclockwise is φi when the head lies

on the xy plane; the manipulation matrix maps IAB forces into x and y forces as well as a torque

perpendicular to the xy plane. We have the manipulation map as

G1 =


I 0

ω̂


−rc1 sinφ1

−rc1 cosφ1

0

 I





1 0

0 1

0 0

0 0

0 0

0 0


, G2 =


I 0

ω̂


−rc2 sinφ2

rc2 cosφ2

0

 I





1 0

0 1

0 0

0 0

0 0

0 0


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Figure 3.4: Planar head manipulation with net force on the head.

G3 =


I 0

ω̂


rc3 sinφ3

rc3 cosφ3

0

 I





1 0

0 1

0 0

0 0

0 0

0 0


, G4 =


I 0

ω̂


rc4 sinφ4

−rc4 cosφ4

0

 I





1 0

0 1

0 0

0 0

0 0

0 0


(3.40)
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whereupon, the planar manipulation map for the head becomes

G(x, y, φ) =



1 0 rc1 cosφ1

0 1 −rc1 sinφ1

1 0 −rc2 cosφ2

0 1 −rc2 sinφ2

1 0 −rc3 cosφ3

0 1 rc3 sinφ3

1 0 rc4 cosφ4

0 1 rc4 sinφ4



T

(3.41)

for all forces with respect to the xy coordinates shown in Figure 3.4.

3.3.2 Case II: Planar Manipulation: Null Map for Zero Net Force

Now consider the case where all the vectors between each IAB in the xy plane and the head have

equal magnitude such that the angle made by the head with respect to the vertical axis (y) is φ

(see Figure 3.5). The head rolls around the vertical by an angle φ as shown. It follows that the

manipulation map is

Gi(x, y, φ) =


I 0

ω̂


±r sinφ

±r cosφ

0

 I





1 0

1 0

0 0

0 0

0 0

0 0


(3.42)

so that

G(x, y, φ) =


1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

r cosφ −r sinφ −r cosφ −r sinφ −r cosφ r sinφ r cosφ r sinφ

 (3.43)
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Figure 3.5: Planar head manipulation with no net force on the head.

where again all forces are measured with respect to the xy plane of Figure 3.5. The IAB’s x and y

forces result in an equal x and y forces on the head; the overall torque is proportional to the head

orientation. When forces are applied along the line connecting diagonally oriented IABs (e.g. the

lines connecting IAB1 and IAB3), there will be no net force on the head as the null space of the map
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becomes spanned by the vector

0 0 − sinφ
cosφ

−r − sinφ
cosφ

−r 0 −r 0 −r

0 −r sinφ
cosφ

0 − sinφ
cosφ

r 0 0 0 0

0 r 0 0 0

0 0 r 0 0

0 0 0 r 0

0 0 0 0 r



. (3.44)

3.3.3 Case III: Head Motion along xy plane and z

Consider the case where all 8 soft robots are actuated such that the head is raised to a height, h, on the

treatment machine, and it is tilted along the xy plane as shown in left figure of Figure 3.6. Suppose

the orientation of the head is by an angle φ as in Figure 3.5. We now describe the manipulation map

for the IAB-head system.

Gi(x, y, φ) =


I 0

ω̂


±r sinφ

±r cosφ

h

 I





1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0


(3.45)

so that

G(x, y, φ) =


1 0 1 0 1 0 1 0

0 1 0 1 0 1 0 1

r cosφ −r sinφ −r cosφ −r sinφ −r cosφ r sinφ r cosφ r sinφ

 (3.46)

64



Figure 3.6: Head manipulation with all eight bladders. Head depicted with the silver-colored solid.

3.4 Multi-IAB Dynamics

From the determinism principle for stress (Truesdell and Noll, 1965), the Cauchy stress σ at any

point in a material at time t for any motion up to time t determines the stress response of the material

for any arbitrary motion history up to and including time t. We will derive the dynamics of the IAB

system in the strain field of the deformation. The potential and kinetic energy of the system are

considered to be derived from the constitutive strain field relations that characterize the deformation

as presented in Chapter 2. Given our derivation of the strain-stress relation in equation (2.32),

we now use Lagrangian deformation analysis to derive the dynamic equations of the continuum

multi-IAB system of Figure 3.1.

The constitutive law which describes the macroscopic IAB material behavior with respect to a

reference frame, T , at a time, t can be completely characterized by ten dependent variables viz.,
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three components of the position vector, six component stress tensor variables (the shear and normal

stress components), and the density, ρ, of the material (Ogden, 1997, §4.1.1).

3.4.1 Lagrange’s Equations

We are interested in the final position and orientation of the IAB as a whole rather than the system

of particles that characterize a deformation at every time t. For a kinetic energy T and a potential

energy V , the Lagrangian, L, of the system in generalized coordinates is the difference between the

kinetic and potential energy, i.e.

L(r, ṙ) = T (r, ṙ)− V (r). (3.47)

The equations of motion for the pneumatic system is of the form

d

dt

∂L

∂ṙi
− ∂L

∂ri
= τi, i = 1, . . . ,m (3.48)

where τi is the torque acting on the ith generalized coordinate. Written in matrix form equation

(3.48) becomes

d

dt

∂L

∂ṙ
− ∂L

∂r
= τ . (3.49)

It now remains to derive the kinetic and potential energies for the IAB material. Let the velocity of

an IAB material particle x in the current configuration at time t be v(r, t), then the Eulerian velocity

gradient tensor can be defined as

Γ = grad v(r, t). (3.50)

The first law of Cauchy’s law of motion will allow us to derive the balance of mechanical energy of

the system. Multiplying equation (2.36) throughout by v(r, t), and abusing notation by dropping

the arguments of v(r, t), we find that

div (σT · v) + ρb · v = ρv · v̇

=⇒ div (σTv)− tr(σ Γ) + ρb · v = ρv · v̇. (3.51)
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Following mass conservation, we integrate over volume B and employ the divergence theorem, so

that the above relation yields the balance of mechanical energy:∫
B
ρb · v dv +

∫
∂B
fρ · v da =

d

dt

∫
B

1

2
ρv · v dv +

∫
B

tr(σ Γ) dv (3.52)

where fρ is the IAB body force density, and the left hand side of the foregoing is the so-called rate of

working of the applied forces. The symmetry of the stress tensor σ implies that tr(σ Γ) = tr(σΣ)

where Σ is given in terms of the Eulerian-strain rate tensor,Γ i.e.

Σ =
1

2
(Γ + ΓT ) (3.53)

so that the kinetic energy density and stress power are given by,

T (r, ṙ) =
1

2
ρv · v, V (r) = tr(σΣ). (3.54)

The stress-strain relation for the IAB we have presented are only related through the deformation

tensor dependence, implying that the material is Cauchy elastic. For Cauchy elastic materials, the

stress power term is not conserved during deformation making integration over the material body B

physically unrealistic (Ogden, 1997). For such materials, we may set the stored strain energy V to

an arbitrary constant (e.g. an identity or V (I) = 0). We can derive the overall torque dynamics of

an IAB system(see Appendix B) as

τ =


ρ 0 0

0 ρ r2 0

0 0 ρ r2 sin2 φ



r̈

φ̈

θ̈

+ diag


2 ρ r

(
θ̇ sin2 φ+ φ̇

)
ρr
(
rθ̇ sin 2φ− φ̇

)
−ρrθ̇ sinφ (r cosφ+ sinφ)



ṙ

φ̇

θ̇

 (3.55)

Rewriting equation (3.55) in terms of the torque for each soft robot in Figure 3.1, we have the

dynamics for IAB j as

Miabj(rj, φj)r̈j + Ciabj(rj, φj, θ̇j, φ̇j)ṙj = τj (3.56)
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where

Miabj =


ρj 0 0

0 ρj r
2
j 0

0 0 ρj r
2
j sin

2 φj

 and Ciabj = diag


2 ρj rj

(
θ̇j sin

2 φj + φ̇j

)
ρjrj

(
rj θ̇j sin 2φj − φ̇j

)
−ρjrj θ̇j sinφj (rj cosφj + sinφj)


are the respective inertia and Coriolis forces matrices for the soft robot, j while τ is the actuator

torque. Since the material of the IAB is incompressible, the mass density is uniform throughout the

body of the material. In general, we write equation (3.56) as

Miab(r̃)¨̃r +Ciab(r̃, ˙̃r)ṙ = τ̃ (3.57)

where r̃ ∈ Rn1 × Rn2 × · · ·Rn8 gives the generalized coordinates for all the IABs and τ̃ are the

vectorized torques of the individual robots.

3.5 Newton-Euler Equations for IAB and Head System

The dynamics of the head is a form of (3.57) but without the actuator torques. In local coordinates,

it has the form

Mh(ζ)ζ̈ +Ch(ζ, ζ̇)ζ̇ +Nh(ζ, ζ̇) = 0 (3.58)

with ζ being a local parameterization of the position and orientation of the head, xh ∈ SE(3), and

Nh being the gravitational and frictional forces. The head and the multi-DOF IAB system are

connected via manipulation constraint i.e.

GT (ζ, r)ζ̇ = J(ζ, r)ṙ. (3.59)

Suppose that the velocity constraint produces a virtual displacement constraint in δζ and δr such

that for q = (ζ, r), we have

δr = J−1(q)GT (q)δζ
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the Lagrange equations become (
d

dt

∂L

∂q̇
− ∂L

∂q
− (τ , 0)

)
δq = 0 (3.60) d

dt
∂L
∂ṙ −

∂L
∂r − τ

d
dt
∂L
∂ζ̇
− ∂L

∂ζ


T  δr

δζ

 = 0 (3.61)

(
d

dt

∂L

∂ṙ
− ∂L

∂r
− τ

)
δr +

(
d

dt

∂L

∂ζ̇
− ∂L

∂ζ

)
δζ = 0

GJ−T
(
d

dt

∂L

∂ṙ
− ∂L

∂r
− τ

)
δζ +

(
d

dt

∂L

∂ζ̇
− ∂L

∂ζ

)
δζ = 0 (3.62)

from where (
d

dt

∂L

∂ζ̇
− ∂L

∂ζ

)
δζ +GJ−T

(
d

dt

∂L

∂ṙ
− ∂L

∂r

)
= GJ−Tτ (3.63)

given the arbitrariness of δζ . Equations (3.63) alongside (3.59) completely describe the system.
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CHAPTER 4

A SYSTEM IDENTIFICATION APPROACH TO PATIENT POSITIONING

4.1 Introduction

In this chapter, we describe our early works on the assessment of motion correction mechanisms that

demonstrate proof-of-concept studies of frameless and maskless patient immobilization systems.

The immobilization systems addressed here concern the identification of the complete head and

IAB immobilization systems for realizing 1-DOF and 3-DOF kinematic control of a head and neck

phantom. Using vision-based sensing of head and neck phantoms, we develop state-,observer-based

and neuro adaptive feedback control of a generic head and neck system above a treatment table.

Virtually all the work described in this chapter have previously appeared in the following IEEE

publications (Ogunmolu et al., 2015b, 2016b), and (Ogunmolu et al., 2017) 1 2 3.

4.2 One-DOF Testbed

The goal here is to address the non-rigid motion compensation during H&N RT. We control the

1-DOF motion of th head, raising or lowering a generic patient’s head, lying in a supine position,

to a desired height above a treatment table. The system consists of a single inflatable air bladder

(IAB), a mannequin head and a neck/torso motion simulator, two different Kinect RGB-D cameras

1©2015 IEEE. Reprinted, with permission, from Olalekan Ogunmolu, Xuejun, Gu, Steve Jiang, and Nicholas Gans,
A Real-Time Soft Robotic Patient Positioning System for Maskless Head-and-Neck Cancer Radiotherapy: An Initial
Investigation. IEEE International Conference on Automation Science and Engineering, Gothenburg, Sweden, August
2015.

2©2016 IEEE. Reprinted, with permission, from Olalekan Ogunmolu, Xuejun, Gu, Steve Jiang, and Nicholas
Gans, Vision-based Control of a Soft Robot for Maskless Head and Neck Cancer Radiotherapy. In IEEE International
Conference on Automation Science and Engineering, Fort Worth, Texas, August 2016.

3©2017 IEEE. Reprinted, with permission, from Olalekan Ogunmolu, Adwait Kulkarni, Yonas Tadesse, Xuejun,
Gu, Steve Jiang, and Nicholas Gans, Soft-neuroadapt: A 3-DOF neuro-adaptive patient pose correction system for
frameless and maskless cancer radiotherapy. In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Vancouver, BC, Canada, September 2017.
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that infer the patient’s position, two current-controlled pneumatic valve actuators, and a National

Instruments myRIO microcontroller. Here, we extended and improve our previous work (Ogunmolu

et al., 2015b) with a better vision tracking and localization of the head’s position by filtering and

fusing the two RGB-D estimates of the head’s position and orientation. We improve on the system

identification of the soft-robot system and now incorporate an optimal control system. The result is

a much improved motion control.

The RGB-D sensors are mounted directly above the head for raw head position and velocity

measurements, while local Kalman filters (KFs) provide two estimates of the head position and

velocity. The sensor estimates are aggregated using a track-to-track KF-based sensor fusion

algorithm. We apply the fusion result in a new robust control law for the pneumatic actuator valves,

thereby regulating air pressure within the IAB and moving the patient’s head as desired. The

real-time controller was deployed on a National Instruments myRIO embedded system running

LabVIEW 2015. The LabVIEW algorithms were processed within a Windows 7 virtualbox running

on the Ubuntu host workstation.

In our setup, two microsoft kinect RGBD cameras measured the head displacement from the

table, upon actuation, while a medical pillow around the head reduced infra-red wavelengths

scattering caused by the hair on the mannequin head, and negated undesirable head rotations. We

used two cameras to avoid 3D measurement errors that are prone to arise when using depth sensing.

Essentially, a Kinect Xbox 360, and a Kinect for Windows v2 sensor estimated the head position

and velocity (see Figure 4.1). The two sensors use different electronic perception technologies to

determine distance of an object from the camera origin. They therefore have different lateral and

range resolutions as well as different noise characteristics. The head pose estimation on a 32GB

RAM mobile workstation with Intel Core i7-4800MQ processor running 64-bit Ubuntu Trusty on a

Linux 4.04 kernel. All real-time control processing were implemented on a National Instruments

myRIO embedded system running LabVIEW 2014.
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Figure 4.1: One-DOF Experimental Testbed

4.2.1 Vision-Based Head Pose Estimation

In the clinic, a very accurate stereo vision system (e.g. Align3D’s VisionRT 3D surface imaging

system, UK) is used to measure the patient’s position on the treatment table. For our protypical

verification, we adopt the Kinect Xbox and v1 cameras for laboratory testing. The v1 sensor

uses the time-of-flight (ToF) perception principle, where light pulses illuminate a scene and depth

is calculated by the phase shift of the returned light signals. The active infra-red reduces the

dependence on ambient lighting. Both sensors acquires images at 30Hz interactive rate. The v1

has in-built noise improvement capabilities due to the limited sensor resolution that the Xbox

sensor does not have (as the chart of Figure 4.2 reveals), necessitating the need for filtering the

measurements from the Xbox. So we perform local Kalman Filter estimates of each sensor’s

observations, then fuse the estimates using a variance-weighted sensor fusion algorithm (to be

described shortly).
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Figure 4.2: Noise Floor of Kinect Xbox Sensor vs. Kinect v1 Sensor

The face was detected using the Haar Cascade Classifiers (HCC) proposal in (Viola and Jones,

2001). To reduce memory consumption in searching for facial regions in an image, we first spatially

downsampled the raw spatial image resolution from the camera. To achieve robust detection, the

minimum number of neighbors in each candidate rectangle feature was determined based on our

experience. The search area within an image was chosen to be within the range of (5 × 5) pixels

and (20 × 20) pixels. This gave us more than 90% face detection rate for both sensors. A similar

approach was used for the eye classifier. The final implementation achieved a frame rate of 15Hz

for each sensor running independently on the Linux host computer.

4.2.2 Improved Pose Estimates

Our goal is to find observation estimates x̂(i) that minimizes the mean-squared error to the true

measurement x(i), given a measurement sequence z(1), · · · , z(j), i.e.

x̂(i|j) = arg min
x̂(i|j)∈Rn

E{(x(i)− x̂)T (x(i)− x̂)|z(1), · · · , z(j)}

, E{x(i)|z(1), · · · , z(j)} , E{x(i)|Zj} (4.1)
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where the obtained estimate is the expected value of the state at time i given observations up to time

j. The covariance of the estimation error is given by

P(i|j) , E{(x(i)− x̂(i|j))T (x(i)− x̂(i|j)) |Zj}. (4.2)

Assuming that the state model is common to both sensors, and the distance from the v1 sensor’s

principal point to the forehead of the patient is d(k), we can form the state vector as x(k) =

[d(k), ḋ(k)]T ∈ R2, and we define ∆T as the time between steps k− 1 and k. The update equations

are

x(k) = F(k)x(k − 1) + B(k)uk + Gkwk (4.3)

where F(k) ∈ R2×2 is the state transition matrix given by

F =

1 ∆T

0 1

 (4.4)

u(k) ∈ R2 is the control input, B(k) is the control input matrix that maps inputs to system states,

G(k) ∈ R2×2 process noise matrix, and w(k) ∈ R2 is a random variable that models the state

uncertainty. In the absence of inputs Bkuk = 0, and the model becomes

xk = Fkxk−1 + Gkwk (4.5)

where wk is the effect of an unknown input and Gk applies that effect to the state vector, xk. The

process noise is assumed unknown and is modeled as uncontrolled forces causing an acceleration

ak in the head position (ak is thus a scalar random variable with normal distribution, zero mean and

standard deviation σa). We model this into (4.3) by setting Gk to identity and set w(k) ∼ N (0,Q(k))

where the covariance matrix Q(k) is set to a random walk sequence defined by Wk = [∆T 2

2
,∆T ]

T
.

Therefore, we find that

Q = WWTσa
2 =

∆T 4

4

∆T 3

2
∆T 3

2
∆T 2

σa2. (4.6)
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Say the head displacement at time k as measured by the Xbox and v1 are z1(k) and z2(k),

respectively, the sensors’ measurements were mapped to the v1’s reference frame and modeled as

zs = Hs(k)x(k) + vs(k) s = 1, 2 (4.7)

where Hs(k) =

[
1, 0

]T
maps the system’s state space into the observed space, and vs(k) ∈ R is a

random variable that models the sensor error. We define vs(k) as a normally distributed random

variable with zero mean and variance σ2
rs and assume that the sequences v1(k),v2(k), w(k) are

independent and uncorrelated in time. At each time step, k, each local KF’s priori and posteriori

estimates were computed through the prediction and update phases,

Prediction Phase:

x̂k|k−1 = Fx̂k−1|k−1 + Bkuk

Pk|k−1 = FkPk−1|k−1FkT + Qk (4.8)

where x̂k|k−1 and Pk|k−1 are the state prediction vector and the prediction covariance matrix respec-

tively.

Update Phase:

K(k) = P(k|k − 1)H(k)T [H(k)P(k|k − 1)H(k)T + R(k)]
−1

x̂(k|k) = x̂(k|k − 1) + K(k)(z(k)−H(k)x̂(k|k − 1))

P(k|k) = (I−K(k)H(k))P(k|k − 1) (4.9)

where K(k), x̂(k|k, and P(k|k) are respectively the KF gain, posteriori state estimate and its state

covariance matrix.

Figures 4.3 and 4.4 show the local filter estimate results of the observation from both the Kinect

Xbox and v1 sensors post-filtering. The noise floor becomes noticeably reduced by each sensor after

the KF filtering. The steady-state performance of both sensors include a reduction in the variance of

the observation sequence by 80.81%, while the Kinect v1 shows an improvement in noise rejection

by almost 60% .
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Figure 4.3: KF results for the Xbox observation
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4.2.3 Sensor Fusion

We combined the two filtered estimates into a track-to-track fused global estimate at a central fusion

site. We passed each estimate through unix named pipes, and again assume a state model common
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Figure 4.5: Track-to-Track Fusion of Sensors’ Local Track Estimates.

to both sensors; we adopt a variance-weighted average of each local track in the global track fusion

algorithm as proposed by (Durrant-Whyte, 2001)

x̂(F )(k|k) = P(F )(k|k)
N∑
i=1

[
P(s)−1(k|k)x̂(s)(k|k)

]
where P(F )(k|k) =

[
N∑
i=1

P(s)−1(k|k)

]−1

.

Figure 4.5 illustrates the fusion scheme results against single Kalman filters results during a

head-raising motion. The fusion of the local tracks produces better estimates, with improved signal

to noise ratio. The fused estimate assigns more weight to the less noisy signal from Kinect v1.

Through the implementation of the local tracks and a global track KF estimator, we improved the

accuracy of the effective signal to be used in our control algorithm to no more than a standard

deviation of 0.75mm from the true position of an object. The noise spikes in the fused tracks when

the process state estimates are yet to converge (as seen in Figure 4.5) can be attributed to the noisy

initialization of pixels in the sensors before they attain their steady state values. On average, it takes

approximately 30 seconds for the pixel values in the Kinect sensor to reach their final steady state
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values (Andersen et al., 2012). This can be avoided by running the fusion algorithm for at least 2

minutes before the fused signal is used for any control purposes.

4.2.4 Parametric Identification and Control

Having found reliable sensor estimates, we proceed to identify the model of the system dynamics.

We collect input-output data points, and fit a model using the prediction error model (PEM) (Ljung,

1999). The PEM model works by finding the optimal parameters, θ? through the minimization of an

appropriate cost function

G(t) = arg min
θ

VN(θ, ZN)

where VN(θ, ZN) =
∑K

k=1

∑n
i=1

1

2
(ŷi(k)− yi(k))2, and ZN = {u(1), · · · , u(N) y(1), · · · , y(N)}

is the vector of past input and output (fused estimates) measurements over an interval [1, N ]. We

defined a state space realization after the least-squares minimization of the above criterion so that

we obtained the following second-order approximation of the system,

x(k + Ts) = Ax(k) + Bu(k) + Ke(k)

y(k) = Cx(k) + Du(k) + e(k) (4.10)

where Ts is the sampling period, e(k) is the modeled zero-mean Gaussian white noise with non-zero

variance,

A =

 0 1

−0.9883 1.988

 , B =

 −3.03e− 07

−4.254e− 07


C =

[
1 0

]
, D = 0, and K =

[
0.9253 0.9604

]T
, (4.11)

with (A,B) being stabilizable and (A,C) being detectable. We then applied the standard LQG

controller on the model of (4.11) by minimizing the cost,

J =
K∑
k=0

xT (k)Qx(k) + u(k)T Ru(k) + 2x(k)T N u(k), (4.12)
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where K is the terminal sampling instant, Q is a symmetric, positive semi-definite matrix that

weights the n-states of the A matrix, N specifies a matrix of appropriate dimensions that penalizes

the cross-product between the input and state vectors, while R is a symmetric, positive definite

weighting matrix on the control vector u. The quadratic cost function in (4.12) allows us to find an

analytical solution (controller sequence) to the minimization of J over the prediction horizon, ny

∆u = arg min
∆u

J (4.13)

where ∆u is the future control sequence and the first element in the sequence is used in the control

law at every time instant. Choosing Q, and R in (4.12) as

Q =

1.0566 0

0 1.0566

 , R =

[
0.058006

]
. (4.14)

We then construct a full online estimator for the identified plant as in Figure 4.6, whereby the noise

processes are assumed to be independent, white, Gaussian, of zero mean and known covariances.

The optimal controller gains, Kopt, are determined from

Kopt = R−1(BT P +NT ) (4.15)

(Anderson and Moore, 1990) where P is the solution to the algebraic Riccati equation earlier and

E[w(k)w′(τ)] = R(k)δ(k − τ). Therefore, the online optimal estimate, x̂(k + 1) of x(k) is

x̂(k + 1) = A(k)x̂(k) +Klqg [C(k)x̂(k)− y(k)] (4.16)

where x̂(k0) = E [x(k0)]. The observer is equivalent to a discrete stochastic Kalman filter that

estimates the optimal state x̂(k|k) as shown in Figure 4.6. The online, unbiased estimate is

x̂(k + 1) = A(k)x̂(k)−Kobs[C(k)x̂(k)− y(k)] +B(k)u(k). (4.17)

Figure 4.7 shows the results. We notice a settling time of approximately 24 seconds before we

reach steady state. The delay arises from our design requirements and is not a drawback in clinical
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Figure 4.6: Full Linear Quadratic Gaussian Plant Estimator

trajectory tracking where we must ensure smooth head motion to desired target. It is also seen that

the controller exhibits relatively smooth tracking within a 1.5 mm standard deviation over time after

a relative overshoot of 5mm in bottom graph of Figure 4.7. The overshoot can be explained by the

estimator’s search for a steady state region based on the time it takes for the pixel values of the

sensors to reach steady state. The controller tracks the reference to within ±2mm.

4.3 Three DOF System

Here, we use 3 collocated soft robots around a custom-designed mannequin head to test the fea-

sibility of the head immobilization system. We propose a model-based and a supervised learning

approach. We present Soft-NeuroAdapt, a set of three soft actuators that employ a neuro-controller
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Figure 4.7: LQG Controller Position Compensation Results.

to adaptively compensate for positioning deviations. Exhibiting highly nonlinear dynamics, con-

trolling soft robots for precise actuation is complicated. While a closed-form model may work in

highly-structured environments, system parameters and dynamics change with different patients’

head and upper torso anatomy, creating the need for re-estimating system parameters. Our goal is to

derive a learning-based controller, going beyond task-specific, expert-driven methods in order to

adaptively generalize to new control systems. For such higher-level tasks, it suffices to learn the

underlying system dynamics in real-time, than building hand-engineered, finite-state machines to

implement intended behaviors.

Following our prior investigative studies, (Ogunmolu et al., 2015a, 2016a), on 1-DoF soft-robot

compensation systems, we present a 3-DoF soft robot system that addresses 3-DoF involuntary

intrafractional motions of the head and neck (H&N) region during F&M RT. In what follows, we

present a neural network dynamics estimator that learns a system model, then adapts to the model in

its control law to provide bounded tracking of set trajectory. The controller corrects intrafractional

(involuntary) patient motions along three defined axes namely head pitch, roll and elevation angles
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Figure 4.8: Hardware Setup and Head Coordinate System

for a patient lying in a supine position on a table. We use three inflatable air bladders (IABs),

actuated through a system of inlet and outlet solenoid proportional valves. The controller uses

state feedback to provide bounded stability of states, a reference trajectory component to provide

command tracking and a neural-network component to adaptively converge states that start outside

of the sphere of stability into the region of stability. We perform head pose tracking in the 3D space

of a stereo-camera, and we conduct experiments to validate the proposed bio-pneumatic system and

controller.

4.3.1 Hardware Overview

The actuation mechanism consists of three custom-designed elastomeric IABs. The base IAB (see

Figure 4.8) is 180mmx280mm when flat and inflates to a maximum height of ∼ 75 mm, while

the other two are 180mmx140mm in size. The IABs consist of inflatable rubber, encased in a

breathable foam pad for comfort, modified to be the size of an average adult male head. The IABs

have separate inlet and outlets openings, connected with crack-resistant polyethylene tubing (1/8”

ID and 1/4” OD), which sustains pressure of up to 32psi.

Each hose leads to a proportional solenoid valve, which is connected to rectangular manifolds

(one manifold to the inlet supply and the second to the outlet supply). We use six Dakota Instruments

EM valves (Model PSV0105, Orangeburg, NY, USA) to supply proportional torques to the soft
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actuators. A regulated air canister supplied constant air pressure at 15 psi to the inlet-air conveying

manifold, while a suction pump supplied vacuum pressure at 12 psi to the valves that removed

air from the bladders. The air rate of flow into or out of each bladder was controlled via custom-

built voltage regulating circuits which got PWM signals from a National Instruments (NI) myRIO

microcontroller.

We 3D printed a custom manikin head, measuring 155 × 240 × 200 mm (W × L ×D), and

comparing between 50% and 75% weight of a typical adult male head or 99% of a typical adult

female head. The head was fitted with a ball-joint in the neck to replicate motion of the human

head about the neck. An Ensenso 3D camera is mounted approximately 45◦ above the head to

measure the pose of the head in real time. All vision processing, systems modeling and control

laws were computed on a CORSAIR PC. We exchange the neuro-control and sensor signals via

the publish-subscribe IPC of the ROS middleware installed on the PC. Adaptive control inputs

were sent via udp packets to the RIO microcontroller. The hardware is shown on the left inset

of Figure 4.8. The reference frame of the head (right inset of Figure 4.8)is described as follows:

the pitch/x-axes points from the left ear out of the right ear, the yaw/z-axes points from the back

of the head through the forehead through, and the roll/y-axes goes from the neck through the top

of the head. The left and right bladders control the roll angles/x-axes motions while the bladder

underneath the head, henceforth referred to as the base bladder, controls the pitch angles and z-axis

motions.

4.3.2 Vision-based Pose Estimation

We acquired a 3D camera from Ensenso GmbH (model N35) to reconstruct the surface image and

measure head pose. The N35 camera captures multiple image pairs during exposure; each pair is

made up of different patterns – controlled by piezo-actuators. A stereo-matching algorithm then

gathers information from all image pairs after capture to produce a high-resolution point cloud

of the scene (Ensenso, Ensenso). We mounted the 3D sensor such that its lens faced the head at
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approximately 45◦ from the vertical during experiments. We seek to control the motion of the head

about three axes, namely z, pitch and roll axes.

The dense point cloud of the scene has (i) marked jump in rendered points along the z-axis of the

camera due to the single view angle by the camera; (ii) the scene clutter and lack of multiple camera

view angles does not affect the representation of the face; (iii) thus, through spatial decomposition

of the scene, we can separate the face from the scene. However, the point cloud is computed from

monochromatic IR image pairs (with no texture information) making morphological operations

difficult. Due to the multiple image pairs used in 3D reconstruction to generate a highly accurate

measurement, the camera is limited to a maximum frame rate of 10Hz. Inspired by Rusu’s work

(Rusu, 2009), we divide the segmentation problem into stages, with each stage involving segmenting

out candidates that do not belong to the object we want to identify (the frontal face) in the scene.

Our engineering philosophy in the segmentation phase is inspired by spatial decomposition methods

that determine subdivisions and boundaries to allow retrieval of data that we want given a measure

of proximity. In this case, we know that the location of the table cannot exceed a given height during

experiments, and the camera’s position is fixed while the head moves based on bladders’ actuation.

Separating objects that represent planar 2D geometric shapes from the scene therefore simplifies the

face segmentation algorithm. By finding and removing objects that fit primitive geometric shapes

from the scene, clustering of the remaining objects would yield the face of the patient in the scene.

We fit a simplified 2D planar object to the scene such that searching for points pi ∈ P that support a

2D plane can be found within a tolerance defined by the inequality 0 ≤ |d| ≤ |dmax|, where |dmax|

represents a user-defined threshold to segment out (Rusu, 2009).

We proceed as follows: (i) the point cloud of the scene was acquired from the computed

disparity map of the two raw camera images; (ii) to minimize sensor noise whilst preserving 3D

representation, the acquired point cloud was downsampled using a SAmple Consensus (SAC)-based

robust moving least squares algorithm (RMLS) (Rusu, 2009); (iii) we then searched for the edges of

2D planar regions in the scene with Maximum Likelihood SAmple Consensus (MLESAC)(Torr,
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Figure 4.9: Point Cloud Segmentation

2000), and we bound the resulting plane indices by computing their 2D convex hull; (iv) model

fitting stage extrudes the computed hull (of objects lying above the 2D planar region) into a prism

model based on a defined L1 Manhattan distance; this gives the points whose height threshold is

about the region of the face in the scene (Rusu et al., 2008); (v) we then cluster the remaining points

based on a heuristically determined L2 distance between points remaining within the polygonal

plane. The largest cluster gives us the face.

The segmentation result is presented in Figure 4.9. A dense point cloud of the experimental

setup scene is shown in the top-left cornet of the image. This cluttered cloud was downsampled to
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the top right cloud of the figure. Using RANSAC, we searched for 2D plane candidates in the scene

and compute the convex hull of found planar regions; the ensuing results is shown in bottom left

inset of the figure. We then extrude point indices within the hull into a prismatic polygonal model

to obtain the face region (shown in the bottom-right of Figure 4.9. An additional step clusters the

resultant cloud based on a Euclidean distance. The largest cluster is taken to be the face.

We now describe these segmentation stages. The downsampling algorithm is an implementation

of (Rusu, 2009, §6). We first normalize the coordinates of the original point cloud, P , ensuring that

the distance between points p ∈ P is upper-bounded by 1 based on the diagonal of P’s bounding

box. It computes a weighting factor, α, given by

α = µx + k � σx, (4.18)

where µ and σ respectively denote the mean and standard deviation of the mean distance distribution

between points and k is a user-chosen variable. Through SAC, an estimate P̂ of the original point

cloud is computed and represented as a set of equidistant grid points in the neighborhood of P .

The points of P are then projected to a local plane of reference through their k nearest neighbors

to assure proximity to the surface of P . Points p̂i ∈ P̂ are fitted to the surface that approximates

P with a bivariate polynomial height function in a local Darboux frame (with orthonormal axes

u, v, n; v is chosen to be parallel to the local reference frame’s normal). The polynomial weights

are computed for the k nearest neighbors of q as

wi = exp
(
−‖p̂− pi‖2

α

)
. (4.19)

Surfaces in the proximity of p̂’s neighbors are approximated using

n(u,v) =
N∑
i=1

ci.f
i
(u,v), (4.20)

where u, v, and n are coordinates along the Darboux frame axes, f i(u,v) are height function members

of bivariate polynomials. The result of the resampling algorithm is shown in the top-right image of

Figure 4.9. Further details of the segmentation algorithm can be found in (Ogunmolu et al., 2017).
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4.3.3 Head Pose Estimation

With the facial point cloud segmented, we defined three points on the head. Our goal is to compute

the optimal translation and rotation of the head from a model point set X = {−→x i} to a measured

point set P = {−→p i}, where Nx = Np = 3, and the point −→x i ∈ X has the same index as −→p i ∈ P.

All point coordinates are with respect to a Cartesian frame in the stereo camera. We consider the

world frame to have an origin at the centroid of the clustered point cloud of the head when all

IABs are at ambient pressure, with the axes oriented as described in figure to the right of this page.

Following the approach of (Besl, Paul J.; McKay, 1992), we compute the cross-covariance matrix

of P and X as Σpx, extract the cyclic components of this skew symmetric matrix as ∆, and use it to

form the symmetric 4× 4 matrix Q(Σpx) as follows,

Q(Σpx) =

tr(Σpx) ∆T

∆ Σpx + ΣT
px − tr(Σpx)I3

 . (4.21)

The unit eigenvector, qR, that corresponds to the maximum eigenvalue of Q(Σpx) is selected as the

optimal rotation quaternion; we find the optimal translation vector as

−→q T = −→µ x − R(−→q R)−→µ p (4.22)

where µx and µp are the mean of point sets X and P respectively. Obtaining the roll, pitch and yaw

angles from qR is trivial and the pose of the face is described by tuples [qT , qR] = {x, y, z, θ, φ, ψ}

with respect to the world frame. Given the 3-DOF setup, we choose to control three states of the

head: z, θ, φ (i.e. z, roll, and pitch).

4.3.4 Adaptive Neuro-Control Formulation

Our primary theoretical contribution in this chapter is the approximation of the nonlinear system

by a long short-term memory (LSTM) (Hochreiter and Schmidhuber, 1997), equipped with an

adequate number of neurons in its hidden layers. We parameterized the last layer of the network
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with a fully connected layer that outputs control torques to the valves. The neural network can be

seen as a memory-based model that remembers effective controls for the adaptation mechanism in

the presence of uncertainties and external disturbance.

Following our previous approach in (Ogunmolu et al., 2016a, §IV.B), we fix a persistently

exciting input signal uex ∈ L2 ∩ L∞ that excites the nonlinear modes of the system. We then

parameterized the system with a neural network with sufficient number of neurons. The neural

network (NN) provided information on the changing parameters of the system during control trials.

The adjustment mechanism is computed from inverse Lyapunov analysis, where we choose adaptive

laws that guarantee a nonpositive-definite Lyapunov function derivative when evaluated along the

trajectories of the error dynamics.

The neural network parameterizes the nonlinear dynamical system f(·), and maps the parame-

terized model to appropriate valve torques. We add a feedforward and feedback term in the overall

controller (to be introduced shortly) that guarantee system stability and robustness to uncertainties.

Therefore, the global controller keeps the states of the system bounded under closed-loop dynamics,

ensuring convergence to desired trajectories from states that are initialized outside the domain of

attraction, and guarantees robust reference tracking in the presence of non-parametric uncertainties.

For the multi-input, multi-output (MIMO) adjustable system,

ẏ = Ay + BΛ (u− f(y, u)) + w(k) (4.23)

where y ∈ Rn,u ∈ Rm are known input and output vectors, and A ∈ Rn×n,Λ ∈ Rm×m

are unknown matrices, B ∈ Rn×m , sgn(Λ) are known matrices, and w(k) ∈ Rn is a bounded

time-varying unknown disturbance, upper-bounded by a fixed positive scalar wmax, we introduce

the following assumptions:

• a dynamic recurrent neural network (RNN) with N neurons, ϕ(y), exists that maps from a

compact input space u ⊂ U to an output space x ⊂ Y on the Lebesgue integrable functions

with closed interval [0, T ] or open-ended interval [0,∞);
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• the nonlinear function f(y,u) is exactly ΘTΦ(x) with matrix of vectorized coefficients,

Θ ∈ RN×m, and a Lipschitz-continuous vector of basis functions Φ(y) ∈ RN ;

• inside a ball BR of known, finite radius R, the ideal NN approximation f(y) : Rn → Rm, is

realized to a sufficient degree of accuracy, εf > 0;

• the process noise w(k) is estimated alongside model parameters by the dynamic RNN;

• outside BR, the NN approximation error is upper-bounded by a known scalar function εmax

such that ‖ε‖ ≤ εmax, ∀ y ∈ BR;

• there exists an exponentially stable reference model

ẏm = Amym + Bmr, (4.24)

with a Hurwitz matrix Am ∈ Rn×n and Bm ∈ Rn×m commanded by a reference signal r ∈ Rm. For

this system, we note that n = 3 and m = 6. Our objective is to design an model-reference adaptive

controller (MRAC) capable of operating in the presence of parametric (εf ), and non-parametric

(w(k)) uncertainties so as to assure the boundedness of all signals within the closed-loop system.

We propose the following controller

u = K̂
T
yy + K̂

T
r r + f̂(y,u), (4.25)

where K̂y and K̂r are adaptive gains to be designed shortly. The K̂
T
yy term keeps the states of the

approximation set x ∈ BR stable, while the KT
r r term causes the states to follow a given reference

trajectory. The function approximator f̂(·) ensures states that start outside the approximation set

y ∈ BR converge to BR in finite time (it converges non-parametric errors εf that puts certain states

out of the approximation set into BR). We can generally write the NN model as

f̂(y) = Θ̂TΦ(x) + εf ,
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where Θ̂T denotes the vectorized weights of the neural network and Φ(x) denotes the vector of

inputs and outputs defined as

Φ(x) = {x(k − d) · · · x(k − d− 4)u(k − d) · · · u(k − d− 5)}, (4.26)

and εf is the approximation error. The closed-loop dynamics therefore become

ẋ = Ax + BΛ
(

K̂
T

y y + K̂
T

r r + f̂(x,u)− f(x,u)
)
. (4.27)

We assume nonlinear function and approximator matching conditions, f(x,u) = f̂(x,u), such that

after rearrangement, (4.27) can be written as

ẏ = Ay +BΛ
(

K̂
T

y y + K̂
T

r r− εf (y)
)
, (4.28)

= (A + BΛK̂
T

y )y + BΛ(K̂
T

r r + εf ). (4.29)

Furthermore, we assume model matching conditions with ideal constant gains Ky and Kr so that

A + BΛKT
y = Am, and BΛKT

r = Bm, (4.30)

from which

A + BΛK̂
T

y − Am = BΛK̃T

y and BΛK̂
T

r − Bm = BΛK̃T

r , (4.31)

where K̃T

y = KT

y − K̂
T

y and K̃T

r = KT

r − K̂
T

r . The generalized error state vector e(k) = y(k)−ym(k)

has dynamics ė(k) = ẏ(k)− ẏm(k), so that by substituting (4.24) and (4.27) into ė, we have

ė(k) = Ame(k) + BΛ[K̃T

r r + K̃T

y y− εf ]. (4.32)

The estimation error will be bounded as long as y ∈ BR. Our goal is to keep y ∈ BR.

Theorem: Given correct choice of adaptive gains K̂y and K̂r, the error vector e(k), with closed

loop time derivative given by (4.32) will be uniformly ultimately bounded, and the state x will

converge to a neighborhood of r.
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Proof: We choose a Lyapunov function candidate V in terms of the generalized error state space e,

gains, K̃T

y , K̃T

r , and parameter error εf (y(k)) space ((Parks, 1966), (Landau, 1979), (Lavretsky and

Wise, 2005)) as follows

V(e, K̃y, K̃r) = eTPe + tr(K̃T

y Γ−1
y K̃y|Λ|)

+ tr(K̃T

r Γ−1
r K̃T

r |Λ|) (4.33)

where Γy and Γr are fixed symmetric, positive definite (SPD) matrices of adaptation rates, tr(A)

denote the trace of matrix A and P is a unique SPD matrix solution of the algebraic Lyapunov

function

PAm + AT
m P = −Q, (4.34)

where Q is a SPD matrix. Take the time derivative of (4.33)

V̇(e, K̃y, K̃r) = ėTPe + eTPė + 2tr(K̃T

y Γ−1
y

˙̂Ky|Λ|)

+ 2tr(K̃T

r Γ−1
r

˙̂Kr|Λ|)

= eT (P Am + AT
mP)e + 2eTPBΛ

(
K̃T

y y + K̃T

r r− εf (x)
)

+2tr
(

K̃T

y Γ−1
y

˙̂Ky|Λ|
)

+ 2tr
(

K̃T

r Γ−1
r

˙̂Kr|Λ|
)

= −eTQe− 2eTPBΛεf (x) + 2eTPBΛK̃T

y x

+ 2 tr
(

K̃T

y Γ−1
y

˙̂Ky

)
+ 2eTPBΛK̃T

r r + 2 tr
(

∆KT
r Γ−1

r
˙̂Kr

)
Since xT y = tr

(
y xT

)
from trace identity, we have

V̇(·) = −eTQe− 2eTPBΛεf

+ 2 tr
(

K̃T

y (Γ−1
y

˙̂Ky + xeTPBsgn(Λ)
)
|Λ|

+ 2 tr
(

K̃T

r (Γ−1
r

˙̂Kr + reTPBsgn(Λ)
)
|Λ|

(4.35)
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where for a real-valued x, we have x = sgn(x)|x|. The first two terms in (4.35) will be negative

definite for all e 6= 0 since Am is Hurwitz and the other terms in (4.35) will be identically null if we

choose the adaptation laws

˙̂Ky = −ΓyyeTP Bsgn(Λ),
˙̂Kr = −ΓrreTP B sgn(Λ). (4.36)

The time-derivative of the Lyapunov function can then be written as

V̇(·) = −eTQe− 2eTPBΛεf

≤ −λlow‖e‖2 + 2‖e‖‖PB‖λhigh(Λ)εmax, (4.37)

where λlow, λhigh represent the minimum and maximum characteristic roots ofQ and Λ respectively.

V̇(·) is thus negative definite outside the compact set

χ =

(
e : ‖e‖ ≤ 2‖PB‖λhigh(Λ)εmax

λlow(Q)

)
. (4.38)

and we conclude that the error e is uniformly ultimately bounded. As e converges to a neighborhood

of 0, y converges to a neighborhood of ym. From the stable model reference system in (4.24), y

converges to a neighborhood of r. Note that asymptotic convergence of e to zero is not guaranteed

but the parametric errors are guaranteed to stay bounded.

4.3.5 Network Design

We choose a LSTM (Hochreiter and Schmidhuber, 1997) due to its capacity for long-term context

memorization and inherent multiplicative units that avoid oscillating weights or vanishing gradients

when error signals are backpropagated in time (Bengio et al., 1994; Hochreiter and Schmidhuber,

1997). LSTMs truncate gradients in the network where it is harmless by enforcing constant error

flows through their constant error carousels. As a result, LSTMs are robustly more powerful

for adaptive sequence-to-sequence modeling or mapping data that temporally evolve in time.

Their biological model makes them more suitable for adaptive robotics such as soft robots than
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Figure 4.10: Neural Network model

previously used artificial NNs such as feedforward networks (Dinh et al., 2017), radial basis-

functions (Lavretsky and Wise, 2005; Patino and Liu, 2000) or vanilla RNNs (Wang and Chen,

2006).

The neural network is shown in Figure 4.10. Depending on the region of attraction of the system

the network is approximating, it parameterizes the nonlinear dynamical system f(·) and maps the

parameterized model to appropriate valve torques. There exists additional feedforward + feedback

terms in the global controller (introduced shortly) that guarantee system stability and robustness to

uncertainties. Therefore, the global controller keeps the states of the system bounded under closed-

loop dynamics, ensures convergence to desired trajectories from states that are initialized outside

the domain of attraction, and guarantees robust reference tracking in the presence of non-parametric

uncertainties.

The NN model takes a memory-based concatenated vector of current inputs and past outputs

as in (4.26), propagates them through three hidden layers, with each layer made up of {9, 6, 6}
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neurons each, applies 30% dropout and then maps the last layer to a fully connected layer that

generates valve torques. A self-tuning adaptive control law (with a feedforward regulation and state

feedback component) adapts to the internal parameters of the plant to ensure stability of the system

and bounded tracking of given trajectory. The overall network has neuron connection weights and

thresholds of approximately 1,400. This makes search for a suitable controller feasible.

The LSTM network estimates a model, f(x), that minimizes the mean-squared error between

predicted output, x̂(k), and actual output x(k) according to

f(x(k)) = arg min
w

VN(w,Φ(x)) (4.39)

where VN(w,Φ(x)) =
∑K

t=1

∑n
i=1

1

2
(x̂i(t) − xi(t))2, and Φ(x) is a regression vector as defined

in (4.26) on a bounded interval [1, N ]. (4.39) is minimized using stochastic gradient descent so

that at each iteration, we update the parameters (weights) of the network wi based on the ordered

derivatives of VN(w,Φ(x)) (Werbos (Werbos, 1990)) i.e.

wk+1 ← ηwk − α
n∑
i=1

∇wV(xi, x̂i(θk)). (4.40)

η (set to 1) hastens the optimization in a direction of low but steepest descent in training error, and

α is a sufficiently small learning rate (set to 5 × 10−3), and ∇wV(θ,Φ(x)) is the derivative of V

with respect to w averaged over the k-th batch (we used a batch size of 50).

4.3.6 Results and Discussion

We sample from the parameters of the trained network and we set f̂(·) in (4.25) to the fully

connected layer of samples from the network. We publish the control law from the neural network

and subscribe in a separate node. The gains K̂y and K̂r were found by solving the ODEs iteratively

using a single step of the integral of the solutions to ˙̂Ky(t),
˙̂Kr(t). Our solution is an implementation

of the Runge-Kutta Dormand-Prince 5 ODE-solver available in the Boost C++ Libraries4. We found

4https://goo.gl/l7JyYe
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a step-size of 0.01 to be realistic. xm in (4.24) is computed based on the solution to the forced

response of the linear system,

ym(t) = eAmtym(0) +

∫ t

0

eAm(t−τ)Bm r(τ)dτ.

For a nonnegative Q and a positive definite P, the pair (Q,Am) will be observable so that the

dynamical system is globally asymptotically stable. After searching, we picked a positive definite

Q = diag(100, 100, 100) for the dissipation energy and set Λ = I3×3 so that solving the general

form of the lyapunov equation, we have P . The six solenoid valves operate in pairs so that two

valves create a difference in air mass within each IAB at any given time. Therefore, we have

P =


−170500

2668
0 0

0 −170500
2668

0

0 0 −170500
2668

 , . B =


1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

 (4.41)

The non-zero terms for B in (4.41) are the maximum duty-cycle that can be applied to the solenoid

valves based on the software configuration of the NI RIO PWM generator.

The three DOFs of the head are coupled and there is a limited reachable space with the IABs. It

is therefore paramount that desired trajectories be ascertained as physically realizable before rolling

out control trials. We therefore placed the head to physically realizable positions in open-loop

control settings before testing the close-loop control system.

Figure 4.11 show the performance of the controller when commanded to move the head from

[z, θ, φ]T = [2.5mm, .25o, 35o]T to [14mm, 1.6o, 45o]T . We observe strong steady-state conver-

gence along 2-DOFs , namely z and pitch axes with a 20sec rise time. The right portion of the

figure demonstrates the roll angle tracking by the head. The roll-motion is well-conditioned with

minimal disturbance around the set-point.
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Figure 4.11: Head motion correction along z, pitch and roll axes.
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CHAPTER 5

AUTOMATING BEAM ORIENTATION OPTIMIZATION

In this chapter, we present our proposed algorithm for solving the BOO problem in IMRT treat-

ment planning. We treat the problem as a suboptimal control problem within the framework of

approximate dynamic programming (ADP) (Bertsekas et al., 2017a,b). Particularly, we leverage

recent machine learning breakthroughs (LeCun et al., 2015) to guide a Monte Carlo Tree Search

(MCTS) (Coulom, 2006; Gelly and Silver, 2011; Kocsis and Szepesvári, 2006) of promising beam

angle candidates by rapidly exploring different parts of the beam space. Our goal is to mitigate the

time it takes for clinicians to find suitable beam angles in intensity-modulated radiation therapy

(IMRT). As we remarked in § 1.4, the beam orientation problem is difficult to crack given the

non-convexity of the solution surface, the heavy computational requirement for the search problem,

and the way a minor change in beam orientation alters new dose intensity distributions. When just

the tip point of the robot’s end effector rotates the gantry that contains the linear accelerator, we have

coplanar beams (see Figure 5.1. Our focus is on coplanar beams, given that only coplanar beams

are employed (Aleman et al., 2008b) in IMRT treatment procedures. We consider fictitious self-play

as a practical application for developing an effective beam orientation selection strategy in a scenario

involving two rational decision-making agents that: i) do not communicate their policies to each

other (i.e. the game is non-cooperative), and ii) behave reactively in order to adequately explore

the state space. Thus, aiming to automate the beam orientation selection and intensity modulation

process, we introduce a novel set of techniques leveraging (i) pattern recognition, (ii) Monte Carlo

evaluations, (iii) game theory, and (iv) neuro-dynamic programming. A deep neural network policy

guides Monte Carlo simulations of promising beamlets. Seeking a saddle equilibrium, two fictitious

neural network players, within a zero-sum Markov game, alternatingly play a best response to an

opponent’s mixed strategy profile during episodes of a two-player Markov decision game. After a

sufficient number of games of self-play, the optimized policy predicts beam angles on test target
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Figure 5.1: IMRT TPS setup. Reprinted from Radiologyinfo.

volumes. We merge the beam orientation search and the subsequent fluence map optimization

subproblems.

5.1 Methods and Materials

Consider bd possible move sequences of a setup, where b are the beam angles chosen to construct

a fluence, and d is the total number of discretized beam angles within the beams space. Suppose

b = 180 and d = 5, we have 1805 possible search directions, rendering search computationally

demanding. Finding the optimal solution would require a tiring search. Monte Carlo simulations

have been successful at breaking the curse of dimensionality (Bellman, 1957) in decision-making in

games with large state spaces such as Go, and Shogi, inter alia (Chung et al., 2005; Silver et al.,

2016, 2017). For games with perfect information, there is an optimal value function, v?(s), that

decides the game’s outcome for every possible state, s ∈ S , under perfect play (i.e. a game with an
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optimal min-max state-action value function, Q(s, u), produced by a policy π = {πmin,πmax}).

Our task is to devise a planning strategy that guides the search for optimistic beam angles within

the setup’s phase space using a probability distribution, p(s, u), over a set of deterministic pure

strategies for the tree. The pure strategies in this case would be probability distributions over the

space of every possible beam angle index within the available beams set, u, at time step, t.

The search for an approximately optimal beam angle set is performed by optimizing the

parameters of a function approximator ψ, (here, a deep neural network, with multiple residual

blocks (He et al., 2016)); this network approximates the policy, π, which guides MCTS simulations

of ‘best-first’ beam angle combinations for a sufficiently large number of iterations. This MCTS

performs a sparse lookout simulation, recursively expanding child nodes of a tree, while selectively

adjusting beam angles that contribute the least to an optimal fluence profile. Successor nodes

beneath a terminal node are approximated with a value, v(s), to assure efficient selectivity. We

maintain a probability distribution over possible states (beam angles), based on a set of observation

probabilities for the underlying Markov Decision Process (MDP).

5.1.1 Notations and Definitions

The state of the dynamical system will be denoted by x ∈ X ; it is to be controlled by a discrete

action u ∈ U . States evolve according to the (unknown) dynamics p(xt+1|xt, ut), which we want

to learn. The learning problem is posed within a discrete finite-time horizon, T , while a beam

angle combination search task can be defined by a reward function, r(xt, ut), to be found by

recovering the policy, p(ut|xt;ψ), that specifies distribution over actions conditioned on the state,

and parameterized by the weights of a neural network, a tensor ψ. Without loss of generality, we

denote the action conditional p(ut|xt, ψ) as πψ(ut|xt). Recovering the optimal weights may consist

of the maximization problem

ψ? = arg max
ψ

T∑
t=1

E(xt,ut)∼p(xt,ut|ψ) [r(xt, ut)] .
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Table 5.1: Table of Notations.

Notation Definition/Examples Notation Definition/Examples

m dimensionality of a node’s beam set, e.g. m = 5 n
dimension of discretized beam angles, e.g. n =
180 for 4◦ angular resoultion

Θ
discretized beam angle set e.g. equally spaced
angles between 0◦ and 360◦, spaced apart at 4◦ ut ∈ U

control or action, ut ∈ U at time step t ∈ [1, T ]
used in determining the probability of transition-
ing from a beam angle subset to another within
Θ

θj ⊆ Θ beam angles selected from Θ e.g. θk ∈ Rm xt ∈ X
Markovian system state at time step, t ∈ [1, T ]
e.g. patient contour, beam angle candidates; di-
mensionality 2, 727, 936 to 3, 563, 520

γ discount factor e.g. 0.99 fψ
parametric function approximator (deep neural
network policy) for state xt

vψ(x) value estimate of state, xt, as predicted by fψ p(x)
probability distribution over current state, x gen-
erated by neural network policy

Q(x, u)

action-state values that encode the “goodness” of
a beam-angle set, θk ∈ Rm, where m is the num-
ber of beams considered for a fluence generation,
e.g. m = 5

BXt

a concatenation of beams in consideration at time
step, t, as a block of beams being fed to the neural
network policy

Dij(θk)
dose matrix containing dose influence to voxel i
from beam angle, θk, ∀ k ∈ {1, 2, . . . , n} where
n is range of the beam set B

Dt
dose mask for target volume in consideration at
time step , t

where the weight tensor ψ? maximize the sum of the respective instantaneous rewards
∑

t r(xt, ut)

of the policy, πψ(ut|xt). Let us now introduce some definitions.

Definition 1. A beam block is a concatenation of beams, {θ1, θ2, . . . , θm} as a tensor of dimension

m×N ×H ×W , (see Figure 5.3 and Table 5.1) where N is the total number of slices, W is the

slice width, and H is the slice height, that together with the patient’s ct mask form the state, xt, at

time step, t.

Other notations are delineated in Table 5.1.

Definition 2. Every node of the tree, x, has the following fields:

• a pointer to the parent that led to it, x.p;
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(a) angle 10◦ (b) angle 166◦ (c) angle 286◦ (d) angle 342◦

Figure 5.2: Example 2D gantry angle representations

• the beamlets, xb, stored at that node where b = {1, . . . ,m}, where m is the number of beam

plans being considered for the irradiation problem, e.g. m = 5;

• a set of move probabilities prior, p(s, u);

• a pointer, x.r, to the reward, rt, for the state st;

• a pointer to the state-action value Q(s, u) and its upper confidence bound U(s, u) (to be

shortly introduced)

• a visit count, N(s, u), that indicates the number of times that node was visited; and

• a pointer x.childi to each of its children nodes.

5.1.2 Data Preprocessing

We obtained 77 anonymized patient CT scans from our clinic and their associated dose matrices.

The scans relate to prostate cases used in previous IMRT treatment planning. The prostate data

contains the scan of six organs, namely the patients’ body, bladder, left and right femoral heads,

rectum, and planning target volume (PTV) or tumor. Each patient’s scan, D, is represented in 3D as

N × W × H. We resized each slice to a square-shaped 2D matrix of size 64× 64. We generate 3D

images that represent the orientation of the robot with respect to the patient for each discretized

beam angle as illustrated in Figure 5.2.
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Figure 5.3: Network’s input planes.

5.1.3 Neural Network Architecture

In addition to the resized masks, D, we define five feature planes, Xt, as beam configuration

blocks: BXt . BXt denotes the beam angles that generate the current fluence. For five beams for the

fluence’s geometric shape for example, BXt would contain the RGB images of the beams being

considered at time step t. We augment the state with a memory of five previously used beam blocks,

{BXt , . . . ,BXt−5}. The input planes to the network are sized as T × N ×H ×W , where T is the

total number of input planes (T = 6 structures + 5 beams + 5× 5 regressed beams = 36). Thus,

the input to the network are arranged as: xt = [Dt,BXt ,BXt−1 ,BXt−2 ,BXt−3 ,BXt−4 ,BXt−5 ]. The dose

masks and beam blocks are as illustrated in Figures 5.3 and 5.4.

A tower residual network (He et al., 2016) fits residual nonlinear mappings to the input planes so

that we end up with a deeply stacked network whose input features, xt, are processed by 34 residual

blocks described as follows: (i) a 3D convolution with 64 × l filters, a square kernel of width 7,

and double strided convolutions, where l is the depth of the stack in the network; (ii) a 3D batch

normalization layer (Ioffe and Szegedy, 2015); (iii) nonlinear rectifiers (Hahnloser et al., 2000);
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Figure 5.4: Each beam angle in a beam block is represented as shown. Together with the target
volume, these form an input plane of size 36 × N ×W × H to the policy/value neural network
tower of residual blocks.

(iv) a 3D convolution of 64× l filters; (v) a 3D batch normalization layer; (vi) a skip connection

from the input to the block, in order to facilitate efficient gradients’ propagation; and (vii) nonlinear

rectifiers.

The output of the network divides into two heads: (i) the first head is a probability distribution

over which angle in the current beam block contributes the least to an optimal fluence cost at the

current time step, while (ii) the second head estimates the value (in an ADP sense) of the subtree

beneath the current node. The network’s parameters were initialized using the proposal in (He

et al., 2015). The value and probability distribution heads are inspired from Bayesian decision

theory, where it is expected that a rational decision-maker’s behavior is describable by a utility

function, (or value function) – a quantitative characterization of the policy’s preferences for an

outcome – and a subjective probability distribution, which describes the policy’s beliefs about all

relevant unknown factors. When new information is presented to the decision-maker, the subjective

probability distribution gets revised. Decisions about the optimal beam angle combination at the

current time step are made under uncertainty; so we use a probability model to choose among
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lotteries, (i.e. probability distributions over all discretized beam angles in the setup). Each state

during our learning process is constructed by appending the beam block at the current time step to a

history of beam blocks for the previous five time steps using a FIFO policy. Specifically, when we

transition to a new state, the beam block that has been in the state set for the longest time (i.e. at the

head of the queue) is deleted first, and the new state’s beam block is enqueued at the tail as in a

queue data structure. This is so as to minimize the partial observability of the system.

5.1.4 Fluence Map Optimization

Suppose X is the total number of discretized voxels of interest (V OIs) in a target volume, and

B1 ∪ B2 ∪ . . . ∪ Bn ⊆ B represents the partition subset of a beam B, where n is the total number of

beams from which radiation can be delivered. Let Dij(θk) be the matrix that describes each dose

influence, di, delivered to a discretized voxel, i, in a volume of interest, V OIh (h = 1, . . . ,X ), from

a beam angle, θk, k ∈ {1, . . . , n}. One can compute the matrix Dij(θk) by calculating each di for

every bixel, j, at every ϕ◦, resolution, where j ∈ Bk. Doing this, we end up with an ill-conditioned

sparse matrix, Dij(θk), which consists of the dose to every voxel, i, incident from a beam angle, θk

at every 360◦/ϕ◦ (in our implementation, we set ϕ to 4◦).

For a decision variable, xj , representing the intensities of beamlets, it is trivial to find the dose

influence, di, that relates the bixel intensities, xj , to the voxels of interest, V OIh. The fluence

problem is to find the values of xj for which di to the tumor is maximized, while simultaneously

minimizing the di to critical structures. For the voxels in the target volume, a weighted quadratic

objective minimizes the l2 distance between a pre-calculated dose Ax, and a doctor’s prescribed

dose, b, while a weighted quadratic objective maximizes the l2 distance between Ax (where x

represents the vectorized bixels, xj) and b. The pre-calculated dose term is given by Ax =

{
∑

s
ws

vs
Dsijxs | Dij ∈ Rn×l, n > l}, which is a combination of the dose components that belong to

OARs and those that belong to PTVs. Let ws = {ws, w̄s} represent the respective underdosing and

overdosing weights for the OARs and PTVs, and vs represents the total number of voxels in each
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structure. The cost function is

1

vs

∑
s∈OARs

‖(bs − wsDsijxs)+‖2
2 +

1

vs

∑
s∈PTVs

‖(w̄sDsijxs − bs)+‖2
2 (5.1)

where the underdosing weights are typically set as ws = 0 to deliver minimal dose to critical

structures, while the overdosing weights are chosen to deliver the prescribed dose to the tumor;

(·)+ denotes a Euclidean projection onto the nonnegative orthant R+. We solve (5.1) with the

alternating direction method of multipliers (ADMM) (Boyd et al., 2011) algorithm by adding a

quadratic penalty term to the Lagrangian of (5.1) and alternatingly updating the x and λ variables

in a “broadcast and gather” process. This turns out to be attractive, since we will be solving a

large-scale learning problem for the optimal beam angle set combination. The ADMM update

equations (where z is the ADMM dual variable) is

xk+1 =
(
ATA + ρI

)−1 (ATb+ ρzk − λk
)

zk+1 = Sλ/ρ
(
xk+1 + λk

)
(5.2)

where Sλ/ρ(τ) = (x− λ/ρ)+ − (−τ − λ/ρ)+, λ is updated as

λk+1 = λk − γ(zk+1 − xk+1), (5.3)

and γ is a parameter that controls the step length. We refer readers to Appendix D for these

derivations.

5.2 Game Tree Simulation

A game may refer to an event involving two or more agents, often called players. Interactive

decision-making among players in a game allows us to establish a utility function, which gives the

quantitative analysis of a player’s predilection for certain outcomes, and a subjective probability

distribution, which portrays important unknown factors. We introduce a set of basic game notations

and definitions to guide our exposition. A game has perfect information if no two nodes have the
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same information state, where an information state specifies the state that a player would have

if the path reached that node(Roger, 1991). For a class of two-player zero-sum games of perfect

information, a state is called a position while the action is referred to as a move. In fictitious self-play

(FSP) games, each player iteratively plays a best response to their opponent’s average strategy

in a repeated fashion. For two-player fictitious games, the average strategy profile of the players

converge to a Nash equilibrium (Heinrich et al., 2015). The finite set of legal actions in state x ∈ S

is denoted as U(x). A game is complete when it reaches a terminal state with an outcome ζ .

The security strategy of each player in a game is the strategy among all available alternatives

that guarantees that each player’s loss after an opponent has played is no greater than its loss ceiling

or each player’s gain is no smaller than its gain floor (i.e. their security level). Security strategies

are in equilibrium when one player’s strategy is optimal against that of another. Two strategies

are said to be in equilibrium if after finishing a game, and the outcome is observed, the players do

not have reasons to regret actions they took in the past. When the security levels of the players

coincide, the outcome of a game will always be the same and such equilibrium strategies are said to

be saddle-point strategies and the game is said to have a saddle point in pure strategies (Basar and

Olsder, 1999).

In this section, we continually play a zero-sum FSP game between two neural networks. Without

loss of generality, we will call the first player the nominal player, or player p1, and the second player

the adversarial player, or player p2. Player p1 chooses its action under a (stochastic) strategy, πp1 =

{πp10 , π
p1
1 , . . . , π

p1
T } ⊆ Πp1 that seeks to minimize the outcome ζ, while p2’s actions are governed

by a policy πp2 = {πp20 , π
p2
1 , . . . , π

p2
T } ⊆ Πp2 that seeks to maximize ζ in order to guarantee an

equilibrium solution for a game without saddle point. Πpi is the set of all possible nonstationary

Markovian policies. Each player bases its decision on a random event’s outcome – generating a

mixed strategy determined by averaging the outcome of individual plays. Together, both players

constitute a two-player stochastic action selection strategy, π(x, u) = Pr(u|x) := {πp1 ,πp2} that

gives the probability of selecting moves in any given state. Suppose the game simulation starts from
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an initial condition x0, one may write the optimal reward-to-go value function for state s in stage t,

with horizon length T as

V ∗t (x) = inf
πp1∈Πp1

sup
πp2∈Πp2

E

[
T−1∑
i=t

Vt(x0, f(xt, πp1 , πp2))

]
,

x ∈ S, t = 0, . . . , H − 1

where the terminal value V ∗T (x) = 0, ∀ s ∈ S; f(·) represents the unknown system dynamics,

πp1 and πp2 contain the action/control sequences {up1t }0≤t≤T and {up2t }0≤t≤T . The saddle point

strategies for an optimal control sequence pair {up
∗
1
t , u

p∗2
t } can be recursively obtained by optimizing

a state-action value cost, Jt(x, u) as follows

V ∗t (x) = J ∗t (xt, πp1t , π
p2
t ) = min

πp1∈Πp1
max

πp2∈Πp2
J ?
t (xt, πp1 , πp2)

∀xt ∈ S, πp1 ∈ Πp1 , πp2 ∈ Πp2 . (5.4)

such that

v?p1 ≤ v? ≤ v?p2 ∀ {πp1t , π
p2
t }0≤t≤T .

where v?pi are the respective optimal values for each player. Q(x, u) can be recovered from the

reward function R(x, u) and transition function, P (x, u) as

J ∗t (xt, πp1t , π
p2
t ) = R(x, u) + γ

∑
x∈S

P (x, u)(x)V ?
t+1(x).

The action pair can be readily recovered with dynamic programming – transforming the op-

timization over the entire policy in (5.4) to a step-wise ‘min-max’ over each control sequence

{up1t , u
p2
t }0≤t≤T . Under ideal conditions, it is desirable to determine the optimal value function

under perfect play, however, given the curse of dimensionality for BOO problems, the best we can

hope for is an approximately optimal value v?ψ(x) by continually estimating the value function vpψ(x)

using e.g. a policy parameterized by a large function approximator such as deep neural networks

fψ to approximate the optimal value so that vψ(x) ≈ vpψ(x) ≈ v?(x). Here ψ are Lipschitz basis

functions that are parameters of the function approximator. For a detailed exposition of games, we

refer readers to (Roger, 1991) and (Basar and Olsder, 1999).
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5.2.1 Sparse Lookout Tree Simulation

We iteratively sample beam angles within the setup by carrying out a lookahead search from

the tree’s root node at a fixed depth. We restrict samples to 90 discretized beams in Θ. At the

first iteration, the subset of beam angles are randomly sampled from Θ. We then progressively

add children nodes using the expand policy of Algorithm 1, guided by probabilities p(s, u) that

are generated by a deep neural network policy fψ, that recursively expands the current node

or rolls out simulation from the current node to completion. To prevent “angle collisions”, we

introduce a minimum pairwise distance, d̄i ∈ R+ between the beamlets in a beam block, defined

as ‖θi − θj‖ ≥ d̄i, ∀ {j ∈ m \ i}, with d̄i = 20◦. Repeatedly performing roll-outs, a history of

state-action value pairs along the tree’s edges is kept; thus biasing action selection toward regions

of the state space that produce beams that have not been visited and aiding faster convergence if the

same state is encountered more than once.

We compute the mean outcome of every simulation through state s in which action u is selected,

i.e. the tree’s Q(s, u)-value, as Q(s, u) =
1

N(s, u)

∑n(s)
i=1 Ii(s, u)ζi, where N(s, u) =

∑n(s)
i=1 Ii(s, u)

is the total number of simulations in which action u was selected in state s, n(s) is the total number

of times a game is played through state s, and ζi is the outcome of the ith simulation played out

from s. Specifically,

Ii(s, u) =


1, if u was selected on the i’th policy rollout

0, otherwise.
(5.5)

Our tree search strategy is an adaptation of the UCT algorithm and is given in Algorithm 1. During

simulation, each state and action in the search tree are updated as:

n(st)← n(st) + 1; (5.6a)

N(st, ut)← N(st, ut) + 1 (5.6b)

Q(st, ut)← Q(st, ut) +±r(st, ut), (5.6c)
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Algorithm 1 Deep BOO Monte Carlo Tree Search

function MCTS(x0)
x0 ← x0(x0)
while search time < budget do

x̄← EXPAND POLICY(x0)
x̄.r ← FMO POLICY
BACKUP(x̄, x̄.r)

end while
return BEST CHILD(x0, c)

end function

function SELECT MOVE(x, c)
if p1 to play then

return argmaxx̄∈xQ(x̄) +K(x̄)
else

return arg minx̄∈x Q(x̄)−K(x̄)
end if

end function

function EXPAND POLICY(x)
while x nonterminal do

if x not f.expanded then
return EXPAND (x)

else
x← BEST CHILD(x, c)

end if
end while
return x

end function

function BEST CHILD(x0)
if p1 to play then

return x0[arg min children of x0]
else

return x0[arg max children of x0]

end if
end function
function FMO POLICY(x)

return r = −h?(x(x)|·)
end function

function FULLY EXPANDED(x,d)
di ← pairwise distance(x.x)
min elem← min(d)
if min elem < d then

return True
else

return False
end if

end function

function EXPAND(x)
ū = SELECT MOVE(x, c)
sample θ̄ with x.p(s, a)
update θ̄ ← θ̄ + ū
with πt−1, create x̄.p(x̄, ū)
while not x̄ ∈ x0 do

add x̄ to x
end while
return x̄

end function

function BACK UP(x, c)
while x̄ not null do

N(x̄)← x̄ + 1
Q(x̄)← Q(x̄) + x̄.r
x̄ = parent of x̄

end while
end function

where K(x̄) = c

√
2 ln n(x̄.x)

N(x̄.x, u)
and x̄ ∈ x implies x̄ ∈ children of x.
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where r(st, ut) is the reward/cost gained or incurred by the agent after action u in state st. This

MCTS scheme makes beam angle transitions evolve in a highly selective, best-first behavior –

expanding promising areas of the search space deeper, given infinite memory and computation.

After each simulation, a ‘best move’ for the current beam block is selected; we exponentiate the

move probabilities by a temperature slightly larger than unity to encourage diversity in early play;

specifically, we compute

p(u|s0;ψ) =
N(s0, a)1/τ∑
bN(s, b)1/τ

, (5.7)

where τ is the temperature factor that diversifies the move probabilities. The modified UCT

algorithm applied to optimal beam angle selection is presented in algorithm 1.

In order for the state definition to capture as much information as possible under uncertainty,

we define an adaptive allocation rule for determining the transition between states since we do not

know what node may yield the best bandit: a player might be biased towards always selecting the

beams set with the maximum value such that as the search progresses, the worst possible bias is

bounded by a quantity that converges to zero. Therefore, we define the state broadly enough to

capture all subjective unknowns that might influence the payoff /reward to be received by a rational

decision-making agent; we thus leverage the upper confidence bound algorithm of (Agrawal, 1995)

to assure an asymptotic logarithmic regret behavior. The state at time step, t, contains a pointer to

the patient’s CT mask, the number of games that have so far been played through it, and the beam

angles contained at that state.

We attach a regret term U(n(x)) to the Q-value so as to ensure the optimal beam does not evade

the simulation i.e. Q(x, u)−U(n(x)) ≤ Q(x, u) ≤ Q(x, u) +U(n(x)); the width of this confidence

bound guides the exploration strategy for states that are momentarily unpromising in values but

may later emerge as promising states.

Definition 3. We define an upper confidence bound U(s, u) on Q(s, u) that adds an exploration

bonus that is highest for seldomly visited state-action pairs so that the tree expansion policy selects
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the action u? that maximizes the augmented value:

Q̄(s, u) = Qj(s, u) + c

√
2 ln n(s)

N(s, u)
, where a? = arg max

u
Q̄(s, u). (5.8)

Q(s, u) is the highest average observed reward from node j – encouraging exploitation of the current

node, and ln n(s) is the natural logarithm of the total number of roll-outs through state x. The

second term in (5.8) encourages exploration of other beam angles, and c is a scalar exploration

constant.

We continually update the weights of the neural network policy in a separate thread, writing

the weights to a shared memory buffer for the MCTS to read from, i.e. the search thread uses

the previous iteration of the trained network policy to to run the policy improvement procedure.

When angles are at the edges i.e. 0◦ or 360◦ and an angle change outside the range 0 ≤ θ ≤ 360

is recommended, we “wrap” around to enforce cyclicity. Note that the EXPAND POLICY and

FMO POLICY procedures of Algorithm 1 can be seen as a form of Add/Drop simulated annealing

as described in (Aleman et al., 2008b). While the FMO POLICY procedure returns the node with

the optimal fluence cost, the BEST CHILD procedure compares the quality of all beam angle sets

in the children of the tree’s root node.

5.3 Approximate Dynamic Programming

ADP can be considered as a trial-and-error search problem via interaction with an environment (e.g.

a dynamical system); the purpose of the interaction is to discover a mapping between events and

actions in order to maximize an extrinsic reward signal; this is usually achieved with optimal control

of incompletely known MDP. The MDP consists of states S, actions, A, a transition probability,

Pass′ and a reward function Ra
s . Pass′ is a probability distribution that governs the evolution of

states e.g. from x→ x′, while Ra
s determines a reward after the transitions occur. In Q-learning,

an agent’s experience is made up of distinct episodes: at the t’th episode, the agent observes its
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current state, xt, selects and executes an action ut, which transitions the agent to a new state xt+1;

an immediate reward, rt, is subsequently given to the agent, by which the previous Q-values are

adjusted. Q-learning relies on value iteration to reach convergence. In practice, this takes a long

time to complete. Batch Q-learning algorithms e.g. (Mnih et al., 2015) attempt to learn a stochastic

policy πψ : S ×A → R that maximizes the cumulative discounted reward
∑T−1

t=0 γ
tr(xt, ut), where

ψ are the parameters of a policy.

5.3.1 Self-Play Neuro-Dynamic Programming

We consider an ADP setting whose task is to discover the mapping between patient’s geometry

and a good beam angle combinations by maximizing an extrinsic reward signal that is stage-wise

informed by the quality of a fluence profile. To this end, we apply optimal control of incompletely

known MDPs (Astrom, 1965). The MDP consists of states s ∈ S, actions, a ∈ A, transition

probability, Pass′ , and a reward functionRa
s . Pass′ governs states evolution from s→ s′, whileRa

s

determines stage-wise rewards after transitions.

To find a good saddle-point for the optimization problem, we applied weakened FSP (Heinrich

et al., 2015) to find an approximate best response strategy to an opposing agent’s mixed strategy in

Markov decision games of self-play. In our formulation, each player does not know the strategy of

its opponent ahead of time, i.e. , their security levels do not necessarily coincide. To ensure that

equilibrium can be found within pure strategies, we let one player act after observing the decision

outcome of the other player.

The network, fψ, predicts a probability distribution over all beam angle configurations, pa =

p(s, u), and a value, vψ(x) – an estimate of the optimal beam angle set θ is the optimal beam set.

For a game Γ, suppose that y = {y1, . . . , ym|
∑m

i=1 yi = 1} and z = {z1, . . . , zn|
∑n

i=1 zi = 1}

are the respective probability distributions for players p1 and p2. The average value of the game

will correspond to player p1 minimizing a cost J (y, z) = yT Γz and player p2 maximizing J (y, z).

Each player’s action is governed by a mixed strategy – obtained by adding a Gaussian random
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walk sequence with standard deviation 2 to the prior probability distribution predicted by the neural

network policy or computed by the tree policy; this is then normalized by the sum of the resulting

noised distribution. Players p1, and p2’s strategies are independent random variables, repeatedly

implemented during game simulations. As the number of times the game is played gets larger, the

frequency with which different actions for p1 and p2 are chosen will converge to the probability

distribution that characterize their random strategies (Basar and Olsder, 1999, pp.24).

Each MDP episodic setting involves randomly sampling from the CT dataset, concatenating the

sampled geometry to the previous beam blocks, and eliminating the beam that has been longest in

the block as in a FIFO scheme. States are modified based on the probability predicted by policy,

π(·), which along with the patient’s state, xt, (including the current and previous five beam block

configuration) result in a new node. Between node transitions, a full FMO is carried out – evaluating

the quality of chosen beamlets, and informing updates in search probabilities that we later compute

when we reach a terminal leaf.

The network policy, π(·|ψt), and search tree, Γ(πψ(·)), are optimized in separate concurrent

threads; to assure non-blocking of search and network optimization processes, the network’s weights

were written to a shared memory map, where they are asynchronously updated by gradient descent,

while the tree search thread ran in a parallel thread from a previous iteration of the network policy,

π(·|ψt−1). At the end of each MDP and MCTS simulation, we compare the value predicted by either

player, average their mixing strategies and update the gradients of the loss function with respect to

the values based on equation (5.9).

We train the probability distribution over current beams by maximizing the similarity between

the computed search probabilities π and the predicted distribution p (by the search process) with

the cross-entropy loss:

∆ψp =
log ∂pψ(u|x)

∂ψ
(πT p),
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and we take the network weights’ induced tensor norm (last term of (5.9) given its robustness to the

asymmetrical network modular weights). Altogether, we minimize the combined loss,

l = (ζ − v)2 − πT log(p) + λ‖ψ‖2
2, (5.9)

where λ (set to 1.5) controls regularization of the network weights to avoid overfitting. The cross

entropy term was weighted by 0.9, and the mean square error (mse) loss by 0.01 to keep the

overall loss in the direction of persistent reduction in training error. These values were found by

empirical evaluations of the loss surface. We use 4 search threads, 8 CPUs, and 4 GPUs for the final

version of this algorithm. At each terminal node of the tree, new search probabilities are computed,

exponentiated by the inverse of a temperature parameter (set to 0.98).

5.4 Results

This section presents results on 3D prostate cases. We start the training process by randomly adding

five beam blocks at first to the state queue. The input planes are then passed through the tower

residual network, from which probability distributions and a value are predicted. We add a random

walk sequence to the generated pure strategy from the neural network and construct our tree with

this mixed strategy (at subsequent iterations, a previous iteration of the neural network is used to

generate the mixed strategy used to run the tree search). As new beam angle combinations are found

according to Algorithm 1, the FIFO queue is updated accordingly. At the end of every tree search,

we compute new search probabilities and compute the backward pass of the algorithm. This is

where the weights of the network are updated based on the loss function proposed in equation (5.9).

The mixed strategy is a by-product of the prediction by the deep neural network policy; it guides

search for optimistic beam angles, based on a reward (or cost) that is maximized (or minimized) by

either of players p1 or p2. When a move is selected (see Algorithm 1), the current node is expanded,

resulting in a new set of beamlets. The fluence (using eq. (5.1)) for the beamlets are optimized, and
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the reward for maximizing player, or the cost of the minimizing player are updated. We continue

the expansion of the leaves until we reach a terminal leaf.

The displayed plots in Figure 5.5 are the dose washes we obtain by optimizing the fluence

(a resultant of the beam angles chosen) on the patient. The wash plots are effects achieved by

the display of the voxel intensity distributions (in 2D) for organs and tumors present in a target

volume slice. They enable the interpretation of the quality of a dose based on the organs that must

be targeted (i.e. tumors) and organs that must be avoided (i.e. critical structures). The dosage is

represented as a heat map. Regions that receive zero radiation are dark blue, while regions that

receive higher doses progress in the order of higher intensity from green through yellow to red. As

seen, the intersection of beams delivers heavy doses to the tumors while largely sparing moderate

surrounding tissues. The line overlays on the plots depict the angle of incident radiation. The policy

selects fairly equidistant beams, yielding wash plots that provide good dosimetric concentration

on the tumor (center of the slices shown) and sharp gradients at the transition between tumors and

OARs, while also largely avoiding strong dose to OARs.
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Testing Regime

Figure 5.5: Dose distribution for select patients during testing of self-play network
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Patient immobilization with frames and masks in radiation therapy achieves the immobilization

requirement fairly well. However, these rigid immobilization devices have the disadvantage that

they attenuate radio/ionizing radiation, and impose claustrophobia in the patient’s head and neck

space. Development of frameless and maskless radiation therapy are at the infant stages particularly

in real-time feedback motion control at research centers (Belcher, 2017; Haas et al., 2012; Wiersma

et al., 2009), (Herrmann et al., 2011), (Liu et al., 2015). We have presented a 1-DOF , a 3-DOF , and

a soft robot mechanism capable of 6-DOF head and neck manipulation for frameless and maskless

immobilization. In addition to these, we analyzed the deformation, kinematics, and dynamics of

spherically symmetric soft robots arranged around the head and neck region of a patient. These

model-based approaches were synthesized using finite elastic deformations and the established

theory in the kinematics of contact and grasp. In the future, we hope to implement, verify, and

validate the accuracy of these proposed mechanisms. In a manner consistent with the full treatment

platform such as used in Cyberknife or Novalis ExacTrac treatment facilities, we expect that our

design should be compatible to these systems such that it can accommodate a complete positioning

correction with radio transparent immobilization devices.

Additionally, we presented an approximate dynamic programming approach for predicting

feasible beams in the inverse treatment planning problem at radiation oncology clinics. The chief

advantage of our method, compared to current schemes is the time it takes to predict beams on a

given patient’s CT geometry. In the future, we would like to verify the viability of our method in a

clinical setting, and comparing our approach to VMAT predictions.
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APPENDIX A

DERIVATION OF IAB-HEAD CONTACT KINEMATICS

A.1 Contact Coordinates and Gaussian Map

Here, we formulate the contact kinematics between an IAB and the head in a fashion similar to the

single finger soft contact type postulated in (Murray and Sastry, 1990). We note that an alternative

derivation that is more concise can be found in (Montana, 1988). Following equations (3.16a),

(3.16b), and 3.17, we write

Rf1(α1) + p = fh(αh) (A.1a)

Rn1(α1) = −nh(αh) (A.1b)

R
∂f1

∂α1

M−1
1 Rψ =

∂fh
∂αh

M−1
h . (A.1c)

Differentiating (A.1a) and (A.1b), we find that

Ṙ f1(α1) +R
∂f1

∂α1

α̇1 + ṗ =
∂fh
∂αh

α̇h (A.2)

Ṙ n1(α1) +R
∂n1

∂α1

α̇1 = −∂nh
∂αh

α̇h. (A.3)

It follows through the multiplication of (A.2) by ∂fh
∂αh

T
and putting αh into (A.3), we have

Ṙ n1(α1) +R
∂n1

∂α1

α̇1 = −∂nh
∂αh

M−2
h

∂fh
∂αh

T (
Ṙ f1(α1) +R

∂f1

∂α1

α̇1 + ṗ

)
. (A.4)

Now, putting (A.1c) into (A.4) and rearranging, we find that[
R
∂n1

∂α1

+
∂nh
∂αh

M−2
h

(
∂fTh
∂αh

∂fh
∂αh

)
M−1

h RψM1

]
α̇1 = −Ṙ n1 −

∂nh
∂αh

M−2
h

∂fh
∂αh

T (
Ṙ f1(α1) + ṗ

)
.

(A.5)

Multiplying throughout by M−T
h

∂fh
∂αh

T
, we have on the left hand side of the above as,

M−T
h

∂fh
∂αh

T (
R
∂n1

∂α1

+
∂nh
∂αh

M−1
h RψM1

)
α̇1. (A.6)
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Since

M−T
h

∂fh
∂αh

T

=
∂fh
∂αh

M−1
h =

(
R
∂f1

∂α1

M−1
1 Rψ

)T
= RψM

−T
1

∂f1

∂α1

T

RT , (A.7)

equation (A.6) becomes(
RψM

−T
1

∂f1

∂α1

T ∂n1

∂α1

+M−T
h

∂fh
∂αh

T ∂nh
∂αh

M−1
h RψM1

)
α̇1

=

(
RψM

−T
1

∂f1

∂α1

T ∂n1

∂α1

M−1
1 Rψ +M−T

h

∂fh
∂αh

T ∂nh
∂αh

M−1
h

)
RψM1α̇1. (A.8)

Setting

K̃1 = RψM
−T
1

∂f1

∂α1

T ∂n1

∂α1

M−1
1 Rψ and Kh = M−T

h

∂fh
∂αh

T ∂nh
∂αh

M−1
h ,

it follows from (A.4) that(
K̃1 +Kh

)
RψM1α̇1 = M−T

h

∂fh
∂αh

T [
−Ṙ n1 −

∂nh
∂αh

M−2
h

∂fh
∂αh

T (
Ṙ f1 + ṗ

)]
= −M−T

h

∂fh
∂αh

T

Ṙ n1 −KhM−T
h

∂fh
∂αh

T (
Ṙ f1 + ṗ

)
(A.9)

so that

α̇1 =
(
K̃1 +Kh

)−1

RψM
−1
1

−M−T
h

∂fh
∂αh

T

Ṙ n1︸ ︷︷ ︸
wt

−Kh M−T
h

∂fh
∂αh

T (
Ṙ f1 + ṗ

)
︸ ︷︷ ︸

vt

 (A.10)

or

α̇1 =
(
K̃1 +Kh

)−1

RψM
−1
1 (wt −Khvt). (A.11)

Finding the generalized velocity of the head with respect to a single soft robot’s deformation is

tantamount to finding (ŵ, v) = ġ g−1. Thus, we find that

ωt = −M−T
h

∂fh
∂αh

T

(ω × (Rn1)) = −M−T
h

∂fh
∂αh

T

(nh × ω) (A.12)

vt = M−T
h

∂fh
∂αh

T

(ω × (Rf1) + ω × p+ v) (A.13)

= M−T
h

∂fh
∂αh

T

(−fh × ω + v), (A.14)

119



where ωt is the head’s rolling velocity projected onto the contact’s tangent plane. The rotation

normal to the surface is canceled by the cross product of ω and nh. In the same vein, vt is the sliding

velocity between the contacts, projected onto the tangent plane. Following the above construction,

we find the kinematics of the contact point of the head in local coordinates is

α̇h = M−1
h

(
K̃1 +Kh

)−1

(ωt − K̃1vt), (A.15)

where
(
K̃1 +Kh

)
is the relative curvature (Montana, 1988). It remains to solve for the relative

orientation between the two local coordinates, ψ.

A.2 Relative Contact Orientation and Torsion Metric Tensors

In matrix form, (A.1b) and (A.1c) can be written as,

R

[
∂f1
∂α1

M−1
1 n1(α1)

]Rψ 0

0 −1

 =

[
∂fh
∂αh

M−1
h nh(αh)

]
. (A.16)

Following the normalized Gaussian frame defined in (3.20), we can rewrite the above equation as

R[x1 y1 z1]R̄ψ = [xh yh zh]. (A.17)

The total derivative of (A.17) yield

Ṙ

[
x1 y1 z1

]
R̄ψ +R

[
ẋ1 ẏ1 ż1

]
R̄ψ +R

[
x1 y1 z1

]Ṙψ 0

0 0

 =

[
ẋh ẏh żh

]
.

(A.18)
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Premultiplying by yT1 R
T and then postmultiplying by R̄ψ


1

0

0

, with the knowledge that R̄ψR̄ψ =

I, and the identity yT1 y1 = 1, we find that

yT1 R
T Ṙ[x1 y1 z1]R̄ψ + yT1 [ẋ1, ẏ1, ż1]R̄ψ + (0 1 0)

Ṙψ 0

0 0

 = yT1 R
T [ẋh ẏh żh] (A.19)

yT1 R
T Ṙx1 + yT1 ẋ1 + (0 1 0)

Ṙψ Rψ 0

0 0




1

0

0

 = yT1 R
T [ẋh ẏh żh]R̄ψ


1

0

0

 (A.20)

yT1 R
T Ṙx1 + yT1 ẋ1 + (0 1)

 0 ψ̇

−ψ̇ 0


 1

0

 = yT1 R
T [ẋh ẏh żh]R̄ψ


1

0

0

 (A.21)

yT1 R
T Ṙx1 + yT1 ẋ1 − ψ̇ = yT1 R

T [ẋh ẏh żh]R̄ψ


1

0

0

 . (A.22)

From (A.17), we have that

R̄T
ψ

[
xT1 yT1 zT1

]
RT =

[
xTh yTh zTh

]
(A.23)

so that [
xT1 yT1 zT1

]
RT = R̄ψ

[
xTh yTh zTh

]
(A.24)

or

yT1 R
T = (0 1 0) R̄ψ

[
xTh yTh zTh

]
= (0 1)Rψ

 xTh

yTh

 . (A.25)
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It follows from (A.22) that

ψ̇ = yT1 R
T Ṙx1 + yT1

∂x1

∂α1

α̇1 − (0, 1)Rψ

xTh ẋh xTh ẏh

yTh ẋh yTh ẏh

 Rψ

 1

0

 . (A.26)

Using the identities,

xTi yi = 0, =⇒ ẋTi yi = −xTi ẏi = yTi ẋi (A.27)

xTi xi = 1, =⇒ ẋTi xi = 0, (A.28)

we can rewrite (A.26) as

ψ̇ = yT1 R
T Ṙ x1 + yTh

∂xh
∂αh

α̇h + yT1
∂x1

∂α1

α̇1

= ωn + ThMh α̇h + T1M1α̇1 (A.29)

where

ωn = yT1 R
T Ṙx1 = (Ry1)T w × (Rx1)

= (Rz1)T ω = zTh ω (A.30)

Th = yh
∂xTh
∂αh

M−T
h , T1 = y1

∂xT1
∂α1

M−T
1 . (A.31)

It follows that the first, second and third equations of contact are given by (A.11), (A.15), and

(A.29) respectively, i.e.

Equations of Contact

α̇1 =
(
K̃1 +Kh

)−1

RψM
−1
1 (ωt −Khvt) (A.32a)

α̇h = M−1
h

(
K̃1 +Kh

)−1

(ωt − K̃1vt) (A.32b)

ψ̇ = ωn + ThMh α̇h + T1M1α̇1. (A.32c)
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APPENDIX B

IAB DYNAMICS

We now derive the overall dynamics for the elastic IAB in Eulerian form. Following (2.21), a point

on the surface of the IAB has the following Cartesian description

r =


x

y

z

 =


r cos θ sinφ

r sin θ sinφ

r cosφ

 , ṙ =


ẋ

ẏ

ż

 =


ṙ cos θ sinφ− rθ̇ sin θ sinφ+ rφ̇ cos θ cosφ

ṙ sin θ sinφ+ rθ̇ cos θ sinφ+ rφ̇ sin θ cosφ

ṙ cosφ− r φ̇ sinφ

 (B.1)

and the components of r̈ are

ẍ = cos θ
(

2ṙφ̇ cos θ + r cos θφ̈− 2rθ̇φ̇ sin θ
)
− sinφ

(
cos θ

(
−r̈ + rθ̇2 + rφ̇2

)
+ sin θ

(
2ṙθ̇ + rθ̈

))
ÿ = cosφ

(
2rθ̇φ̇ cos θ +

(
2ṙφ̇+ rφ̈

)
sin θ

)
+ sinφ

(
2ṙθ̇ cos θ + rθ̈ cos θ + sin θ

(
r̈ − rθ̇2 − rφ̇2

))
z̈ = cosφ

(
r̈ − rφ̇2

)
− sinφ

(
2ṙφ̇+ rφ̈

)
. (B.2)

Recall the kinetic energy form (Chapter 3) of a continuum body

T =
1

2
ρv(r, t) · v(r, t) =

1

2
ρ‖ṙ‖2. (B.3)

The constitutive equation that governs the Cauchy stress tensor, σ (2.32), is independent of the

path of the deformation from the reference configuration and it is solely a function of the state of

deformation; we therefore conclude that the IAB material is Cauchy elastic (Ogden, 1997, §4.2).

We therefore choose V = 0 following (Ogden, 1997)’s recommendation. Note that since we are

treating an incompressible material, the material mass density is uniform throughout the body in its

configuration. Thus the rate of change of ρ vanishes.

T =
1

2
ρ‖ṙ‖2 =

1

2
ρ
(
ṙ2 + r2φ̇2 + r2θ̇2 sin2 φ

)
, V = 0. (B.4)

It follows that the Lagrangian is

L(r, ṙ) =
1

2
ρ
(
ṙ2 + r2φ̇2 + r2θ̇2 sin2 φ

)
. (B.5)
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The derivatives of the canonical momenta are

d

dt

∂L

∂ṙ
=

d

dt
(ρ ṙ) = ρ r̈ (B.6a)

d

dt

∂L

∂θ̇
=

d

dt

(
r2 ρ θ̇ sin2 φ

)
= 2 ρ r ṙ θ̇ sin2 φ+ 2 ρ r2 φ̇ θ̇ sinφ cosφ+ ρ r2 θ̈ sin2 φ (B.6b)

d

dt

∂L

∂φ̇
=

d

dt

(
r2 ρ φ̇

)
= 2 ρ ṙ r φ̇+ ρ r2 φ̈ (B.6c)

with associated generalized forces

∂L

∂r
= ρ r φ̇2 + ρ r θ̇2 sin2 φ,

∂L

∂θ
= 0,

∂L

∂φ
= ρ r2 θ̇2 cosφ sinφ (B.7a)

so that we may write the general system dynamics as

τ = ρ
{
r̈ + r

[
rφ̈+ 2ṙ

(
φ̇+ θ̇ sin2 φ

)
+ sinφ

(
rθ̈ sinφ− θ̇2(r cosφ+ sinφ

)
+ φ̇

(
−φ̇+ rθ̇ sin 2φ

)]}
(B.8)

or in matrix form

τ =


ρ 0 0

0 ρ r2 0

0 0 ρ r2 sin2 φ



r̈

φ̈

θ̈

+ diag


2 ρ r

(
θ̇ sin2 φ+ φ̇

)
ρr
(
rθ̇ sin 2φ− φ̇

)
−ρrθ̇ sinφ (r cosφ+ sinφ)



ṙ

φ̇

θ̇

 . (B.9)
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APPENDIX C

CONTACT-BASED BOUNDARY VALUE PROBLEM

We make the simplifying assumption that the deformation is spherically symmetric, and we expect

that the shear stress contributions σrφ, σrθ, σφθ vanish in (3.6) so that we have

1

r2

∂

∂r
(r2σrr)−

1

r
(σθθ + σφφ) + ρbr = ρr̈x (C.1a)

1

r sinφ

∂

∂φ
(sinφσφφ)− cotφ

r
(σθθ) + ρbφ = ρr̈y (C.1b)

1

r sinφ

∂

∂θ
(σθθ) + ρbθ = ρr̈z (C.1c)

where the mass density ρ is uniform throughout the body and the components r̈x,r̈y, and r̈z are as

given in (B.6). Solving the equations in (C.1), we have from (C.1a),

∂σrr
∂r

= ρr̈x +
1

r
(σθθ + σφφ)− ρbr

=
1

r
(σθθ + σφφ)− ρbr + ρ cos θ

(
2ṙφ̇ cos θ + r cos θφ̈− 2rθ̇φ̇ sin θ

)
−

ρ sinφ
(

cos θ(−r̈ + rθ̇2 + rφ̇2) + sin θ(2ṙθ̇ + rθ̈)
)

(C.2)

and from (C.1b), we have

ρr̈y =
���

���
���:

0
cotφ

r
(σφφ − σθθ) + ρbφ +

1

r

∂σφφ
∂φ

=⇒ ∂σφφ
∂φ

= rρr̈y − rρbφ.

Thus,

∂σφφ
∂φ

= −ρrbθ + rρ
[
cosφ

(
2rθ̇φ̇ cos θ + (2ṙφ̇+ rφ̈) sin θ

)
+

sin θ
(

2ṙθ̇ cos θ + rθ̈ cos θ + (r̈ − rθ̇2 − rφ̇2)
)

sinφ
] (C.3)

and lastly, we have from (C.1c)

∂σθθ
∂θ

= (ρr̈z − ρbθ)r sinφ = −rρbθ sinφ+ rρ sinφ cosφ
(
r̈ − rφ̇2

)
− rρ sin2 φ

(
2ṙφ̇+ rφ̈

)
.

(C.4)
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Collecting
∂σrr
∂r

,
∂σθθ
∂θ

, and
∂σφφ
∂φ

above, taking σrr(r◦) = σθθ(2π) = σφφ(π) = 0 and integrating

from the internal to outer boundary conditions of (2.19), we have the full forms of the normal stress

components as

σrr(δ) = −
∫ r◦

δ

[
1

r

(
−2p+ 2C1

r2

R2
− 2C2

R8

r8

)
− ρbr + ρ cos θ

(
2ṙφ̇ cos θ + r cos θφ̈− 2rθ̇φ̇ sin θ

)
−ρ sinφ

(
cos θ(−r̈ + rθ̇2 + rφ̇2) + sin θ(2ṙθ̇ + rθ̈)

) ]
dr, where ri ≤ δ ≤ r◦ (C.5a)

σφφ(ε) = −
∫ π

ε

[
rρ
[
cosφ

(
2rθ̇φ̇ cos θ + (2ṙφ̇+ rφ̈) sin θ

)
+

sin θ
(

2ṙθ̇ cos θ + rθ̈ cos θ + (r̈ − rθ̇2 − rφ̇2)
)

sinφ
]
− ρrbθ

]
dφ,

where 0 ≤ ε ≤ π (C.5b)

σθθ(ζ) = −
∫ 2π

ζ

[
−rρbθ sinφ+ rρ sinφ cosφ

(
r̈ − rφ̇2

)
− rρ sin2 φ

(
2ṙφ̇+ rφ̈

)]
dθ,

where 0 ≤ ζ ≤ 2π. (C.5c)

Now, using the boundary condition, P + Patm = −σrr|r=ri , where Patm is the atmospheric pressure,

(here, taken as 0), we have the internal pressure in the IAB cavity as a function of the radius of

deformation in the current configuration as

P =

∫ r◦

ri

[
1

r

(
−2p+ 2C1

r2

R2
− 2C2

R8

r8

)
− ρbr + ρ cos θ

(
2ṙφ̇ cos θ + r cos θφ̈− 2rθ̇φ̇ sin θ

)
−ρ sinφ

(
cos θ(−r̈ + rθ̇2 + rφ̇2) + sin θ(2ṙθ̇ + rθ̈)

) ]
dr. (C.6)
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APPENDIX D

ADMM UPDATE EQUATIONS

We can rewrite the above objective of (5.1), subject to nonnegative bixel intensity constraints, as the

minimization problem

min
1

2
‖Ax− b‖2

2 subject to x ≥ 0.

The Lagrangian thus becomes

L(x,λ) =
1

2
‖Ax− b‖2

2 − λTx,

where λ ∈ Rn is a multiplier. This problem can be solved with dual gradient descent (DGD),

but DGD has the drawback that the primal and dual updates are not robust to objective’s con-

straints (Boyd et al., 2011). The alternating direction method of multipliers (ADMM) (Boyd et al.,

2011) tackles the robustness problem by adding a quadratic penalty term to the Lagrangian and

alternatingly updating the x and λ variables in a “broadcast and gather” process. This turns out to

be attractive since we will be solving a large-scale learning problem for the optimal beam angle set

combination. Introducing an auxiliary variable z, we have

min
x

1

2
‖Ax− b‖2

2, subject to z = x, z ≥ 0,

so that the Lagrangian can be written as,

min
x,z

1

2
‖Ax− b‖2

2 − λT (z− x) +
ρ

2
‖z− x‖2

2, (D.1)

where ρ > 0 is an ADMM penalty parameter. Minimizing (D.1) w.r.t x, the x subproblem of (D.1)

yields

min
x

1

2
xT (ATA + ρI)x + (λT − ATb− ρzT )x,

so that the x-update (due to the convex quadratic nature of the problem) becomes,

xk+1 =
(
ATA + ρI

)−1 (ATb+ ρzk − λk
)
. (D.2)
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Similarly, the z-update for (D.1) can be found by the z-minimization subproblem

min
z
−λT z +

ρ

2
‖z− x‖2

2 := min
z

ρ

2
‖z− x− 1

ρ
(λ)‖2

2.

Using the soft-thresholding operator, Sλ/ρ, we find that

zk+1 = Sλ/ρ
(
xk+1 + λk

)
, (D.3)

where Sλ/ρ(τ) = (x− λ/ρ)+ − (−τ − λ/ρ)+. λ is updated as

λk+1 = λk − γ(zk+1 − xk+1), (D.4)

and γ controls the step length. The inverse operation in (D.2) can be carried out with any iterative

solver, e.g. conjugate gradient. We use an over-relaxation parameter, αk = 1.5, and set the quadratic

penalty to ρ = 1.5, in the z and λ updates: αkA xk+1 − (1− αk)zk. The stopping criterion is met

when the primal and dual residuals are sufficiently small, i.e.

rk = ‖xk − zk‖2 ≤ εpri and sk = ‖ − ρ (zk+1 − zk)‖2 ≤ εdual,

with,

εpri =
√
ρεabs + εrel max{‖xk‖2, ‖ − z‖2}, and

εdual =
√
nεabs + εrel(ρλk), (D.5)

where εpri > 0, εdual > 0 are the primal and dual feasibility tolerances for the primal and dual

feasibility conditions (see (Boyd et al., 2011, §3.3)). In this work, we set εabs = 10−4 and

εrel = 10−2.
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