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Structure-Regularized Neural Networks for Hamilton-Jacobi-Bellman Optimal
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Abstract
Recent deep learning advances enable scaling so-
lutions to Hamilton-Jacobi-Bellman (HJB) equa-
tions for higher-dimensional systems, facilitating
optimal control policy synthesis across diverse ap-
plications. However, the flexibility in deep mod-
els introduces training complexities, requiring the
use of various training heuristics. In this work, we
investigate the challenges of training deep mod-
els in optimal control problems by drawing in-
sights from the matrix-algebraic Riccati equation
in infinite-time Linear Quadratic Regular (LQR)
problems. We proposed a structure-regularized
positive-definite neural network that guarantees
learning the unique admissible value function,
simplifying the training process. We conduct ex-
periments on various classical nonlinear optimal
control problems, demonstrating that our methods
achieve high-quality solutions.

1. Introduction
Dynamic programming (Bellman, 1954; Bertsekas, 2012)
and Hamilton-Jacobi-Bellman (HJB) equations form a solid
theoretical foundation for analyzing optimal control prob-
lems and deriving feedback policies for various applica-
tions in engineering, economy and management (Sundar
& Shiller, 1997; Björk et al., 2014). However, solving the
HJB equation is challenging, and many methods (Mitchell
& Templeton, 2005; Beard et al., 1997) encounter expo-
nential computational complexity as the system dimension
increases, commonly known as the ”curse of dimensional-
ity” (Bellman & Kalaba, 1959).

Recently, deep learning approaches have been introduced
and demonstrate success in solving HJB equations up to hun-
dreds of dimensions (Han et al., 2018; Darbon et al., 2020).
However, the training process becomes more challenging
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when applying these to more complex systems. Specifically,
when extending learning-based methods to general nonlin-
ear dynamics, warm-up, and curriculum training are often
required (Lutter et al., 2020; Bansal & Tomlin, 2021) which
prolongs the training time. In addition, the performance of
these algorithms become highly sensitive to various hyper-
parameter choices, and properly-tuned learning parameters
are needed to achieve good results (Nakamura-Zimmerer
et al., 2021).

In this work, we investigate why training neural networks
are difficult for solving HJB equations in optimal control.
We demonstrate that, even for a simple LQR problem, the
solutions to the associated HJB equation can be infinitely
many. Moreover, unlike reward-shaping techniques used in
reinforcement learning, where different value functions re-
sult in unchanged policies (Ng et al., 1999), we demonstrate
that most solutions to the HJB equation are ill-defined and
lead to policies that make the system unstable. Prior liter-
ature (Tedrake, 2023; Smears, 2018) has shown that if we
further constrain the solution to be positive-definite i.e. the
output of the solution(value function) is consistently positive
for any argument except at the origin (where it is zero), then
the solution is unique to the given HJB equations, leading
to the optimal policy. For LQR problems, positive-definite
solutions can be obtained by Schur-decomposition (Laub,
1979) or iterative Newton method (Guo & Higham, 2007).
However, these methods are hard to extend to general nonlin-
ear dynamics, especially using deep neural models for value
estimation. Without preserving the positive-definiteness, we
argue that it is challenging for a generic neural network to
learn the unique admissible solution among other ill-defined
solutions, making training difficult.

To address the training difficulty in solving HJB equations
for optimal control, we propose a structure-regularized
positive-definite architecture that provably learns the unique
admissible solution (rejecting all ill-defined solutions by
construction) to the HJB equation. We experiment with
several challenging nonlinear control problems and demon-
strate that our method can achieve good performance di-
rectly through random initialization, requiring fewer com-
putational iterations to converge.

The paper is organized as follows: Section 2, we provide
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background and related work in optimal control and HJB
equations. In Section 3, we present a motivated example
illustrating possible solutions to HJB equations. Sections
4 and 5 cover discussions on control policy synthesis and
learning solutions to HJB equations, respectively. Finally,
we present the experimental results and conclude our work.

2. Background and Related Work
In this section, we give the formulation of the optimal con-
trol problem and background on HJB equations.

Problem statement We consider the time-invariant con-
trol affine system given by

ẋ(t) = f(x(t)) + g(x(t))u(x(t)), (1)

with state x(t) ∈ X ⊆ Rn, drift f(x(t)) : X → Rn, actu-
ator g(x(t)) : X → Rn×m and the policy u(x(t)) : X →
U = {u : umin ≤ u ≤ umax} ⊆ Rm, where umin and umax
are control limit. For the notation convenience, we may
omit the argument (e.g. x instead of x(t)), and use u to
denote both policy and control input.

The goal is to find a feedback policy that minimizes the
infinite-time horizon cost-to-go

J (x0, u(x)) =

∫ +∞

t0

r(x(τ), u(x(τ))dτ, (2)

where c : X × U → R is the running cost and x(τ) is the
solution of the dynamics (1) given initial condition x(t0) =
x0 and feedback policy u(x). To ensure the well-poses
of the problem and the existence of solutions to the HJB
equation, we assume the dynamics 1 is controllable and
Lipschitz continuous on the compact set X that contains
the origin. Additionally, we require that the drift f satisfies
f(0) = 0, and running cost r satisfies r(0, 0) = 0.

To streamline our upcoming policy derivation, we further
assume a quadratic form for the running cost: r(x, u) =
l(x) + u⊤Ru, where l : X → R is the state-dependent
cost, and R ≻ 0 is a positive-definite matrix. These as-
sumptions simplify our problems significantly, yet remain
non-restrictive, as many applications can be written down
in such a form (Tedrake, 2023).

HJB equation for optimal control Given dynamics (1)
and the cost-to-go function (2), we define the value function
as cost-to-go under optimal policy

V(x0) = min
u

J (x0, u(x)), (3)

and the Hamiltonian

H(x, u,V) = r(x, u) +
∂V⊤

∂x

(
f(x) + g(x)u

)
. (4)

Then the HJB equations (Bertsekas, 2012; Tedrake, 2023)

u∗ = argmin
u∈U

H(x, u,V); (5a)

H(x, u∗,V) = 0, ∀x ∈ X , (5b)

provide necessary conditions for the candidate function
V (x) and control policy u(x) as value function and opti-
mal policy. The HJB equation stems from dynamic pro-
gramming theory. For those acquainted with the Bellman
equation in discrete time, the HJB equation serves as its
extension into a continuous-time system.

Learning positive-definite neural model Learning neu-
ral models with positive-definite properties is a promising
direction for synthesizing policy in nonlinear control prob-
lems and has been investigated in recent work (Chow et al.,
2018; Chang et al., 2019; Chang & Gao, 2021) with a
focus on system stability and safety. However, most ap-
proaches achieve positive definiteness ”softly” by incorpo-
rating penalty terms into the loss function. Such formu-
lations complicate the training procedure due to multiple
competing objectives (Mertikopoulos et al., 2018). The im-
balance between numerous ill-defined solutions and scarce
admissible solutions to our HJB problems further exacer-
bates the training difficulty. Therefore, a neural network
warm start is still needed to obtain a good policy that sta-
bilizes the system. Moreover, the penalty loss only applies
to the training dataset. Consequently, the learned model
provides little guarantee of positive definiteness on unseen
states, and the policy’s performance may decay due to the
violation of positive definiteness.

In contrast, (Kolter & Manek, 2019) had constrained the sta-
bility upon the model through an input-convex model (Amos
et al., 2017) and demonstrated success for learning non-
expansive dynamics. We show that such a structured-
regularized neural architecture can be applied to solve HJB
equations in optimal control, facilitating easier training.

3. Infinite Solutions to HJB
In this section, we elucidate the potential solutions to the
HJB equation through an example. We highlight that, even
for simple cases, there are numerous ill-defined solutions
compared to the limited admissible ones to the HJB equa-
tions, posing a challenge for learning the admissible solu-
tion.

Consider infinite-time LQR problems,

min
u(t)

∫ ∞

0

x⊤Qx+ u⊤Rudt (6)

subject to ẋ = Ax+Bu

where Q ⪰ 0 and R ≻ 0 are symmetric and real-valued
matrices. The value function of LQR takes quadratic form

2
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V (x) = x⊤Px. Substituting the quadratic value function
into our HJB equation (5) yields

u(x) = −R−1BTPx; (7a)

xT (ATP + PA− PBR−1BTP +Q)x = 0, (7b)

Equation 7b must hold for all x, implying the satisfaction
of the Algebraic Riccati Equation (ARE).

ATP + PA− PBR−1BTP +Q = 0. (8)

Now let’s assign numerical values to ARE equations. We
assume all matrices are 2-by-2 identity matrices i.e. A =

B = Q = R = I2×2, and P =

[
x, z1
z2, y

]
is a real-value

matrix. The matrices we choose are not specific but mainly
for calculation and visualization convenience. Readers can
verify the system is controllable and fully actuated.

Substituting the numbers into ARE (8) gives us four
quadratic equations with four unknowns

x2 + z22 = 2x+ 1
y2 + z21 = 2y + 1
z1x+ z2y = 2z2
z1x+ z2y = 2z1

. (9)

There is one positive-definite solution and one negative
solution to the equations (9): x = 1±

√
2

y = 1±
√
2

z1 = z2 = 0

, (10)

and infinite indefinite solutions
x = c
y = 2− c

z1 = z2 = ±
√
2c+ 1− c2

c ∈ [1−
√
2, 1 +

√
2]

. (11)

We visualize the solutions in Figure 1 (a) and demonstrate
that only positive-definite solutions result in a stabilizing
policy. The non-uniqueness of ARE solutions commonly
holds for arbitrary LQR problems (Willems, 1972). This
phenomenon is also reported in general nonlinear dynam-
ics (Misztela, 2018). We demonstrate in Figure 1 (c), with-
out warmup, it is easy for a generic neural network to con-
verge to a non-positive definite solution.

4. Control Policy Synthesized
In this section, we discuss how to synthesize the policy
given the value function. The main idea is to solve the opti-
mization problem 5a by exploring the structure of systems.

The approach described in this section is then applied to
learn the value function, which we will discuss in Section 5.

Under the assumptions outlined in Section 2 (i.e. control
affine system, quadratic running cost on u, and input limit
constraints) the optimization problem (5a) simplifies to solv-
ing a quadratic programming (QP) problem.

minimize
u

u⊤Ru+ ∂V⊤

∂x g(x)u+ l(x) + ∂V⊤

∂x f(x)

subject to umin ≤ u ≤ umax
.

(12)

To start, we explore two special cases. First, we consider
situations where the control input is unlimited (umin = −∞
and umax = +∞). In this scenario, the optimal control is
obtained by setting the gradient of the objective function in
(12) to zero, resulting in u∗ = −R−1

2 g(x)⊤ ∂V
∂x .

Secondly, when the control input is one-dimensional (i.e.,
the system has one actuator), the optimal control is given
by u∗ = clip

(
−R−1

2 g(x)⊤ ∂V
∂x , umin, umax

)
, where the clip

function truncates the control at the limits. This truncated
control is optimal as it satisfies the Karush-Kuhn-Tucker
(KKT) conditions, providing necessary and sufficient condi-
tions for optimality in QP (?).

Proposition 4.1. Let h0(u) = u⊤Ru + ∂V⊤

∂x g(x)u +

l(x) + ∂V⊤

∂x f(x) denotes the objective function, h1(u) =
u − umax ≤ 0, h2(u) = −u + umin ≤ 0 denote the up-
per and lower limit constraints, and λ1 and λ2 be the
associated Lagrangian dual variables respectively. Then
u∗ = clip(−R−1

2 g(x)⊤ ∂V
∂x , umin, umax) satisfy the KKT con-

ditions

Proof. The KKT conditions for optimality are listed below

1. The primary inequality constraints hi(u
∗) ≤ 0 holds

for i = 1, 2.

2. The dual variables are non-negative λi ≥ 0, i = 1, 2.

3. The complementary slackness hold λihi(u) = 0, i =
1, 2.

4. The gradient of Lagrangian vanishes with respect to u

∇h0(u) + λ1∇h1(u) + λ2∇h2(u) = 0. (13)

In considering three cases, the solution is either truncated
by the upper limits (i.e., −R−1

2 g(x)⊤ ∂V
∂x > umax), truncated

by the lower limits, or the solution u∗ = −R−1

2 g(x)⊤ ∂V
∂x

lies within both limits. In all cases, the primary inequality
constraints naturally hold.

Now, let’s delve into the case of optimal control truncated
at the upper limits. Since h2(umax) = umin − umax < 0, by

3
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Figure 1. (a) Visualization of solutions to ARE: The positive and negative solutions are unique (Willems, 1972), while there are
infinite-many indefinite solutions in the 1-D ring. (b) Trajectories by policies obtained from different solutions: Given the same initial
condition, we execute policies derived from different solutions to ARE. (c) Analytical solution versus learned solution: We train a
generic multilayer perceptron model to solve HJB equations, where it converges to the negative-definite solution.

complementary slackness λ2 = 0. Substituting u∗ = umax
and λ2 = 0 into equation 13 yield λ1 = −(2Rumax +

g(x)⊤ ∂V
∂x ). By the assumption −R−1

2 g(x)⊤ ∂V
∂x > umax,

so λ1 = −2Rumax − g(x)⊤ ∂V
∂x > 2R

(
R−1

2 g(x)⊤ ∂V
∂x

)
−

g(x)⊤ ∂V
∂x = 0. Therefore KKT condition holds.

The proof for the case when the optimal control is truncated
at the lower limits is analogous. Now let’s consider the case
when umin ≤ u∗ = −R−1

2 g(x)⊤ ∂V
∂x ≤ umax. Because both

the inequality constraints strictly hold, by complementary
slackness λ1 = λ2 = 0. The gradient of the Lagrangian van-
ish condition also holds because u∗ = −R−1

2 g(x)⊤ ∂V
∂x = 0

and λ1 = λ2 = 0. Therefore, KKT conditions hold.

For high-dimensional control inputs, we employ the active-
set method (Wong, 2011), akin to the preceding proof. We
first guess the active inequality constraints (i.e. hi(u) = 0),
then solve the equations (13), and verify if the resulting
solution u satisfies KKT conditions.

Exploiting the structure of the optimal control problems and
solving associated QP with the active-set method and KKT
conditions enable efficient synthesis of control policies. Fur-
thermore, leveraging auto-grad learning frameworks such as
Google Jax (Bradbury et al., 2018) allows for batch compu-
tation of control inputs on GPUs, facilitating quick learning
solutions to HJB equations, which we will discuss shortly.

5. Learning Solutions to HJB Equations
In this section, we describe how to learn the solution to HJB
equations, namely value functions. The idea is to minimize a
sample-based penalty that quantifies the extent to which the
value function violates the HJB equations. We underscore
the significance of learning positive-definite solutions in
Section 3. Here, we also detail the methodology to enforce
the model to learn positive-definite solutions.

5.1. HJB Loss Function

Let V̂(x, θ) be a neural function candidate, where x is the
input and θ denotes the parameters. Ideally, we would want
the function V̂(x, θ) to satisfy the HJB equations 5 for any
state x ∈ X . Since we cannot enforce HJB equations 5
straightforwardly by constructions. We introduce an auxil-
iary loss term

LHJB(θ,D) =
1

|D|
∑
xi∈D

∥r(xi, u(xi, θ))

+
∂V̂⊤

∂x
(xi, θ)[f(xi) + g(xi)u(xi, θ)]∥22,

(14)

where D = {xi ∈ X} is the unlabeled dataset with size
|D|, ∂V̂

∂x (x, θ) is the gradient of the neural function with
respect to the input x, and u(x, θ) is the control policy
associated with current value function (See section 4 for
derivation). Both gradient ∂V̂

∂x (x, θ) and policy u(x, θ)
are functions of the state x and parameters θ, and the en-
tire surrogate loss function (14) are differentiable. There-
fore, we can apply gradient-based methods to minimize
the loss (14) with respect to θ. The idea of relaxing func-
tional constraints with sampling-based penalty is common
in learning control-orientated structures (Singh et al., 2021;
Richards et al., 2023) and more generally in solving PDE
with (physically-informed) neural networks(PINN) (Raissi
et al., 2019; Cuomo et al., 2022).

5.2. Learning Positive-definite Model with “Soft”
Method

Here, we describe a “soft” method to learn positive-definite
solutions by introducing an additional penalty term to the
HJB loss (14). We define the HJB loss with positive-definite
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requirement as

LSoft PD
HJB (θ,D) =α1L

HJB(D) + α2∥V̂(0, θ)∥22

+ α3
1

|D|
∑
xi∈D

max(0,−V̂(xi, θ)), (15)

where α1, α2, and α3 are weights that balance the impor-
tance of satisfying HJB equations and positive-definiteness.
This method is founded on literature focused on jointly
learning stability certificates and control policies (Chang
et al., 2019; Chang & Gao, 2021). Despite demonstrating
promising results in learning admissible solutions, training
the neural network proves challenging and necessitates a
warm-up from an existing controller (e.g., LQR). Conse-
quently, the focus shifts towards enhancing the performance
of the current controller (e.g., expanding the region the
controller can stabilize the system) rather than deriving a
controller from scratch.

5.3. Positive-definite Neural Architecture

The training challenge of “soft” methods arises from multi-
objective optimization and stochastic gradient descent (Mer-
tikopoulos et al., 2018). The imbalance between numerous
inadmissible solutions and scarce admissible ones, both
resulting in zero HJB loss, exacerbates the situation. More-
over, even when the loss is minimized in the training data,
positive definiteness is still not guaranteed due to unseen
states. To address these challenges, we introduce the use of
a positive-definite neural architecture

We consider a fully connected n-layer neural network over
the state x

z1 = x,
zk+1 = σ(Wizk), k = 1, 2 . . . n− 1,

V̂(x, θ) = zTn zn + ϵ∥x∥22,
(16)

where zi denotes each ith layer, σ are nonlinear-activation
functions with property σ(0) = 0 such as rectified lin-
ear unit, hyperbolic tangent function, and sine function,
θ = {W1,W2, . . .Wn−1} is the parameter, and ϵ is a fixed
positive scalar.

Proposition 5.1. The function V̂(x, θ) is positive-definite
respect to the input x.

Proof. First, for any non-zero input x, the output V̂(x, θ) is
strictly positive as zTn zn is non-negative(by dot product) and
ϵ∥x∥22 is strictly positive (due to property of euclidian norm).
Second, V̂(0, θ) = 0. If zk = 0, then zk+1 = σ(Wk0) =
σ(0) = 0. When x = z1 = 0, it follows that zn = 0, and
euclidian norm of origin equals zero. Therefore V̂(0, θ) = 0
and we conclude V̂(x, θ) is positive-definite respect to the
input x.

Our proposed architecture can provably learn positive-
definite solutions, allowing us to directly minimize the HJB
loss (14) without the need to balance different objectives.
Additionally, it eliminates numerous ill-defined solutions
by construction, allowing us to learn solutions directly from
scratch and reduce computational time for convergence, as
we will demonstrate shortly in our experiments.

6. Experiments
In this section, we experimentally compare our proposed
method, “soft” methods with and without initialization,
and a linearized LQR controller as a baseline across three
classical optimal control problems: double integrator time-
optimal control, cartpole balancing, and optimal flying for a
2D drone. We highlight that our method can directly syn-
thesize the best control policy (in terms of cumulated cost)
from a randomly initialized network among these examples
and demonstrate quick convergence. Full details on system
dynamics are provided in Appendix ??.

Training Details We employ a 4-layer fully connected
forward neural network with hidden layer sizes 128, 128,
and 64 in the first three layers and a 1-dimensional output
as our baseline architecture for “soft” methods. In addition
to uniform sampling from the state space Ω, we adopt a
common practice in reinforcement learning by rolling out
trajectories with the current policy and adding the visited
states to the dataset D. We then warm up our baseline meth-
ods with a linearized LQR controller using the techniques
introduced in () and train with the Adam optimizer with
associated loss. For each system, we select data-sampling
and warm-up methods, along with other hyperparameters,
to maximize the performance (in terms of cumulated cost)
of our baseline methods. Full implementation details and
hyperparameters are included in Appendix ??. The same
hyperparameters are then applied to our proposed methods,
where we initialize the positive-definite model randomly.
We emphasize the robustness of our proposed methods to
hyperparameter choices, producing similar results with dif-
ferent settings. All methods are implemented using Python
and JAX, and training is conducted on a single NVIDIA
GeForce RTX 3070 Ti GPU. Computational times, number
of gradient updates, and data samples used for our methods
to converge to good policy are reported in Table 1.

Testing Procedures We assess policies based on cumu-
lated cost. First, we randomly sample multiple initial condi-
tions within the state space Ω. Subsequently, we simulate
the system forward using the given policies and calculate the
cumulated costs for each trajectory. During training, we as-
sess the performance of the learned policy after each epoch
with 20 different initial conditions and generate a cost train-
ing curve. For the final comparison between learned and

5
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Figure 2. Value functions for double integrator time optimal control, where (a): Analytical (b): Ours (c): Soft PD with warmup (d):
Soft PD without warmup (e): LQR.

Table 1. Runtime statistics of our methods on three nonlinear con-
trol examples.

DYNAMICS TIME(SEC) ITERS SAMPLES

DOUBLE INTEGRATOR 6.2 10K 65K
CARTPOLE 1.1 390 24K
2D DRONE 10.7 18K 117K

model-based policies, we initialize 100 different initial con-
ditions, providing each method with the same set of initial
conditions, and simulate forward. We present the perfor-
mance of the different policies in Table 2 and demonstrate
qualitative results below.

Double Integrator Time-Optimal Control The double
integrator time-optimal control problem involves pushing
a unit mass brick system to the origin with bounded inputs.
The time to the origin is defined as the infinite-time integral
of the indicator function tf =

∫∞
0

1{∥x∥2≥10−2}(x(t))dt,
where the running cost r(x, u) = 1{∥x∥2≥10−2}(x) equal
to zero when the brick is sufficient close to origin, and
equal to 1 for other cases. For the LQR controller, we
relax the indicator function to r(x, u) = x⊤Qx + u⊤Ru,
where Q is a 2-by-2 identity matrix and R = 0.01Q to
encourage saturated control. The problem is widely studied,
and analytical solutions exist that we can utilize to evaluate
the performance of different methods.

Our methods generate the most time-optimal trajectory com-
pared to all baseline methods (see Figure 3 (a) and Table 2).
The results align with the visualization of value functions,
as shown in Figure 2. We observe that the gradients of
the learned results are smaller than the analytical solutions
around the origin, where the analytical solution exhibits a
sharper valley. This discrepancy explains the optimal time
gap between the learned method and the analytical solution.
Figure 2 (d) shows the soft PD method can learn suitable
value functions in some state spaces without warm-up. How-
ever, when we further train the models with 10 times more
training iterations and obtain smaller PD HJB loss 15 com-
pared to its warmup counterpart, the performance of the

associated policy did not improve. Therefore, we argue it
is unlikely for the soft PD method to learn admissible so-
lutions in the entire state space without warm-up. We also
observed a sudden decay in the performance of policies gen-
erated by soft PD methods during the training process. This
may be attributed to the temporary violation of the positive-
definiteness property when optimizing the HJB loss further.
In contrast, our methods guarantee a positive-definite value
function throughout the training process, resulting in a more
stable cost training curve.
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Figure 3. (a): Trajectories for double integrator: Our methods
outperform all baseline methods to generate time optimal trajectory.
(b): Cost training curve for double integrator: The shaded
region represents one standard deviation among different initial
conditions. We set the time to 15 if the system has not reached the
origin by then.

Cartpole Balancing The cartpole balancing is a standard
nonlinear control problem for testing different control meth-
ods. The goal is to keep the pole upright at the origin
with the minimum energy. We define the running cost
r(x, u) = (x − xf )

⊤Q(x − xf ) + u⊤Ru, where xf is
denotes up-right equilibrium. Figure 4 (a) illustrates that
both our method and the LQR controller successfully stabi-
lize the system, generating similar trajectories. While the
soft method, when properly initialized, learns to balance
the pole in the upper-right position, the cart is not precisely
controlled to zero.

Drone Control We consider the problem of controlling
a 2D drone to the desired position as quickly and energy-
efficient as possible given random initial conditions. The
running cost is defined as r(x, u) = (x−xf )

⊤Q(x−xf )+

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2024

Table 2. Performance of policies in terms of cost-to-go among three examples. For double integrator time optimal control, we cut off the
cost-to-go at 15 if the system does not reach the origin by that time.

METHODS DOUBLE INTEGRATOR CARTPOLE 2D DRONE

OURS 2.69 ± 0.80 9.57 ± 6.73 4.80 ± 3.32
LQR 4.36 ± 1.24 9.57 ± 6.74 5.03 ± 3.61
SOFT PD WITH WARMUP 2.72 ± 0.80 9.59 ± 6.73 55.33K ± 72.13K
SOFT PD WITHOUT WARMUP 13.58 ± 4.14 2082.66 ± 2685.06 1460K ± 61.87K
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Figure 4. (a): Trajectories for cartpole: We show the states in
the error coordinates e = x − xf . Our methods learn a policy
that balances the cartpole at origin. (b): Cost training curve for
cartpole: The shaded region represents one standard deviation
among different initial conditions.
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Figure 5. (a): Trajectory for drone: The dashed lines are the final
orientations of Drone. Our method successfully controls the drone
to the desired position, while the soft method fails. (b): Trajec-
tory for drone with another initial condition: The soft methods
stabilize the system and control the drone toward the desired po-
sition. (c): Cost training curve for drone control: The shaded
region represents one standard deviation among different initial
conditions. The cost-to-go grows rapidly for random controllers.
To improve visualization, we halt the calculation of the cost-to-go
if the drone flies too far away from Ω. See Appendix ?? for details.

(u − uf )
⊤R(u − uf ), where xf is the desired position

and uf is the control to maintain hovering. Our methods
learn the policy that successfully controls the drone to the
desired position for any initial condition. In contrast, the
soft method, even with warm-up training, stabilizes the
system only for some initial conditions (See Figure 5 (a)
and (b)). We also observe our method outperforming the
LQR controller. This is likely due to the LQR controller
being limited by the linear approximation, while our method
leverages full nonlinear dynamics.

7. Conclusion and Future work
In this paper, we studied what makes learning a good pol-
icy difficult in HJB optimal control problems. We identify
potential solutions to the HJB equation and emphasize that
many of these solutions can be ill-defined. We underscore
the imbalance between inadmissible and admissible solu-
tions, a factor contributing to training difficulties, and stress
the significance of learning positive-definite solutions. For
this purpose, we propose a positive-definite architecture
for learning solutions to the HJB equation. Overall, our
methods outperform baseline methods for optimal control
policy synthesis. Moreover, our methods can directly learn
solutions from random initialization, offering significantly
improved ease of training.

Future work We view our methods as control-informed
learning techniques that aim to synthesize optimal policies
through deep learning approaches. We demonstrate the abil-
ity to efficiently learn complex controllers, outperforming
naive model-based controllers like LQR. In the real world,
neither detailed dynamic models nor specific parameters for
the model are readily available. Thus, an interesting avenue
for future research lies in simultaneously learning the feed-
back policy and control-orientated dynamics structure. This
could build off of existing work in (Kolter & Manek, 2019;
Richards et al., 2023). We envision that control-informed
and structure-aware learning enables more data-efficient and
generalizable control policy synthesis compared to a pure
model-free approach.
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A. You can have an appendix here.
You can have as much text here as you want. The main body must be at most 8 pages long. For the final version, one more
page can be added. If you want, you can use an appendix like this one.

The \onecolumn command above can be kept in place if you prefer a one-column appendix, or can be removed if you
prefer a two-column appendix. Apart from this possible change, the style (font size, spacing, margins, page numbering, etc.)
should be kept the same as the main body.

10


