
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Structure-Regularized Neural Networks for Hamilton-Jacobi-Bellman Optimal
Control Problems

Anonymous Authors1

Abstract
Recent deep learning advances enable scaling so-
lutions to Hamilton-Jacobi-Bellman (HJB) equa-
tions for higher-dimensional systems, facilitating
optimal control policy synthesis across diverse ap-
plications. However, the flexibility in deep mod-
els introduces training complexities, requiring the
use of various training heuristics. In this work, we
investigate the challenges of training deep mod-
els in optimal control problems by drawing in-
sights from the matrix-algebraic Riccati equation
in infinite-time Linear Quadratic Regular (LQR)
problems. We proposed a structure-regularized
positive-definite neural network that guarantees
learning the unique admissible value function,
simplifying the training process. We conduct ex-
periments on various classical nonlinear optimal
control problems, demonstrating that our methods
achieve high-quality solutions.

1. Introduction
Dynamic programming (Bellman, 1954; Bertsekas, 2012)
and Hamilton-Jacobi-Bellman (HJB) equations form a solid
theoretical foundation for analyzing optimal control prob-
lems and deriving feedback policies for various applica-
tions in engineering, economy and management (Sundar
& Shiller, 1997; Björk et al., 2014). However, solving the
HJB equation is challenging, and many methods (Mitchell
& Templeton, 2005; Beard et al., 1997) encounter expo-
nential computational complexity as the system dimension
increases, commonly known as the ”curse of dimensional-
ity” (Bellman & Kalaba, 1959).

Recently, deep learning approaches have been introduced
and demonstrate success in solving HJB equations up to hun-
dreds of dimensions (Han et al., 2018; Darbon et al., 2020).
However, the training process becomes more challenging

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

when applying these to more complex systems. Specifically,
when extending learning-based methods to general nonlin-
ear dynamics, warm-up, and curriculum training are often
required (Lutter et al., 2020; Bansal & Tomlin, 2021) which
prolongs the training time. In addition, the performance of
these algorithms become highly sensitive to various hyper-
parameter choices, and properly-tuned learning parameters
are needed to achieve good results (Nakamura-Zimmerer
et al., 2021).

In this work, we investigate why training neural networks
are difficult for solving HJB equations in optimal control.
We demonstrate that, even for a simple LQR problem, the
solutions to the associated HJB equation can be infinitely
many. Moreover, unlike reward-shaping techniques used in
reinforcement learning, where different value functions re-
sult in unchanged policies (Ng et al., 1999), we demonstrate
that most solutions to the HJB equation are ill-defined and
lead to policies that make the system unstable. Prior liter-
ature (Tedrake, 2023; Smears, 2018) has shown that if we
further constrain the solution to be positive-definite i.e. the
output of the solution(value function) is consistently positive
for any argument except at the origin (where it is zero), then
the solution is unique to the given HJB equations, leading
to the optimal policy. For LQR problems, positive-definite
solutions can be obtained by Schur-decomposition (Laub,
1979) or iterative Newton method (Guo & Higham, 2007).
However, these methods are hard to extend to general nonlin-
ear dynamics, especially using deep neural models for value
estimation. Without preserving the positive-definiteness, we
argue that it is challenging for a generic neural network to
learn the unique admissible solution among other ill-defined
solutions, making training difficult.

To address the training difficulty in solving HJB equations
for optimal control, we propose a structure-regularized
positive-definite architecture that provably learns the unique
admissible solution (rejecting all ill-defined solutions by
construction) to the HJB equation. We experiment with
several challenging nonlinear control problems and demon-
strate that our method can achieve good performance di-
rectly through random initialization, requiring fewer com-
putational iterations to converge.

The paper is organized as follows: Section 2, we provide

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Submission and Formatting Instructions for ICML 2024

background and related work in optimal control and HJB
equations. In Section 3, we present a motivated example
illustrating possible solutions to HJB equations. Sections
4 and 5 cover discussions on control policy synthesis and
learning solutions to HJB equations, respectively. Finally,
we present the experimental results and conclude our work.

2. Background and Related Work
In this section, we give the formulation of the optimal con-
trol problem and background on HJB equations.

Problem statement We consider the time-invariant con-
trol affine system given by

ẋ(t) = f(x(t)) + g(x(t))u(x(t)), (1)

with state x(t) ∈ X ⊆ Rn, drift f(x(t)) : X → Rn, actu-
ator g(x(t)) : X → Rn×m and the policy u(x(t)) : X →
U = {u : umin ≤ u ≤ umax} ⊆ Rm, where umin and umax
are control limit. For the notation convenience, we may
omit the argument (e.g. x instead of x(t)), and use u to
denote both policy and control input.

The goal is to find a feedback policy that minimizes the
infinite-time horizon cost-to-go

J (x0, u(x)) =

∫ +∞

t0

r(x(τ), u(x(τ))dτ, (2)

where c : X × U → R is the running cost and x(τ) is the
solution of the dynamics (1) given initial condition x(t0) =
x0 and feedback policy u(x). To ensure the well-poses
of the problem and the existence of solutions to the HJB
equation, we assume the dynamics 1 is controllable and
Lipschitz continuous on the compact set X that contains
the origin. Additionally, we require that the drift f satisfies
f(0) = 0, and running cost r satisfies r(0, 0) = 0.

To streamline our upcoming policy derivation, we further
assume a quadratic form for the running cost: r(x, u) =
l(x) + u⊤Ru, where l : X → R is the state-dependent
cost, and R ≻ 0 is a positive-definite matrix. These as-
sumptions simplify our problems significantly, yet remain
non-restrictive, as many applications can be written down
in such a form (Tedrake, 2023).

HJB equation for optimal control Given dynamics (1)
and the cost-to-go function (2), we define the value function
as cost-to-go under optimal policy

V(x0) = min
u

J (x0, u(x)), (3)

and the Hamiltonian

H(x, u,V) = r(x, u) +
∂V⊤

∂x

(
f(x) + g(x)u

)
. (4)

Then the HJB equations (Bertsekas, 2012; Tedrake, 2023)

u∗ = argmin
u∈U

H(x, u,V); (5a)

H(x, u∗,V) = 0, ∀x ∈ X , (5b)

provide necessary conditions for the candidate function
V (x) and control policy u(x) as value function and opti-
mal policy. The HJB equation stems from dynamic pro-
gramming theory. For those acquainted with the Bellman
equation in discrete time, the HJB equation serves as its
extension into a continuous-time system.

Learning positive-definite neural model Learning neu-
ral models with positive-definite properties is a promising
direction for synthesizing policy in nonlinear control prob-
lems and has been investigated in recent work (Chow et al.,
2018; Chang et al., 2019; Chang & Gao, 2021) with a
focus on system stability and safety. However, most ap-
proaches achieve positive definiteness ”softly” by incorpo-
rating penalty terms into the loss function. Such formu-
lations complicate the training procedure due to multiple
competing objectives (Mertikopoulos et al., 2018). The im-
balance between numerous ill-defined solutions and scarce
admissible solutions to our HJB problems further exacer-
bates the training difficulty. Therefore, a neural network
warm start is still needed to obtain a good policy that sta-
bilizes the system. Moreover, the penalty loss only applies
to the training dataset. Consequently, the learned model
provides little guarantee of positive definiteness on unseen
states, and the policy’s performance may decay due to the
violation of positive definiteness.

In contrast, (Kolter & Manek, 2019) had constrained the sta-
bility upon the model through an input-convex model (Amos
et al., 2017) and demonstrated success for learning non-
expansive dynamics. We show that such a structured-
regularized neural architecture can be applied to solve HJB
equations in optimal control, facilitating easier training.

3. Infinite Solutions to HJB
In this section, we elucidate the potential solutions to the
HJB equation through an example. We highlight that, even
for simple cases, there are numerous ill-defined solutions
compared to the limited admissible ones to the HJB equa-
tions, posing a challenge for learning the admissible solu-
tion.

Consider infinite-time LQR problems,

min
u(t)

∫ ∞

0

x⊤Qx+ u⊤Rudt (6)

subject to ẋ = Ax+Bu

where Q ⪰ 0 and R ≻ 0 are symmetric and real-valued
matrices. The value function of LQR takes quadratic form

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Submission and Formatting Instructions for ICML 2024

V (x) = x⊤Px. Substituting the quadratic value function
into our HJB equation (5) yields

u(x) = −R−1BTPx; (7a)

xT (ATP + PA− PBR−1BTP +Q)x = 0, (7b)

Equation 7b must hold for all x, implying the satisfaction
of the Algebraic Riccati Equation (ARE).

ATP + PA− PBR−1BTP +Q = 0. (8)

Now let’s assign numerical values to ARE equations. We
assume all matrices are 2-by-2 identity matrices i.e. A =

B = Q = R = I2×2, and P =

[
x, z1
z2, y

]
is a real-value

matrix. The matrices we choose are not specific but mainly
for calculation and visualization convenience. Readers can
verify the system is controllable and fully actuated.

Substituting the numbers into ARE (8) gives us four
quadratic equations with four unknowns

x2 + z22 = 2x+ 1
y2 + z21 = 2y + 1
z1x+ z2y = 2z2
z1x+ z2y = 2z1

. (9)

There is one positive-definite solution and one negative
solution to the equations (9): x = 1±

√
2

y = 1±
√
2

z1 = z2 = 0

, (10)

and infinite indefinite solutions
x = c
y = 2− c

z1 = z2 = ±
√
2c+ 1− c2

c ∈ [1−
√
2, 1 +

√
2]

. (11)

We visualize the solutions in Figure 1 (a) and demonstrate
that only positive-definite solutions result in a stabilizing
policy. The non-uniqueness of ARE solutions commonly
holds for arbitrary LQR problems (Willems, 1972). This
phenomenon is also reported in general nonlinear dynam-
ics (Misztela, 2018). We demonstrate in Figure 1 (c), with-
out warmup, it is easy for a generic neural network to con-
verge to a non-positive definite solution.

4. Control Policy Synthesized
In this section, we discuss how to synthesize the policy
given the value function. The main idea is to solve the opti-
mization problem 5a by exploring the structure of systems.

The approach described in this section is then applied to
learn the value function, which we will discuss in Section 5.

Under the assumptions outlined in Section 2 (i.e. control
affine system, quadratic running cost on u, and input limit
constraints) the optimization problem (5a) simplifies to solv-
ing a quadratic programming (QP) problem.

minimize
u

u⊤Ru+ ∂V⊤

∂x g(x)u+ l(x) + ∂V⊤

∂x f(x)

subject to umin ≤ u ≤ umax
.

(12)

To start, we explore two special cases. First, we consider
situations where the control input is unlimited (umin = −∞
and umax = +∞). In this scenario, the optimal control is
obtained by setting the gradient of the objective function in
(12) to zero, resulting in u∗ = −R−1

2 g(x)⊤ ∂V
∂x .

Secondly, when the control input is one-dimensional (i.e.,
the system has one actuator), the optimal control is given
by u∗ = clip

(
−R−1

2 g(x)⊤ ∂V
∂x , umin, umax

)
, where the clip

function truncates the control at the limits. This truncated
control is optimal as it satisfies the Karush-Kuhn-Tucker
(KKT) conditions, providing necessary and sufficient condi-
tions for optimality in QP (?).

Proposition 4.1. Let h0(u) = u⊤Ru + ∂V⊤

∂x g(x)u +

l(x) + ∂V⊤

∂x f(x) denotes the objective function, h1(u) =
u − umax ≤ 0, h2(u) = −u + umin ≤ 0 denote the up-
per and lower limit constraints, and λ1 and λ2 be the
associated Lagrangian dual variables respectively. Then
u∗ = clip(−R−1

2 g(x)⊤ ∂V
∂x , umin, umax) satisfy the KKT con-

ditions

Proof. The KKT conditions for optimality are listed below

1. The primary inequality constraints hi(u
∗) ≤ 0 holds

for i = 1, 2.

2. The dual variables are non-negative λi ≥ 0, i = 1, 2.

3. The complementary slackness hold λihi(u) = 0, i =
1, 2.

4. The gradient of Lagrangian vanishes with respect to u

∇h0(u) + λ1∇h1(u) + λ2∇h2(u) = 0. (13)

In considering three cases, the solution is either truncated
by the upper limits (i.e., −R−1

2 g(x)⊤ ∂V
∂x > umax), truncated

by the lower limits, or the solution u∗ = −R−1

2 g(x)⊤ ∂V
∂x

lies within both limits. In all cases, the primary inequality
constraints naturally hold.

Now, let’s delve into the case of optimal control truncated
at the upper limits. Since h2(umax) = umin − umax < 0, by

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Submission and Formatting Instructions for ICML 2024

(a) (b) (c)

x

0.5 0.0 0.5 1.0 1.5 2.0 2.5

y

0.5
0.0

0.5
1.0

1.5
2.0

2.5

z

1.5
1.0
0.5

0.0
0.5
1.0
1.5

other solutions satisfy ARE
positive definite solution

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
time

6

4

2

0

2

4

6

st
at

es

policy from positive definite solution
policy from negative definite solution
soft pd without warmup

state 1
state 2 state 1

2
1

0
1

2

sta
te

2

2
1

0
1

2

va
lu

e

4

3

2

1

0

analytical negative definite value function
learned value function

Figure 1. (a) Visualization of solutions to ARE: The positive and negative solutions are unique (Willems, 1972), while there are
infinite-many indefinite solutions in the 1-D ring. (b) Trajectories by policies obtained from different solutions: Given the same initial
condition, we execute policies derived from different solutions to ARE. (c) Analytical solution versus learned solution: We train a
generic multilayer perceptron model to solve HJB equations, where it converges to the negative-definite solution.

complementary slackness λ2 = 0. Substituting u∗ = umax
and λ2 = 0 into equation 13 yield λ1 = −(2Rumax +

g(x)⊤ ∂V
∂x). By the assumption −R−1

2 g(x)⊤ ∂V
∂x > umax,

so λ1 = −2Rumax − g(x)⊤ ∂V
∂x > 2R

(
R−1

2 g(x)⊤ ∂V
∂x

)
−

g(x)⊤ ∂V
∂x = 0. Therefore KKT condition holds.

The proof for the case when the optimal control is truncated
at the lower limits is analogous. Now let’s consider the case
when umin ≤ u∗ = −R−1

2 g(x)⊤ ∂V
∂x ≤ umax. Because both

the inequality constraints strictly hold, by complementary
slackness λ1 = λ2 = 0. The gradient of the Lagrangian van-
ish condition also holds because u∗ = −R−1

2 g(x)⊤ ∂V
∂x = 0

and λ1 = λ2 = 0. Therefore, KKT conditions hold.

For high-dimensional control inputs, we employ the active-
set method (Wong, 2011), akin to the preceding proof. We
first guess the active inequality constraints (i.e. hi(u) = 0),
then solve the equations (13), and verify if the resulting
solution u satisfies KKT conditions.

Exploiting the structure of the optimal control problems and
solving associated QP with the active-set method and KKT
conditions enable efficient synthesis of control policies. Fur-
thermore, leveraging auto-grad learning frameworks such as
Google Jax (Bradbury et al., 2018) allows for batch compu-
tation of control inputs on GPUs, facilitating quick learning
solutions to HJB equations, which we will discuss shortly.

5. Learning Solutions to HJB Equations
In this section, we describe how to learn the solution to HJB
equations, namely value functions. The idea is to minimize a
sample-based penalty that quantifies the extent to which the
value function violates the HJB equations. We underscore
the significance of learning positive-definite solutions in
Section 3. Here, we also detail the methodology to enforce
the model to learn positive-definite solutions.

5.1. HJB Loss Function

Let V̂(x, θ) be a neural function candidate, where x is the
input and θ denotes the parameters. Ideally, we would want
the function V̂(x, θ) to satisfy the HJB equations 5 for any
state x ∈ X . Since we cannot enforce HJB equations 5
straightforwardly by constructions. We introduce an auxil-
iary loss term

LHJB(θ,D) =
1

|D|
∑
xi∈D

∥r(xi, u(xi, θ))

+
∂V̂⊤

∂x
(xi, θ)[f(xi) + g(xi)u(xi, θ)]∥22,

(14)

where D = {xi ∈ X} is the unlabeled dataset with size
|D|, ∂V̂

∂x (x, θ) is the gradient of the neural function with
respect to the input x, and u(x, θ) is the control policy
associated with current value function (See section 4 for
derivation). Both gradient ∂V̂

∂x (x, θ) and policy u(x, θ)
are functions of the state x and parameters θ, and the en-
tire surrogate loss function (14) are differentiable. There-
fore, we can apply gradient-based methods to minimize
the loss (14) with respect to θ. The idea of relaxing func-
tional constraints with sampling-based penalty is common
in learning control-orientated structures (Singh et al., 2021;
Richards et al., 2023) and more generally in solving PDE
with (physically-informed) neural networks(PINN) (Raissi
et al., 2019; Cuomo et al., 2022).

5.2. Learning Positive-definite Model with “Soft”
Method

Here, we describe a “soft” method to learn positive-definite
solutions by introducing an additional penalty term to the
HJB loss (14). We define the HJB loss with positive-definite

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Submission and Formatting Instructions for ICML 2024

requirement as

LSoft PD
HJB (θ,D) =α1L

HJB(D) + α2∥V̂(0, θ)∥22

+ α3
1

|D|
∑
xi∈D

max(0,−V̂(xi, θ)), (15)

where α1, α2, and α3 are weights that balance the impor-
tance of satisfying HJB equations and positive-definiteness.
This method is founded on literature focused on jointly
learning stability certificates and control policies (Chang
et al., 2019; Chang & Gao, 2021). Despite demonstrating
promising results in learning admissible solutions, training
the neural network proves challenging and necessitates a
warm-up from an existing controller (e.g., LQR). Conse-
quently, the focus shifts towards enhancing the performance
of the current controller (e.g., expanding the region the
controller can stabilize the system) rather than deriving a
controller from scratch.

5.3. Positive-definite Neural Architecture

The training challenge of “soft” methods arises from multi-
objective optimization and stochastic gradient descent (Mer-
tikopoulos et al., 2018). The imbalance between numerous
inadmissible solutions and scarce admissible ones, both
resulting in zero HJB loss, exacerbates the situation. More-
over, even when the loss is minimized in the training data,
positive definiteness is still not guaranteed due to unseen
states. To address these challenges, we introduce the use of
a positive-definite neural architecture

We consider a fully connected n-layer neural network over
the state x

z1 = x,
zk+1 = σ(Wizk), k = 1, 2 . . . n− 1,

V̂(x, θ) = zTn zn + ϵ∥x∥22,
(16)

where zi denotes each ith layer, σ are nonlinear-activation
functions with property σ(0) = 0 such as rectified lin-
ear unit, hyperbolic tangent function, and sine function,
θ = {W1,W2, . . .Wn−1} is the parameter, and ϵ is a fixed
positive scalar.

Proposition 5.1. The function V̂(x, θ) is positive-definite
respect to the input x.

Proof. First, for any non-zero input x, the output V̂(x, θ) is
strictly positive as zTn zn is non-negative(by dot product) and
ϵ∥x∥22 is strictly positive (due to property of euclidian norm).
Second, V̂(0, θ) = 0. If zk = 0, then zk+1 = σ(Wk0) =
σ(0) = 0. When x = z1 = 0, it follows that zn = 0, and
euclidian norm of origin equals zero. Therefore V̂(0, θ) = 0
and we conclude V̂(x, θ) is positive-definite respect to the
input x.

Our proposed architecture can provably learn positive-
definite solutions, allowing us to directly minimize the HJB
loss (14) without the need to balance different objectives.
Additionally, it eliminates numerous ill-defined solutions
by construction, allowing us to learn solutions directly from
scratch and reduce computational time for convergence, as
we will demonstrate shortly in our experiments.

6. Experiments
In this section, we experimentally compare our proposed
method, “soft” methods with and without initialization,
and a linearized LQR controller as a baseline across three
classical optimal control problems: double integrator time-
optimal control, cartpole balancing, and optimal flying for a
2D drone. We highlight that our method can directly syn-
thesize the best control policy (in terms of cumulated cost)
from a randomly initialized network among these examples
and demonstrate quick convergence. Full details on system
dynamics are provided in Appendix ??.

Training Details We employ a 4-layer fully connected
forward neural network with hidden layer sizes 128, 128,
and 64 in the first three layers and a 1-dimensional output
as our baseline architecture for “soft” methods. In addition
to uniform sampling from the state space Ω, we adopt a
common practice in reinforcement learning by rolling out
trajectories with the current policy and adding the visited
states to the dataset D. We then warm up our baseline meth-
ods with a linearized LQR controller using the techniques
introduced in () and train with the Adam optimizer with
associated loss. For each system, we select data-sampling
and warm-up methods, along with other hyperparameters,
to maximize the performance (in terms of cumulated cost)
of our baseline methods. Full implementation details and
hyperparameters are included in Appendix ??. The same
hyperparameters are then applied to our proposed methods,
where we initialize the positive-definite model randomly.
We emphasize the robustness of our proposed methods to
hyperparameter choices, producing similar results with dif-
ferent settings. All methods are implemented using Python
and JAX, and training is conducted on a single NVIDIA
GeForce RTX 3070 Ti GPU. Computational times, number
of gradient updates, and data samples used for our methods
to converge to good policy are reported in Table 1.

Testing Procedures We assess policies based on cumu-
lated cost. First, we randomly sample multiple initial condi-
tions within the state space Ω. Subsequently, we simulate
the system forward using the given policies and calculate the
cumulated costs for each trajectory. During training, we as-
sess the performance of the learned policy after each epoch
with 20 different initial conditions and generate a cost train-
ing curve. For the final comparison between learned and

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Submission and Formatting Instructions for ICML 2024

(a) (b) (c) (d) (e)

pos

1.0
0.5

0.0
0.5

1.0

vel

1.0
0.5

0.0
0.5

1.0

va
lu

e
0.0
0.5
1.0
1.5
2.0
2.5
3.0

pos

1.0
0.5

0.0
0.5

1.0

vel

1.0
0.5

0.0
0.5

1.0

va
lu

e

0.0
0.5
1.0
1.5
2.0
2.5
3.0

pos

1.0
0.5

0.0
0.5

1.0

vel

1.0
0.5

0.0
0.5

1.0

va
lu

e

2.0
1.5
1.0
0.5

0.0
0.5

pos

1.0
0.5

0.0
0.5

1.0

vel

1.0
0.5

0.0
0.5

1.0

va
lu

e

1.0
0.5

0.0
0.5
1.0
1.5

pos

1.0
0.5

0.0
0.5

1.0

vel

1.0
0.5

0.0
0.5

1.0

va
lu

e

0.0
0.5
1.0
1.5
2.0
2.5
3.0

Figure 2. Value functions for double integrator time optimal control, where (a): Analytical (b): Ours (c): Soft PD with warmup (d):
Soft PD without warmup (e): LQR.

Table 1. Runtime statistics of our methods on three nonlinear con-
trol examples.

DYNAMICS TIME(SEC) ITERS SAMPLES

DOUBLE INTEGRATOR 6.2 10K 65K
CARTPOLE 1.1 390 24K
2D DRONE 10.7 18K 117K

model-based policies, we initialize 100 different initial con-
ditions, providing each method with the same set of initial
conditions, and simulate forward. We present the perfor-
mance of the different policies in Table 2 and demonstrate
qualitative results below.

Double Integrator Time-Optimal Control The double
integrator time-optimal control problem involves pushing
a unit mass brick system to the origin with bounded inputs.
The time to the origin is defined as the infinite-time integral
of the indicator function tf =

∫∞
0

1{∥x∥2≥10−2}(x(t))dt,
where the running cost r(x, u) = 1{∥x∥2≥10−2}(x) equal
to zero when the brick is sufficient close to origin, and
equal to 1 for other cases. For the LQR controller, we
relax the indicator function to r(x, u) = x⊤Qx + u⊤Ru,
where Q is a 2-by-2 identity matrix and R = 0.01Q to
encourage saturated control. The problem is widely studied,
and analytical solutions exist that we can utilize to evaluate
the performance of different methods.

Our methods generate the most time-optimal trajectory com-
pared to all baseline methods (see Figure 3 (a) and Table 2).
The results align with the visualization of value functions,
as shown in Figure 2. We observe that the gradients of
the learned results are smaller than the analytical solutions
around the origin, where the analytical solution exhibits a
sharper valley. This discrepancy explains the optimal time
gap between the learned method and the analytical solution.
Figure 2 (d) shows the soft PD method can learn suitable
value functions in some state spaces without warm-up. How-
ever, when we further train the models with 10 times more
training iterations and obtain smaller PD HJB loss 15 com-
pared to its warmup counterpart, the performance of the

associated policy did not improve. Therefore, we argue it
is unlikely for the soft PD method to learn admissible so-
lutions in the entire state space without warm-up. We also
observed a sudden decay in the performance of policies gen-
erated by soft PD methods during the training process. This
may be attributed to the temporary violation of the positive-
definiteness property when optimizing the HJB loss further.
In contrast, our methods guarantee a positive-definite value
function throughout the training process, resulting in a more
stable cost training curve.

(a) (b)

0 1 2 3 4 5
time

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

st
at

es

ours
soft pd with warmup
soft pd without warmup
lqr
analytical

pos
vel
time to origin

0 20 40 60 80 100
epochs

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

tim
e

to
 o

rig
in

 (s
ec

)

ours
soft pd with warmup
soft pd without warmup

Figure 3. (a): Trajectories for double integrator: Our methods
outperform all baseline methods to generate time optimal trajectory.
(b): Cost training curve for double integrator: The shaded
region represents one standard deviation among different initial
conditions. We set the time to 15 if the system has not reached the
origin by then.

Cartpole Balancing The cartpole balancing is a standard
nonlinear control problem for testing different control meth-
ods. The goal is to keep the pole upright at the origin
with the minimum energy. We define the running cost
r(x, u) = (x − xf)

⊤Q(x − xf) + u⊤Ru, where xf is
denotes up-right equilibrium. Figure 4 (a) illustrates that
both our method and the LQR controller successfully stabi-
lize the system, generating similar trajectories. While the
soft method, when properly initialized, learns to balance
the pole in the upper-right position, the cart is not precisely
controlled to zero.

Drone Control We consider the problem of controlling
a 2D drone to the desired position as quickly and energy-
efficient as possible given random initial conditions. The
running cost is defined as r(x, u) = (x−xf)

⊤Q(x−xf)+

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Submission and Formatting Instructions for ICML 2024

Table 2. Performance of policies in terms of cost-to-go among three examples. For double integrator time optimal control, we cut off the
cost-to-go at 15 if the system does not reach the origin by that time.

METHODS DOUBLE INTEGRATOR CARTPOLE 2D DRONE

OURS 2.69 ± 0.80 9.57 ± 6.73 4.80 ± 3.32
LQR 4.36 ± 1.24 9.57 ± 6.74 5.03 ± 3.61
SOFT PD WITH WARMUP 2.72 ± 0.80 9.59 ± 6.73 55.33K ± 72.13K
SOFT PD WITHOUT WARMUP 13.58 ± 4.14 2082.66 ± 2685.06 1460K ± 61.87K

(a) (b)

0 2 4 6 8 10
time

0.5

0.0

0.5

1.0

1.5

2.0

st
at

es
 in

 e
rro

r c
oo

rd
in

at
es

ours
soft pd with warmup
soft pd without warmup
lqr

pos
theta
vel
angular vel

0 20 40 60 80 100
epochs

0

100

200

300

400

cu
m

ul
at

ed
 c

os
t

ours
soft pd with warmup
soft pd without warmup

Figure 4. (a): Trajectories for cartpole: We show the states in
the error coordinates e = x − xf . Our methods learn a policy
that balances the cartpole at origin. (b): Cost training curve for
cartpole: The shaded region represents one standard deviation
among different initial conditions.

(a) (b) (c)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
x(meter)

0.5

0.4

0.3

0.2

0.1

0.0

0.1

y(
m

et
er

)

ours
lqr
soft pd
soft pd without warmup
desired position

0.6 0.4 0.2 0.0 0.2
x(meter)

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

y(
m

et
er

)

ours
lqr
soft pd
soft pd without warmup
desired position

0 20 40 60 80 100 120 140
epochs

0

250

500

750

1000

1250

1500

cu
m

ul
at

ed
 c

os
t

ours
soft pd with warmup
soft pd without warmup

Figure 5. (a): Trajectory for drone: The dashed lines are the final
orientations of Drone. Our method successfully controls the drone
to the desired position, while the soft method fails. (b): Trajec-
tory for drone with another initial condition: The soft methods
stabilize the system and control the drone toward the desired po-
sition. (c): Cost training curve for drone control: The shaded
region represents one standard deviation among different initial
conditions. The cost-to-go grows rapidly for random controllers.
To improve visualization, we halt the calculation of the cost-to-go
if the drone flies too far away from Ω. See Appendix ?? for details.

(u − uf)
⊤R(u − uf), where xf is the desired position

and uf is the control to maintain hovering. Our methods
learn the policy that successfully controls the drone to the
desired position for any initial condition. In contrast, the
soft method, even with warm-up training, stabilizes the
system only for some initial conditions (See Figure 5 (a)
and (b)). We also observe our method outperforming the
LQR controller. This is likely due to the LQR controller
being limited by the linear approximation, while our method
leverages full nonlinear dynamics.

7. Conclusion and Future work
In this paper, we studied what makes learning a good pol-
icy difficult in HJB optimal control problems. We identify
potential solutions to the HJB equation and emphasize that
many of these solutions can be ill-defined. We underscore
the imbalance between inadmissible and admissible solu-
tions, a factor contributing to training difficulties, and stress
the significance of learning positive-definite solutions. For
this purpose, we propose a positive-definite architecture
for learning solutions to the HJB equation. Overall, our
methods outperform baseline methods for optimal control
policy synthesis. Moreover, our methods can directly learn
solutions from random initialization, offering significantly
improved ease of training.

Future work We view our methods as control-informed
learning techniques that aim to synthesize optimal policies
through deep learning approaches. We demonstrate the abil-
ity to efficiently learn complex controllers, outperforming
naive model-based controllers like LQR. In the real world,
neither detailed dynamic models nor specific parameters for
the model are readily available. Thus, an interesting avenue
for future research lies in simultaneously learning the feed-
back policy and control-orientated dynamics structure. This
could build off of existing work in (Kolter & Manek, 2019;
Richards et al., 2023). We envision that control-informed
and structure-aware learning enables more data-efficient and
generalizable control policy synthesis compared to a pure
model-free approach.

References
Amos, B., Xu, L., and Kolter, J. Z. Input convex neural net-

works. In International Conference on Machine Learning,
pp. 146–155. PMLR, 2017.

Bansal, S. and Tomlin, C. J. Deepreach: A deep learning
approach to high-dimensional reachability. In 2021 IEEE
International Conference on Robotics and Automation
(ICRA), pp. 1817–1824. IEEE, 2021.

Beard, R. W., Saridis, G. N., and Wen, J. T. Galerkin ap-
proximations of the generalized hamilton-jacobi-bellman
equation. Automatica, 33(12):2159–2177, 1997.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Submission and Formatting Instructions for ICML 2024

Bellman, R. Dynamic programming and a new formalism
in the calculus of variations. Proceedings of the national
academy of sciences, 40(4):231–235, 1954.

Bellman, R. and Kalaba, R. On adaptive control processes.
IRE Transactions on Automatic Control, 4(2):1–9, 1959.

Bertsekas, D. Dynamic programming and optimal control:
Volume I, volume 4. Athena scientific, 2012.

Björk, T., Murgoci, A., and Zhou, X. Y. Mean–variance
portfolio optimization with state-dependent risk aversion.
Mathematical Finance: An International Journal of Math-
ematics, Statistics and Financial Economics, 24(1):1–24,
2014.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Chang, Y.-C. and Gao, S. Stabilizing neural control using
self-learned almost lyapunov critics. In 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA),
pp. 1803–1809. IEEE, 2021.

Chang, Y.-C., Roohi, N., and Gao, S. Neural lyapunov con-
trol. Advances in neural information processing systems,
32, 2019.

Chow, Y., Nachum, O., Duenez-Guzman, E., and
Ghavamzadeh, M. A lyapunov-based approach to safe
reinforcement learning. Advances in neural information
processing systems, 31, 2018.

Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi,
M., and Piccialli, F. Scientific machine learning through
physics–informed neural networks: Where we are and
what’s next. Journal of Scientific Computing, 92(3):88,
2022.

Darbon, J., Langlois, G. P., and Meng, T. Overcoming the
curse of dimensionality for some hamilton–jacobi partial
differential equations via neural network architectures.
Research in the Mathematical Sciences, 7:1–50, 2020.

Guo, C.-H. and Higham, N. J. Iterative solution of a non-
symmetric algebraic riccati equation. SIAM journal on
matrix analysis and applications, 29(2):396–412, 2007.

Han, J., Jentzen, A., and E, W. Solving high-dimensional
partial differential equations using deep learning. Pro-
ceedings of the National Academy of Sciences, 115(34):
8505–8510, 2018.

Kolter, J. Z. and Manek, G. Learning stable deep dynam-
ics models. Advances in neural information processing
systems, 32, 2019.

Laub, A. A schur method for solving algebraic riccati
equations. IEEE Transactions on Automatic Control, 24
(6):913–921, 1979. doi: 10.1109/TAC.1979.1102178.

Lutter, M., Belousov, B., Listmann, K., Clever, D., and Pe-
ters, J. Hjb optimal feedback control with deep differen-
tial value functions and action constraints. In Conference
on Robot Learning, pp. 640–650. PMLR, 2020.

Mertikopoulos, P., Papadimitriou, C., and Piliouras, G. Cy-
cles in adversarial regularized learning. In Proceedings
of the twenty-ninth annual ACM-SIAM symposium on
discrete algorithms, pp. 2703–2717. SIAM, 2018.

Misztela, A. On nonuniqueness of solutions of hamilton–
jacobi–bellman equations. Applied Mathematics & Opti-
mization, 77:599–611, 2018.

Mitchell, I. M. and Templeton, J. A. A toolbox of hamilton-
jacobi solvers for analysis of nondeterministic continuous
and hybrid systems. In International workshop on hybrid
systems: computation and control, pp. 480–494. Springer,
2005.

Nakamura-Zimmerer, T., Gong, Q., and Kang, W. Adap-
tive deep learning for high-dimensional hamilton–jacobi–
bellman equations. SIAM Journal on Scientific Comput-
ing, 43(2):A1221–A1247, 2021.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance
under reward transformations: Theory and application
to reward shaping. In Icml, volume 99, pp. 278–287.
Citeseer, 1999.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Richards, S. M., Slotine, J.-J., Azizan, N., and Pavone, M.
Learning control-oriented dynamical structure from data.
arXiv preprint arXiv:2302.02529, 2023.

Singh, S., Richards, S. M., Sindhwani, V., Slotine, J.-J. E.,
and Pavone, M. Learning stabilizable nonlinear dynam-
ics with contraction-based regularization. The Interna-
tional Journal of Robotics Research, 40(10-11):1123–
1150, 2021.

Smears, I. Hamilton-jacobi-bellman equations, analysis and
numerical analysis. chapter 3. 2018.

Sundar, S. and Shiller, Z. Optimal obstacle avoidance based
on the hamilton-jacobi-bellman equation. IEEE transac-
tions on robotics and automation, 13(2):305–310, 1997.

8

http://github.com/google/jax

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Submission and Formatting Instructions for ICML 2024

Tedrake, R. Underactuated robotics. chapter 3 and
7. 2023. URL https://underactuated.csail.
mit.edu.

Willems, J. Least squares optimal control and algebraic
riccati equations. Automatic Control, IEEE Transactions
on, AC-16:621 – 634, 01 1972. doi: 10.1109/TAC.1971.
1099831.

Wong, E. Active-set methods for quadratic programming.
University of California, San Diego, 2011.

9

https://underactuated.csail.mit.edu
https://underactuated.csail.mit.edu

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Submission and Formatting Instructions for ICML 2024

A. You can have an appendix here.
You can have as much text here as you want. The main body must be at most 8 pages long. For the final version, one more
page can be added. If you want, you can use an appendix like this one.

The \onecolumn command above can be kept in place if you prefer a one-column appendix, or can be removed if you
prefer a two-column appendix. Apart from this possible change, the style (font size, spacing, margins, page numbering, etc.)
should be kept the same as the main body.

10

