
1

LargeBRAT: A Decomposition Scheme for Large
Backward Reach-Avoid Tubes.
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Abstract—Backward reachability analysis verifies a robustness
metric that guarantees system safety. However, it is premised on
solving implicitly-constructed value functions on spatio-temporal
grids to verify a robustness metric that guarantees system safety
– up to a specified time bound. However, as state dimensions
increase, time-space discretization methods become impractical
owing to their exponential complexity. Approximation schemes
in global value function space fail to preserve the robustness
guarantees of basic backward reachability theory. We present
an iterative decomposition scheme that incrementally truncates
a high-dimensional value function to the minimum low-rank
tensor necessary for computing reachable sets, tubes and reach-
avoid with guarantee to a local saddle-point extrema. This paper
presents an initial evaluation of our proposal on the backward
reachable sets and a classical time-optimal bang-bang control
time-to-reach the origin problem.

I. INTRODUCTION.
Designed cyberphysical systems (CPS) are a complex inter-
connection of control systems, sensors, and their software
whose communication protocols have created complex entan-
glements with interactions that are difficult to analyze. CPS
are traditionally engineered to sense and interact with the
physical world “smartly”. Modern cyberphysical systems may
include modern manufacturing assembly lines where humans
and machines jointly work to deliver products to a supply
chain controlled by computer software resources, personalized
interoperable medical devices, autonomous cars on a highway,
(almost unmanned) long-hauled passenger flights, or general
logistics inter alia.

The “physical” and “cyber” couplings of such systems is
critical in modern CPS infrastructure: generating control laws
– where dynamics may be complex; planning and executing
in real-time collision avoidance schemes in uneven terrains,
or sensing efficiently in the presence of multiple agents – all
require deep integration and the actions of system components
must be planned meticulously. Therefore, the safety analysis
of combined CPS systems in the presence of sensing, control,
and learning becomes timely and crucial. Differential optimal
control theory and games offer a powerful paradigm for re-
solving the safety of multiple agents interacting over a shared
space. Both problems rely on a resolution of the Hamilton-
Jacobi-Bellman (HJB) or the Hamilton-Jacobi-Isaacs (HJI)
equation in order to solve the control problem. As HJ-type
equations have no classical solution for almost all practical
problems, stable numerical and computational methods need
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to be brought to bear in order to produce solutions with
(approximately) optimal guarantees.

With essentially non-oscillating (ENO) [1] Lax-
Friedrichs [2] schemes applied to numerically resolve
HJ Hamiltonians [3], we can now obtain unique (viscosity)
solutions to HJ-type equations with high accuracy and
precision on a mesh. Employing meshes for resolving inviscid
Euler equations whose solutions are the derivatives of HJ
equations, these methods scale exponentially with state
dimensions, making them ineffective for complex systems – a
direct consequence of curse of dimensionality [4]. Truncated
power series methods [5]–[8] are successive approximations
of HJ value functions; however, these limit the stability region
of the resulting approximate controller, and require a careful
tuning of the approximate controller such that it has a direct
effect on the original optimal control problem. In addition,
stability is not easily guaranteed for series approximated
HJ value functions where it is generally assumed that the
highest-ordered terms in the series truncation dominate
neglected higher-order terms.

Therefore in subject matter and emphasis, this paper reflects
the influences described in the foregoing. As a result, we focus
on computational techniques because almost all practical
problems cannot be analytically resolved. To analyze safety,
we cast our problem formulation within the framework of
Cauchy-type HJ equations [9], and we resolve the scalable
safety problem by solving the unconstrained continuous-time
terminal value optimal control problem1 with Bolza objective
functions.

In this sentiment, new computational techniques are intro-
duced including (i) iterative proper orthogonal decomposition
of TO-DO: large value functions; (ii) finite difference approxi-
mation schemes with error estimates (essentially, an extension
of [11] on reduced Hilbertian spaces); and (iii) analytic saddle
solutions to approximated HJI value functions. All of these
are employed to synthesize approximately optimal control
laws (essentially, saddle-point solutions) TO-DO: with stability
guarantees for resolving the terminal value in the viscosity
solutions to HJI value functions.

In order to analyze the safety of emerging CPS systems
given the computational and memory drawbacks of level sets
methods, it is the opinion of the authors that

• easily implementable approximation schemes with stabil-
ity guarantees;

1This is done within the framework of Mitchell’s robustly controlled
backward reachable tubes [10].
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• stability in well-defined regions of the state space where
approximation is guaranteed to work;

• and low run-time computation and memory requirements
that address the jugular of the curse of dimensionality;
whilst

• providing bounds on the error in the approximation,
are the best means for tackling this problem.

The rest of this paper is organized as follows: we introduce
common notations and definitions in § II; § III describes
the concepts and topics we will build upon in describing
our proposal in § IV; we present results and insights from
experiments in § V. We conclude the paper in § VII. This work
is the first to systematically provide a rational incremental
decomposition scheme that provides approximation guarantees
on regions of the state space where approximate HJ control
laws are valid as well as provide a rational analysis for high-
dimensional verification of nonlinear systems with guarantees.

II. NOTATIONS AND DEFINITIONS.

Throughout this article, time variables e.g. t, t0, τ, T will
always be real numbers. We let t0 ≤ t ≤ tf denote fixed,
ordered values of t. Vectors will be denoted by small bold-
face letters such as e,u,v e.t.c. An n-dimensional vector will
be the set {x1, x2, . . . , xn}. Unless otherwise noted, vector
elements will be column-wise stacked. When we refer to a
row-vector, we shall introduce the transpose as a superscript
operator i.e. xT . Matrices and tensors will respectively be
denoted by bold-math upper case Latin and double stroke
font letters e.g. T,S (resp. T, S). We designate uppercase
letters I, N, R for tensor sizes (the total number of elements
encompassed along a dimension of a tensor), and lowercase
letters i, n, r for corresponding tensor indices. Exceptions: the
unit matrix is I or I , and i, j, k are indices. We adopt zero-
indexing for matrix and tensor operations throughout such that
if index i corresponds to size I , we write i = 0, 1, · · · , I − 1.
Lastly, for a tensor with N modes, we denote by [N ] the set
{0, 1, · · · , N − 1}.

A. Vectors, Matrices, and Tensors.

1) Vectors: The norm ‖X‖ of a matrix X is sup ‖X‖ over
‖X‖ = 1. We define the direction cosines of the orthonormal
basis {e′i} oriented with respect to {ej} as Qij = e′i · ej . so
that by orthonormality and by e′i = Qikek ∀i = (1, 2, 3),
we have δij = e′i · e′j = Qik ek · e′j = QikQjk, where
δij is the Krönecker delta symbol. The triple scalar product
(u ∧ v)·w is (Eijpuivjep)·(wkek) = Eijkuivjwk, where Eijk
is the alternating symbol. For two vectors u and v moving
between bases {ei} and {e′i}, their components’ product uivj
transform according to the tensor product2, (u⊗v)ij = u′iv

′
j =

QipQjqupvq . Thus, I = δijei⊗ej := ei⊗ej for an arbitrary
orthonormal basis {ei}.

2) Tensor Algebra: We refer to the mode-n unfolding (or
matricization) of a tensor, T, as the rearrangement of its
N elements into a matrix, Tn ∈ RIn×Πn−1

k 6=nIk where n ∈
{0, 1, · · · , N−1}. The multilinear rank of T ∈ RI0×I1···×IN−1

2Or the dyadic product.

is an N -tuple with elements that correspond to the rank
of the mode-n vector space i.e., (R0, R1, · · · , RN−1). The
Frobenius inner product induced on the tensor product space
T1 ⊗T2 ∈ RI0×I1×In−1···×IN−1 is

〈T1,T2〉F = trace
(
TT2(n)

,T1(n)

)
= trace

(
TT1(n)

,T2(n)

)
(1)

= 〈T2,T1〉F .

By the norm of a tensor with dimension N , we shall mean the
square root of the sum of squares of all its elements. This is
equivalent to the Frobenius norm along any n-mode unfolding,
T(n), of tensor T. Thus,

‖T‖2F := 〈T,T〉F = ‖T(n)‖2F (2)

for any n-mode unfolding of the tensor. We may otherwise
refer to ‖ · ‖F as the Hilbert-Schmidt norm.

Following the convention delineated in Table ??, we define
the product of tensor T (of size I0 × I1 × In−1 · · · × IN−1)
and a matrix U (of size J × In) as

P = T⊗n U =⇒ P(n) = UT(n). (3)

For different modes, the ordering of the modes is not conse-
quential so that

T⊗n U⊗m V = T⊗m V ⊗n U ∀m 6= n. (4)

However, in the same mode, order matters so that T ⊗n
U ⊗n V = T ⊗n V ⊗n U. The multilinear or-
thogonal projection from a tensor space with dimen-
sion I0 × · · · In−1 × In × In+1 · · · × IN−1 onto the subspace
I0 × · · · In−1 × Un × In+1 · · · × IN−1 is the orthogonal pro-
jection along mode n given by

πnT := T⊗n
(
I−UnUT

n

)
. (5)

The rest of the notations we use for tensor operations in this
article are described in Table ??. We refer readers to [12], [13]
for a detailed description of other tensor algebraic notations
and multilinear operations.

B. Sets, Controls, and Games.

The set S of all x such that x belongs to the real numbers
R, and that x is positive will be written as S = {x |x ∈
R,x > 0}. We define Ω as the open set in Rn. To avoid the
cumbersome phrase “the state x at time t”, we will associate
the pair (x, t) with the phase of the system for a state x at
time t. Furthermore, we associate the Cartesian product of Ω
and the space T = R1 of all time values as the phase space
of Ω × T . The interior of Ω is denoted by int Ω; whilst the
closure of Ω is denoted Ω̄. We denote by δΩ (:= Ω̄\int Ω) the
boundary of the set Ω.

Unless otherwise stated, vectors u(t) and v(t) are reserved
for admissible control (resp. disturbance) at time t. We say
u(t) (resp. v(t)) is piecewise continuous in t, if for each t,
u ∈ U (resp. v ∈ V), U( resp. V) is a Lebesgue measurable
and compact set.

At all times, any of u or v will be under the influence of a
player such that the motion of a state x will be influenced by
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Tensor Operations

Notation Description

Tn n-mode unfolding of T.

G = TnT
T
n Gram matrix.

[N ] = {0, 1, · · · , N − 1} Total number of modes in T.

‖T‖F The Hilbert-Schmidt norm of T.

T⊗n U n-mode product of T with matrix U.

T⊗̂nv n-mode product of T with vector v.

T ~ S Kronecker product of T with matrix S.

T� S Khatri-Rao product of T with matrix S.

Differential Optimal Control and Games

a.e. Almost everywhere.

ξ System trajectory.

P , E Pursuer and Evader respectively.

〈·, ·〉 The dot product operator.

V (t,x) Value function of the differential game.

Vx(t,x),Vt(t,x) Spatial derivative (resp. time derivative) of V .

V −(t,x), V +(t,x) Lower and upper values of the differential game.

H−(t; ·), H+(t; ·) A game’s lower and upper Hamiltonians.

Ū , V̄ Controls set for P and E respectively.

A(t), B(t) Strategies set for P and E, starting at t.

F(t,x; ·) A separable Hilbert-space where x is defined.

F?(t,x; ·) Dual of the separable Hilbert-space, F(·).

L0(τ) A differential game’s target set.

L([t, 0], τ) A differential game’s backward reachable set.

the coercion of that player. Our theater of operations is that of
conflicting objectives between players – so that the problem
at hand assumes that of a game. And by a game, we do not
necessarily refer to a single game, but rather a collection of
games. Each player in a game will constitute either a pursuer
(P ) or an evader (E).

III. BACKGROUND AND PRELIMINARIES.

A. Dynamic Programming and Two-Person Games.

The formal relationships between the dynamic programming
(DP) optimality condition for the value in differential two-
person zero-sum games, and the solutions to PDEs that solve
“min-max” or “max-min” type nonlinearity (the Isaacs’ equa-
tion) was presented in [14]. Essentially, Isaacs’ claim was that
if the value functions are smooth enough, then they solve
certain first-order partial differential equations (PDE) problems
with “max-min” or “min-max”-type nonlinearity. However, the
DP value functions are seldom regular enough to admit a
solution in the classical sense. “Weaker” solutions on the other
hand [2], [3], [11], [15], [16] provide generalized “viscosity”
solutions to HJ PDEs under relaxed regularity conditions; these
viscosity solutions are not necessarily differentiable anywhere
in the state space, and the only regularity prerequisite in
the definition is continuity [9]. However, wherever they are
differentiable, they satisfy the upper and lower values of HJ
PDEs in a classical sense. Thus, they lend themselves well to

many real-world problems existing at the interface of discrete,
continuous, and hybrid systems [10], [16]–[19]. Matter-of-
factly, viscosity Solutions to Cauchy-type HJ Equations admit
usefulness in backward reachability analysis [19]. In scope and
focus, this is the bulwark upon which we build our formulation
in this paper.

For a state x ∈ Ω and a fixed time t: 0 ≤ t < T , suppose
that the set of all controls for players P and E are respectively

Ū ≡ {u : [t, T ]→ U|u measurable, U ∈ Rm}, (6)
V̄ ≡ {v : [t, T ]→ V|v measurable, V ⊂ Rp}. (7)

We are concerned with the differential equation,

ẋ(τ) = f(τ,x(τ),u(τ),v(τ)) T ≤ τ ≤ t (8a)
x(t) = x, (8b)

where f(τ, ·, ·, ·) and x(·) are bounded and Lipschitz con-
tinuous. This bounded Lipschitz continuity property assures
uniqueness of the system response x(·) to controls u(·) and
v(·) [16]. Associated with (8) is the payoff functional

P (u,v) = P (t;x,u(·),v(·))

=

∫ T

t

l(τ,x(τ),u(τ),v(τ))dτ + g(x(T )), (9)

where g(·) : Rn → R satisfies

|g(x)| ≤ k1 (10a)
|g(x)− g(x̂) | ≤ k1|x− x̂ | (10b)

and l : [0, T ] × Rn × U × V → R is bounded and uniformly
continuous, with

| l(t;x,u,v) | ≤ k2 (11a)
| l(t;x,u,v)− l(t; x̂,u,v) | ≤ k2 | x− x̂ | (11b)

for constants k1, k2 and all 0 ≤ t ≤ T , x̂, x ∈ Rn, u ∈ U
and v ∈ V . We call T is the terminal time (it may be infinity!)
and the integral, when it does not depend on the control laws,
is the performance index. The evader’s goal is to maximize
the payoff (9) and pursuer’s goal is to minimize it.

B. Upper and Lower Values of the Differential Game.

Suppose that the pursuer’s mapping strategy (starting at t)
is β : Ū(t) → V̄(t) provided for each t ≤ τ ≤ T and
u, û ∈ Ū(t); then u(t̄) = û(t̄) a.e. on t ≤ t̄ ≤ τ implies
β[u](t̄) = β[û](t̄) a.e. on t ≤ t̄ ≤ τ . The differential game’s
lower value for a solution x(t) that solves (8) for u(t) and
v(t) = β[u](·) is

V −(x, t) = inf
β∈B(t)

sup
u∈U(t)

P (u, β[u])

= inf
β∈B(t)

sup
u∈U(t)

∫ T

t

l(τ,x(τ),u(τ), β[u](τ))dτ + g (x(T )) .

(12)

Similarly, suppose that the evader’s mapping strategy (start-
ing at t) is α : V̄(t) → Ū(t) provided for each t ≤ τ ≤ T
and v, v̂ ∈ V̄(t); then v(t̄) = v̂(t̄) a.e. on t ≤ t̄ ≤ τ
implies α[v](t̄) = α[v̂](t̄) a.e. on t ≤ t̄ ≤ τ . The differential
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game’s upper value for a solution x(t) that solves (8) for
u(t) = α[v](·) and v(t) is

V +(x, t) = sup
α∈A(t)

inf
v∈V(t)

P (α[v],v)

= sup
α∈A(t)

inf
v∈V(t)

∫ T

t

l(τ,x(τ), α[v](τ),v(τ))dτ + g (x(T )) .

(13)

These non-local PDEs i.e. (12) and (13) are hardly smooth
throughout the state space so that they lack classical solu-
tions even for smooth Hamiltonian and boundary conditions.
However, these two values are “viscosity” (generalized) so-
lutions [9], [15] of the associated HJ-Isaacs (HJI) PDE, i.e.
solutions which are locally Lipschitz in Ω× [0, T ], and with at
most first-order partial derivatives in the Hamiltonian. In what
follows, we introduce the notion of viscosity solutions to the
HJI value functionals in (13), and (12).

C. Viscosity Solution of HJ-Isaac’s Equations.

For any optimal control problem a value function is con-
structed based on the optimal cost (or payoff) of any input
phase (x, T ). In reachability analysis, typically this is defined
using a terminal cost function g(·) : Rn → R that satisfies

|g(x)| ≤ k (14a)
|g(x)− g(x̂) | ≤ k|x− x̂ | (14b)

for constant k and all T ≤ t ≤ 0, x̂, x ∈ Rn, u ∈ U and
v ∈ V . The zero sublevel set of g(x) i.e.

L0 = {x ∈ Ω̄ | g(x) ≤ 0}, (15)

Lemma 1. The lower value V − in (12) is the viscosity
solution to the lower Isaac’s equation

∂V −

∂t
+H−(t;x,u,v,V −x ) = 0, t ∈ [0, T ] x ∈ Rn (16a)

V −(x, T ) = g(x(T )), x ∈ Rm (16b)

with lower Hamiltonian,

H−(t;x,u,v, p) = max
u∈U

min
v∈V
〈f(t;x,u,v), p〉. (17)

where p, the co-state, is the spatial derivative of V − w.r.t x.

Lemma 2. The upper value V + in (13) is the viscosity
solution of the upper Isaac’s equation

∂V +

∂t
+H+(t;x,u,v,V +

x ) = 0, t ∈ [0, T ] , x ∈ Rn (18a)

V +(x, T ) = g(x(T )), x ∈ Rn (18b)

with upper Hamiltonian,

H+(t;x,u,v, p) = min
v∈V

max
u∈U
〈f(t;x,u,v), p〉, (19)

with p being appropriately defined.

Corollary 1. (i) V − ≤ V + over (t ∈ [0, T ] x ∈ Rn)
(ii) if for all t ∈ [0, T ] , (x, p) ∈ Rn, the minimax condition
is satisfied i.e. H+(t;x,u,v, p) = H−(t;x,u,v, p), then
V − ≡ V +.

D. Reachability for Systems Verification.

Reachability analysis is one of many verification methods that
allows us to reason about (control-affine) dynamical systems.
The verification problem may consist in finding a set of
reachable states that lie along the trajectory of the solution to a
first order nonlinear partial differential equation that originates
from some initial state x0 = x(0) up to a specified time
bound, t = tf . From a set of initial and unsafe state sets, and
a time bound, the time-bounded safety verification problem is
to determine if there is an initial state and a time within the
bound that the solution to the PDE enters the unsafe set.

Reachability could be analyzed in a
• forward sense, whereupon system trajectories are exam-

ined to determine if they enter certain states from an
initial set;

• backward sense, whereupon system trajectories are ex-
amined to determine if they enter certain target sets;

• reach set sense, in which they are examined to see if
states reach a set at a particular time; or

• reach tube sense, in which they are evaluated that they
reach a set at a point during a time interval.

Backward reachability consists in avoiding an unsafe set of
states under the worst-possible disturbance at all times; relying
on nonanticipative control strategies, [19]’s construction does
not necessarily use a state feedback control law during games
and the worst-possible disturbance assumption is not formally
inculcated in the backward reachability analyses used. In a
sense, it is reasonable to ignore nonlinear H2 or H∞ analyses
for Dubins vehicle [20] dynamics with constant inputs that
only vary in sign for either player [21] since the worst possible
disturbance is known ahead of the game. In other problem
domains, this is not sufficient, TO-DO: and in our analyses
we provide an H∞ scheme [22]’s in constructing an appro-
priate worst-possible disturbance that guarantees robustness in
continuous control applications.

Backward reachable sets (BRS) or tubes (BRTs) are popu-
larly analyzed an a game of two vehicles with non-stochastic
dynamics [21]. Such BRTs possess discontinuity at cross-
over points (which exist at edges) on the surface of the tube,
and may be non-convex. Therefore, treating the end-point
constraints under these discontinuity characterizations need
careful consideration and analysis when switching control
laws if the underlying P.D.E does not have continuous partial
derivatives (we discuss this further in section IV).

1) Insufficiency of Global Mesh-based Methods: Consider
a reachability problem defined in a space of dimension D =
12 based on the non-incremental time-space discretization
of each space coordinate. For N = 100 nodes, the total
nodes required is 10120 on the volumetric grid3. The curse
of dimensionality [4] greatly incapacitates current uniform
grid discretization methods for guaranteeing the robustness
of backward reachable sets (BRS) and tubes (BRTs) [19] of
complex systems.

Recent works have started exploring scaling up the Cauchy-
type HJ problem for guaranteeing safety of higher-dimensional

3Whereas, there are only 1097 baryons in the observable universe (exclud-
ing dark matter)!
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physical systems: the authors of [23] provide local updates to
BRS in unknown static environments with obstacles that may
be unknown a priori to the agent; using standard meshing
techniques for time-space uniform discretization over the en-
tire physical space, and only updating points traversed locally,
a safe navigation problem was solved in an environment
assumed to be static. This makes it non-amenable to a priori
unknown dynamic environments where the optimal value to
the min-max HJ problem may need to be adaptively updated
based on changing dynamics.

In [24], the grid was naively refined along the temporal
dimension, leveraging local decomposition schemes together
with warm-starting optimization of the value function from
previous solutions in order to accelerate learning for safety
under the assumption that the system is either completely
decoupled, or coupled over so-called “self-contained subsys-
tems”. While the empirical results of [25] demonstrate the
feasibility of optimizing for the optimal value function in
backward reachability analysis for up to ten dimensions for
a system of Dubins vehicles, there are no guarantees that are
provided. An analysis exists for a 12 dimensional systems [26]
with up to a billion data points in the state space, that generates
robustly optimal trajectories. However, this is restricted to
linear systems. Other associated techniques scale reachability
with function approximators [27], [28] in a reinforcement
learning framework; again these methods lose the hard safety
guarantees owing to the approximation in value function space.

In these sentiments, we seek to answer the following ques-
tions for high-dimensional systems:

• What role does sparsity play in the representation of
BRTs and BRS’s for high-order systems?

• Can we provide rational decomposition schemes that pre-
serve the numerical stability of monotone Lax-Friedrichs
and essentially non-oscillatory [1] gradient methods to
the HJ values and Hamiltonians?

• How scalable are self-contained subsystems partitioning
of state spaces [29] to complex systems with possibly
high dimensional state spaces?

• With projection to reduced order systems, can we relax
the strong assumptions made in local decomposition [29],
[30] e.g. about the dynamics of the global system con-
sisting of separable subsystems?

We briefly answer the first question. As long as value functions
are implicitly defined as signed distance value functions on a
grid, there is no possibility of exploiting sparsity for high-
dimensional value functions. This is because these value
functions are constructed with signed distance functions with
respect to an interface on the grid [31, Chapter 2]. The value
function is positive within the interface and negative outside
the interface. Therefore, the representation of such values are
completely dense. Unless we can find methods to sparsely
represent the value function on a grid, exploiting sparsity of
the value function is hopeless. In the sections that follow, we
seek to answer the other questions posed above.

2) Reachability from Differential Games Optimal Control:
For any admissible control-disturbance pair (u(·),v(·)) and
initial phase (x0, t0), Crandall [9] and Evan’s [3] claim is

that there exists a unique function

ξ(t) = ξ(t; t0,x0,u(·),v(·)) (20)

that satisfies (8) a.e. with the property that

ξ(t0) = ξ(t0; t0,x0,u(·),v(·)) = x0. (21)

Read (20): the motion of (8) passing through phase (x0, t0)
under the action of control u, and disturbance v, and observed
at a time t afterwards. One way to design a system verification
problem is compute the reachable set of states that lie along
the trajectory (20) such that we evade the unsafe sets up to
a time e.g. tf within a given time bound e.g. [t0, tf ]. In this
regard, we discard the cost-to-go, l(t;x(τ),u(τ),v(τ)) in (9),
(12), or (13) and certify safety as resolving the terminal value,
g(x(T )).

In backward reachability analysis, the lower value of the
differential game i.e. (12) is used in constructing an analysis
of the backward reachable set (or tube). Therefore, we can cast
a target set as the time-resolved terminal value V −(x, T ) =
g(x(T )) so that given a time bound, and an unsafe set of
states, the time-bounded safety verification problem consists
in certifying that there is no phase within the target set (22)
such that the solution to (8) enters the unsafe set. Following
the backward reachability formulation of [19], we say the zero
sublevel set of g(·) in (16) i.e.

L0 = {x ∈ Ω̄ | g(x) ≤ 0}, (22)

is the target set in the phase space Ω × R for a backward
reachability problem (proof in [19]). This target set can
represent the failure set, regions of danger, or obstacles to
be avoided etc in the state space. Note that the target set, L0,
is a closed subset of Rn and is in the closure of Ω. And the
robustly controlled backward reachable tube for τ ∈ [−T, 0]4

is the closure of the open set

L([τ, 0],L0) = {x ∈ Ω | ∃β ∈ V̄(t)∀u ∈ U(t),∃ t̄ ∈ [−T, 0],

ξ(t̄) ∈ L0}, t̄ ∈ [−T, 0] . (23)

Read: the set of states from which the strategies of P , and for
all controls of E imply that we reach the target set within the
interval [T, 0]. More specifically, following Lemma 2 of [19],
the states in the reachable set admit the following properties
w.r.t the value function V

x ∈ L0 =⇒ V −(x, t) ≤ 0 (24a)

V −(x, t) ≤ 0 =⇒ x ∈ L0. (24b)

Observe:
• The goal of the pursuer, or P , is to drive the system’s

trajectories into the unsafe set i.e., P has u at will and
aims to minimize the termination time of the game (c.f.
(22));

• The evader, or E, seeks to avoid the unsafe set i.e., E has
controls v at will and seeks to maximize the termination
time of the game (c.f. (22));

• E has regular controls, u, drawn from a Lebesgue
measurable set, U (c.f. (12)).

4The (backward) horizon, −T is negative for T > 0.
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• P possesses nonanticipative strategies (c.f. (12)) i.e.
β[u](·) such that for any of the ordinary controls, u(·) ∈
U ofE, P knows how to optimally respond toE’s inputs.

This is a classic reachability problem on the resolution of the
infimum-supremum over the strategies of P and controls of
E with the time of capture resolved as an extremum of a cost
functional) over a time interval.

TO-DO: We obtain a pseudo iterative dynamic game [32],
albeit in open-loop settings, where either player infers the
current state useful enough for generating closed-loop in-
put control laws. An implicit surface function, {V −(x, t) :
[−T, 0]× X → R, ∀ t > 0} i.e. the terminal value V −(x, t),
that characterizes the target set L0 is the viscosity solution to
the HJI PDE

∂V −

∂t
(x, t) + min{0,H−(t;x,u,v,V −x )} = 0 (25a)

V −(x, 0) = g(x), (25b)

where the vector field V −x is known in terms of the game’s
terminal conditions so that the overall game is akin to a
two-point boundary-value problem. Henceforward, for ease of
readability, we will remove the minus superscript on the lower
value and Hamiltonian (17).

IV. DECOMPOSITION SCHEME.

A. Decomposition Rationale.

Multilinear compositions of linear forms are an efficient way
of manipulating complex systems. Higher-order tensors, in
particular, are increasingly playing crucial roles in the storage,
analysis, and use of high-dimensional data. Applications range
from deep learning, higher-order statistics, chemometrics, psy-
chometrics to signal processing inter alia. Evidence abounds
that linearized nonlinear system dynamics, truncated at a
reduced order r-th mode (e.g. in power series expansions
[6], [32]–[34]) admit a higher precision and accuracy of the
approximation of the underlying nonlinear system since the
moments and accumulations of higher-order dynamics are
equivalent to the power series expansion coefficients.

In this section, we introduce a multilinear decomposition
scheme for decomposing large backward reachable tubes in or-
der to alleviate the exponential complexity of mesh constraints;
it is an iterative scheme that generates separable reduced
order models (ROM) of the original value function, which are
respectively compactly represented on a mesh – making our
method amenable to resolving terminal value functions using
level sets methods. In [19], Mitchell showed that by giving
the pursuer an advantage with a nonanticipative strategy in the
two-person game, the reachable set is overapproximated in the
Lax-Friedrichs numerical scheme used. In our decomposition
scheme, we follow the same non-anticipative strategies for
the pursuer on the reduced basis. Hence, our decomposition
scheme admits an overapproximation of the reachable set in
some sense.

B. Separable Representations of the ROM Cost Functional

Let S be a measurable multidimensional set, including
one of possibly infinite dimensions such as {ψi}∞i=0 ∈ S .

Furthermore, let the functional space L2(S;F) be the class
of functions {φi(x)}∞i ∈ F whose second powers are
measurable over the set S and for which∫

S
ψ(t) ‖φ(x)‖2 dx < +∞. (26)

Suppose that for another φ′(x) ∈ F , we have

〈φ(x),φ′(x)〉 =

∫
S
ψ(t)

[
φ(x)φ′(x)

]
dt, (27)

then L2(S;F) becomes a Hilbert space, where φ̄′(x) is the
complex conjugate of φ(x). The finiteness of 〈φ(x),φ′(x)〉
follows from Bunyakovskii’s inequality i.e. |〈φ(x),φ′(x)〉| ≤
∞. In addition, the inner product associated with L2(S,F)
induces a norm5 in L2(S;F) which is given by

‖φ(x)‖ =

[∫
S
ψ(t)‖φ(x)‖2dx

] 1
2

. (28)

The space L2(S;F) is separable so that we can take a
denumerable dense set of polynomial expansions in it [35].

C. Decomposition Layout

Following the outline of the denumerable construction of
functions φ(x) ∈ L2(S;F) above, we consider separated rep-
resentations of the value function V (x, t) into time functions
alone i.e. ψ(t) ∈ S and space functions alone i.e. φ(x) ∈ F .
Let us call this approximation V (x, t;ψ), and let it possess
real values on L2(S;F).

In this sentiment, V (x, t;ψ) is the sum of the tensor
products of rational coefficients {ψi}∞i=0 ∈ S and polynomial
basis functions {φi}∞i=0 ∈ F that satisfy

V (x, t) ≈ V (x, t;ψ) (29a)

≡
∞∑
i=0

ψi(t)φi(x), ψi ∈ S, φi ∈ F . (29b)

A parameterized P.D.E that admits a separable representa-
tion V (x, t;ψ) of order r can be defined as the function

Vr(x, t) =

r−1∑
i=0

ψi(t)φi(x), φi ∈ S, φi ∈ F . (30)

These summands over tensor products constitute the Galerkin
decomposition of the viscosity solution V (x, t). We succes-
sively solve for the most energetic and orthogonal modes
φk(x), k = 1, · · · , n, established via the Galerkin orthogo-
nality criteria

‖V − Vr‖2F = min
{ψi}r−1

i=1 ∈S
{φi}r−1

i=1 ∈F

‖V −
r−1∑
i=0

ψi(t)φi(x)‖2F (31)

= min
Ψ∈S
Φ∈F

‖V −Ψ(t)Φ(x)‖2F (32)

wi th Ψ(t) and Φ(x) are appropriately defined. The truncation
at a finite order r is reasonable in situations where the Galerkin

5This norm will be denoted by ‖ · ‖F . When we are abusing notation, we
will simply write this norm or its inner product without the F subscript.
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approximations are constructed from power-form continuous
functions; he

Suppose that a reduced-order basis (ROB) is already known.
In an iterative fashion, we construct a reduced-order model
(ROM) that solves (30) and examine the sufficiency of the
solution w.r.t (25). TO-DO: In the advent of an insufficient
solution, the current ROM is enriched with new proper gen-
eralized decomposition (PGD) functions. We adopt this PGD
scheme since it has been shown to reduce the computational
and storage cost of similar problems in multiscale analysis and
Navier-Stokes equations [36]–[40].

We now resolve the problem stated in the foregoing.
Consider an environment where V ∈ RI0×I1×···×IN−1 is
a high-dimensional value function for a system of multiple
interacting agents, each with dynamics ẋ0, ẋ1, · · · ẋn, and
whose respective state spaces span the full rank of each
mode of V . Since the value functions for such a system are
of high order, we replace the value function V (x, t) with
its tensor representation, V(x, t) (c.f. § II) so that the full
problem described in Lemma 1, corresponds to the following
parameterized P.D.E

−∂V
∂t

(x, t;ψ) = W(V;ψ), t ∈ [T, 0] , x ∈ Ω,ψ ∈ S (33a)

V(x, T ;ψ) = g(x;ψ) x ∈ {Ω̄\int Ω}, ψ ∈ S (33b)

whereupon V(x, T ;ψ) is contained in L2(S;F) and
W(V;ψ) is contained in the dual space L2(S; F̆) that is
associated with the space L2(S;F).

The decomposition problem is to find V ∈ L2(S;F) such

that
∂V

∂t
∈ L2(S; F̆) satisfies the boundary conditions to the

initial value problem (25) and〈
φ,
∂V

∂t

〉
= 〈φ,W(V;ψ)〉 ∀φ ∈ F , ψ ∈ S (34)

in a weak sense. The decomposition of (30) can be considered
a pseudo-eigenvalue problem which proves efficient for sepa-
rated representations in many applications including stochastic
nonlinear PDEs [36], [37] and finite element methods [39].
The state space can be split into disjoint regions where the
value function is continuously differentiable in each region.
TO-DO: The singular surfaces [14] that separate the respective
disjoint value functions constitute manifolds which have dis-
continuous derivative properties and we follow [41, Theorem
8.2]’s manifold resolution strategy i.e. these manifolds satisfy
the saddle equilibrium strategies

H(t;x,u?,v) ≤ H(t;x,u?,v?) ≤ H(t;x,u,v?). (35)

TO-DO: When the value function is not continuously dif-
ferentiable; or the value function becomes discontinuous,
we resort to classical fractional steps in finite differencing
schemes for conservation laws [42] applied on a dimension-by-
dimension basis to a mesh on which a separated composition is
defined [1]. We defer the treatment of dispersal surfaces [14]
to a future work.

The singular value decomposition of V is

V = ΥΛΘT , (36)

where, Υ ∈ Cn×r, Λ ∈ Cr×r, Θ ∈ Cm×r, and r ≤ m can be
an approximate or exact rank of V . The modes of the reduced
basis are the columns of Υ which are ideally orthonormal i.e.
Υ? Υ = I, just as the columns of Θ are as well orthonormal.
From (40), the best fit operator for the parameters and basis
functions are

Ψ = V Φ†, and Φ = VΨ†, (37)

where x† denotes the Moore-Penrose inverse operator. We
are concerned with the leading eigen values and eigenvectors
of V ; therefore, we project V onto the proper orthogonal
decomposition (POD) modes in Υ according to

Vr = ΥTVΥ. (38)

This reduced model is the Galerkin projection onto the
semidiscrete ordinary differential equations (o.d.e.):

dVr
dt

= ΥT dV

dt
Υ. (39)

D. Galerkin approximation of the Variational HJI Problem

We now derive the Galerkin approximation of the viscosity
solution to the terminal HJI problem. Assume that a decompo-
sition Vr of order r is already known (this could be obtained
by a partial truncation of the value function as described in
§ IV-H) or randomly initialized. For the next order r+1, a new
couple (ψ,φ) is optimal if it satisfies the Galerkin orthogonal
metric

‖V −Vr‖2F = ‖V‖2F − σ(φi(x))

≡ ‖V‖2F − ‖Vc‖2F , (40)

where σ(φi(x)) denotes an eigen decomposition of φi(x) and
Vc is the core tensor of V – representing its critical mass
– which can be obtained e.g. from a high order orthogonal
iteration [12] or from a higher order singular value decom-
position [13], [43] of V (We discuss this in § IV-H). The
optimality proof of (40) is given in appendix A via (54).

TO-DO:

Theorem 1. Let the set {ψ}r−1
i=0 ∈ S and functions {φ}r−1

i=0 ∈
F be vectorized as

ΨT
r = [ψ0, · · · ,ψr−1] , Φr = [φ0, · · · ,φr−1]

T
, (41)

then it follows that if the quasi-optimal basis modes have
been found 6, the optimal Galerkin approximation of the HJI
variational problem is given by

∂V

∂t
≈ ∂Vr

∂t
= min

{
0,max
u∈U

min
v∈V

〈
f(t;x,u,v),ΨT

r Φx
〉}

.

(43)

6The rationale for introducing quasi-optimality is that the best rank de-
composition of the value function’s tensor representation to a low-order rank
tensor approximation admits accuracy only to a factor of the square root of
the number of modes of the best approximation [44, Theorem 6.27] i.e.

‖V − V̂‖ ≤
√
N‖V − V̂opt‖ ≤ O(n3/2) (42)

where Vopt is the best rank-R0 × R1 × · · · × RN−1 approximation of V
and V̂ can be obtained from either Algorithm 1 or 3.
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TO-DO: Work with matrices here and introduce the higher
order decomposition after section IV-H.

The optimal Galerkin-approximation of the r.h.s of (33)
gives

−∂Vr
∂t

(xr, t) = min

{
0,max
u∈U

min
v∈V
〈f(t;x,u,v),(

r−1∑
i=0

ψi
∂

∂x
φi

)〉} (44)

The left hand side of (44)
So that given (41), we can rewrite (44) as

−ΨT
r Φ̇r = min

{
0,max
u∈U

min
v∈V

〈
f(t;x,u,v),ΨT

r Φx
〉}

.

(45)

Remark 1. Note that Φx are the spatial derivatives of
{φ}r−1

i=0 w.r.t x. Furthermore, we choose not to cancel out
the coefficients ΨT

r in (45) because we want to retain the
characteristics of the original value function V(x, t) on
the respective bases, {ψi,φi}ri=0. At once, we see that if
the optimal decomposition components {ψi}ri=1 , Ψr and
{φi}r−1

i=0 , Φr are known, equation (45) admits solutions
on finite meshes, rendering solution of the separable viscosity
problem (25) straightforward with the usual high precision and
accuracy that Lax-Friedrichs schemes afford [1], [2], [11],
[42].

E. Galerkin HJI Approximation Under Separable Dynamics

Now, suppose that the dynamics f(t;x,u,v) from (8) is
separable into its state, control, and disturbance components
in an additive manner as follows,

ẋ = f(t;x,u,v) (46)
= f(t;x)x(t) + f(t;u)u(t) + f(t;v)v(t), (47)

where f(t;x), f(t;u), and f(t;v) are the respective compo-
nents of the system dynamics for the state, control law, and
disturbance. This separable dynamics is typically observed for
autonomous systems such as Dubins vehicles in relative coor-
dinates, quadcopters, and many natural systems7. An example
is a system of two Dubins cars in relative coordinates [21]
under constant linear speed and whose motion on is controlled
by the relative orientation of the vehiclesv i.e.ẋẏ

θ̇

 =

x cos θ
y sin θ
ω

 , ω ∈ U (48)

with state x = (x, y, θ) whose components are the positions
(x, y) and heading θ.

7Even when the separation in (47) is not possible globally, we can consider
a perturbation δx about the state x along a nominal trajectory x̄ so that the
system’s locally linear state is iteratively measured with respect to x as it is
commonly done in linear quadratic methods. We defer the treatment of these
locally linearized dynamics to a future work. For an in-depth treatment, see
[5], [7], [33], [34].

Theorem 2. If the system dynamics are separable as in (47),
then the right hand side of the variational HJI problem that
admits separable solutions is given by

−ΨT
r Φ̇r = min

{
0,
〈
f(t;x)x(t),ΨT

r Φx
〉

+ max
u∈U

〈
f(t;u)u(t),ΨT

r Φx
〉

+ min
v∈V

〈
f(t;v)v(t),ΨT

r Φx
〉}

.

(49)

Proof. Putting (47) into (45), we find that

−ΨT
r Φ̇r = min

{
0,max
u∈U

min
v∈V
〈[f(t;x)x(t) + f(t;u)u(t)

+f(t;v)v(t)] , ΨT
r Φx

〉}
,

(50)

so that the term on the right hand side becomes

min

{
0,
〈
f(t;x)x(t),ΨT

r Φx
〉

+ max
u∈U

〈f(t;u)u(t),

ΨT
r Φx

〉
+ min
v∈V

〈
f(t;v)v(t),ΨT

r Φx
〉}

.

(51)

A fortiori we have the rhs of (34) as (51) if the dynamics
admits separability of the form (47).

The attractiveness of (2) is that the respective Hamiltonians
can be parallelized on multiple cores during iterations of
the decomposition and then assembled on a centralized node
to accelerate computation with for example, the alternating
direction method of multipliers [45]. TO-DO: This is treated
and an example is given in ??

Similar to (45), (51) can be resolved on a mesh. However,
when the dynamics are separable as in the foregoing, the
saddle point necessary condition i.e. (??) allows us to find
an analytic solution. TO-DO: Future work. TO-DO: Under
development. A future paper?

F. Galerkin HJI Approximation Under H-∞ Worst Distur-
bance Control

TO-DO: Under Development

G. PGD Decomposition Scheme

It now remains for us to establish an optimal way to
compute the basis and coefficients of the optimal Galerkin
decomposition in (45) and (51). TO-DO: we establish a
Lemma due to [43] that allows every tensor V to admit
a higher-order singular value decomposition. In our treat-
ment, we resort to higher-order singular value decomposi-
tion (HOSVD) [46]8, extended to N -way tensors by [47].
This consists in decomposing it into the product of a core
tensor, Vc ∈ RR0×R1×···×Rn , (Rn ≤ In), and unit norm

8In his original work, Tucker only prescribed the decomposition of a tensor
for up to 3 modes.
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Algorithm 1 Value Function Decomposition

1: function ValuePower(V, ε) . Fix ε, convergence
threshold.

2: Initialize {U}n=N−1
n=0 . Vn left dominant single vecs.

3: Set δ = +∞ . δ: Least-squares fit quality.
4: while δ > ε do
5: for n = 0, · · · , N − 1 do
6: Qn ← V ⊗0 UT

0 ⊗1 UT
1 · · · ⊗N−1 UT

N−1.
7: Un ← Qn

‖Qn‖2 .
8: end for
9: δ ← ‖UT

n −UT
n−1‖2 . Convergence check.

10: end while
11: Vc ← V ⊗0 UT

0 ⊗1 UT
1 · · · ⊗N−1 UT

N−1.
12: return Vc, {Un}N−1

n=0 .
13: end function

factor matrices, UN−1
n=0 of size In × Rn are of V (where

V ∈ RI0×I1×···×In )

V ≈ V̂ (52a)
= Vc ⊗0 U0 ⊗1 U1 ⊗2 U2 · · · ⊗N−2 UN−1. (52b)

The matrices U0 ∈ RI0×R0 , U1 ∈ RI1×R1 , · · ·UN−1 can be
seen as representing the influence of the principal components
of each mode of V on the core tensor Vc. Put differently, in
dynamical systems parlance, this can be seen as the influ-
ence of a subsystem agent’s dynamics (on a value function
subspace) on the overall value function of all interacting
agents. The entries of Vc denotes level of interaction between
the different components Un. They can be thought of as
the critical mass of the system’s interaction – encoding the
objectives of the separate dynamical systems that share a large
cyberphysical system space. The decomposition outlined in
(52) can be obtained via the following minimization problem

min
Vc,U0,··· ,UN−1

‖V −Vc ⊗0 U0 · · · ⊗N−2 UN−1‖22

subject to Vc ∈ RR0×R1···×Rn−1

and orthonormal {U}N−1
n=0 ∈ RIn×Rn . (53)

An efficient means for finding the factor matrices of mini-
mization problem in 53 is a power iterations algorithm similar
to DeLathauwer et. al’s [43]. A compact representation of
DeLathauwer et. al’s power iteration algorithm for a general
purpose tensor decomposition is presented in Algorithm 1.
On line 2, the left dominant singular vector of V can be
found via Tucker’s “Method I” for computing the rank-
(R0, R1, · · · , RN−1) decomposition and we refer readers
to [46]. Otherwise, they can be randomly initialized as well.

On line 11 of Algorithm 1, using the orthonormal compo-
nents of (52), we compute the optimal core Vc of V (we refer
readers to [43] for a derivation) as

Vc = V ⊗0 UT
0 ⊗1 UT

1 ⊗2 UT
2 · · · ⊗N−2 UT

N−1. (54)

Substituting (54) into (52), we find that the approximation of
V is a projection of the original value function tensor along
its respective n-basis modes onto the reduced system, i.e.

V̂ = V ⊗0 U0U
T
0 · · · ⊗N−2 UN−1U

T
N−1. (55)

Therefore, the approximation error is ‖V − V̂‖2 = ‖V‖2 −
‖Vc‖2 (as shown in Appendix A).

In light of our Galerkin approximations and the validity of
any resulting BRS or BRT approximation, we will work with
a truncated decomposition of V at each step of the algorithm.
Define the BRT or BRS up to a mode r as Lr [[T, 0] ,L0]).
These truncations correspond to the decomposed value func-
tion on various subspaces of the system. Because we keep
the nonanticipative strategies of P , the reachable set is still
overapproximated in the larger sense, whereupon the pursuer
makes decisions about v with full knowledge of u(τ) for
τ ∈ [t, tf ]. Within this tolerance, we want to ensure A
truncated decomposition up to mode-r would consist of a
partial core Vcr and its corresponding orthonormal matrices
U0, · · · ,Ur, r ∈ [R] defined as

Vcr = V ⊗0 UT
0 ⊗1 UT

1 ⊗2 UT
2 · · · ⊗r−1 UT

r , (56)

so that the truncated value function (up to mode r) is

Vr = Vcr ⊗0 U0 ⊗1 U1 ⊗2 U2 · · · ⊗r−1 Ur (57a)

≡ V ⊗0 U0U
T
0 ⊗1 · · · ⊗r−1 UrU

T
r , r ∈ [R] (57b)

where (57b) is a result of putting (56) into (57a).
Now, revisiting the functions {ψ}r−1

i=0 and {φ}r−1
i=0 in the

previous two sections, a convenient way to compute the
coefficients and basis functions that satisfy the Galerkin or-
thogonality criterium (40) is to set

ψr = V ⊗0 UT
0 · · · ⊗r−1 UT

r (58)

and

φr = Vcr ⊗0 U0 · · · ⊗r−1 Ur, (59)

where again, U0, · · ·UN−1 are factor matrices obtained from
Algorithm 1.

Algorithm 2 describes how we compose the separable
value function that satisfies (??). Lines 3 and 4 describe the
optimal resolution of the decomposition parameters, {ψ}r−1

i=0 ,
and basis functions, {φ}r−1

i=0 . In line 6 of the algorithm, the
integral is solved using Total Variation Diminishing (TVD)
Runge-Kutta scheme as described in [31, §3.5] (originally
implemented in [48], which we re-implement in CuPy [49]
as we leverage parallel computation). In addition, having r
as an input variable into the algorithm allows us to take
advantage of warm-starting schemes, typical in Reinforcement
learning schemes [28] so that the algorithm need not be run in
one fell-swoop. Partial BRT’s and BRS’s can be distributively
learned on separate CPU/GPU cores, and later assembled on
a centralized nodes to aid faster computation. TO-DO: To be
developed. This may for example be similar to the alternating
direction method of multipliers.

Once the respective backward reachable tubes are collected,
we must stitch them together such that their composition
satisfies the boundary condition of the initial value problem of
(25). TO-DO: Lekan: Discuss the treatments of the singular
and dispersal surfaces here.

In algorithm 2, the maximum number of iterations, rmax
can be chosen in an informed way as highlighted below. First,
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Algorithm 2 Iterative Scheme for Computing BRS/BRTs

1: function IterativeBRT(Vr−1, rmax) . rmax: max. iter.
2: while r < rmax do
3: Compute ψr from (58).
4: Compute φr from (59).
5: Set Vr ← Vr−1 + 〈ψr, φr〉F . Update Vr.
6: Set 〈ΨT

r , Φ̇r〉F ← Vr c.f. (45) or (51)
7: Lr ←

∫
S〈Ψ

T
r , Φ̇r〉Fdx. . Partial BRS(T), Lr

8: r = r + 1. . Advance the decomposition.
9: end while

10: return {L}rmax−1
r=0

11: end function

we restate the following theorem that allows us to provide a
bound on the projection error.

Theorem 3. [Vannieuwenhoven, Vandebril, and Meerbergen]
[13, Th. 5.1]. SupposeV is a tensor of size I0×I1×· · ·×IN−1,
approximated by V̂ as in (55), the approximation error of (40)
is

‖V − V̂‖2F = ‖π0V‖2F + ‖π1 Ṽ0‖2F + · · ·+ ‖πN−1 ṼN−2‖2F .
(60)

where ṼN is the partial core along mode N .

Furthermore, the approximation error is bounded by

‖V − V̂‖2F ≤
N−1∑
n=0

‖πnV‖2F . (61)

Equation (61) allows us to choose an approximation error that
informs us about the level of information we want preserved
on the decomposed V. Therefore, to find a decomposition V̂
of V whose relative decomposition error is no greater than
a certain ε > 0, we first unfold the tensor along one of its
modes, compute the Gram matrix and then carry out an eigen
decomposition:

G ≡ V(n)V
T
(n) = VΛVT , (62)

where Λ = diag ({λ1, λ2, · · · , λIn}), and λ1 ≥ λ2 ≥ · · · >
λIn ≥ 0, and V contains the corresponding eigenvectors.
Therefore, we can choose the orthonormal matrix Un and the
best rank Rn−1 tensor at mode n− 1 as

Un = V [:, 0 : Rn−1] (63)

where

Rn = min
R∈[In]

R

subject to
In∑

i=R+1

λi ≤ ε2‖V‖2/N. (64)

Equation prescribes an informed way to choose the best rank
Rr, r ∈ [0, n − 1] that satisfies the error bound in (61). An
efficient way of implementing (64) is to take the cummulative
sum of the diagonal terms λi in (62) and return the index
where this is at least equal to the right hand side of (64)

‖V ⊗n
(
I−UnUT

n

)
‖2F ≤ ε2

‖V‖2F
N

. (65)

Algorithm 3 Incrementally Truncated Value Function [50].

1: function TruncatedValue(V, ε) . ε: Desired accuracy.
2: P← V . P : c.f. (3).
3: for n = 0, 1, · · · , N − 1 do
4: G← P(n)P

T
(n) . G: Gram matrix.

5: (Λ,W)← eig (G) . eig: Eigen Decomposition.
6: Rn ← minR ∈ [In] |

∑In
i=R+1 λi ≤ ε2‖V‖2F /N

7: Un ←W [:, 0 : Rn−1] . Orthonormal Un

8: P← G⊗n UT
n . Update partial core.

9: end for
10: Vc ← P . Vc: Update core tensor.
11: U← {U0, · · · , UN−1}
12: return (Vc,U) . Vc: Core tensor; {Ui}N−1

i=0 .
13: end function

Fig. 1: Optimal basis rank given a user-defined projection
error.

Whilst appealing, algorithm 2 utilizes the full value function
at each step (c.f. (58)); therefore it does not easily lend
itself to large-scale problems. In what follows, we propose an
incrementally-constructed value function whereupon we work
with the partial cores of V at each step of the PGD iteration.
In essence, we construct the next factor matrix based on the
previously computed value core.

H. Informed Incremental Value Function Decompositions

Next, we will leverage the sequentially-truncated high-order
SVD of [13] to device an iteratively refined decomposition
scheme onto which we will project the high-order value
function. Working with partial cores, at step n, we generate
the next factor matrix based on V̂n−1. In particular, if the
conditions of Theorem 3 hold, then

‖V − V̂‖2F = ‖V ⊗0

(
I−U0U

T
0

)
‖2F + ‖G̃0⊗1(

I−U1U
T
1

)
‖2F · · ·+ ‖G̃N−2⊗N−1(

I−UN−1U
T
N−1

)
‖2F . (66)

For convenience, we reproduce algorithm I of [13] in Algo-
rithm 3.

V. RESULTS AND DISCUSSION.

We now provide results and analysis of the proposed nu-
merical algorithm on benchmark control problems.
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Fig. 2: State trajectories of the double integral plant. The solid
curves are trajectories generated for u = +1 while the dashed
curves are trajectories for u = −1.

A. Time Optimal Control of the Double Integrator

Here, we analyze our proposal on a time-optimal control
problem. Specifically, we consider the double integral plant
which has the following second-order dynamics

ẍ(t) = u(t). (67)

This admits bounded control signals | u(t) |≤ 1 for all t.
After a change of variables,we have the following system of
first-order differential equations

ẋ1(t) = x2(t), ẋ2(t) = u(t), | u(t) |≤ 1.

The reachability problem is to address the possibility of
reaching all points in the state space in a transient man-
ner. Therefore, we set the running cost to zero, so that the
Hamiltonian is H = p1ẋ1 + p2ẋ2. The necessary optimality
condition stipulates that the minimizing control law is u(t) =
− sign (p2(t)). On a finite time interval, say, t ∈ [t0, tf ], the
time-optimal u(t) is a constant k so that for initial conditions
x1(t0) = ξ1 and x2(t0) = ξ2, it can be verified that the state
trajectories obey the relation

x1(t) = ξ1 +
1

2
k
(
x2

2 − ξ2
2

)
, where, t = k (x2(t)− ξ2) .

(68)

The trajectories traced out over a finite time horizon t =
[−1, 1] on a state space and under the control laws u(t) =
±1 is depicted in Fig. 2. The curves with arrows that point
upwards denote trajectories under the control law u = +1; call
these trajectories γ+; while the trajectories with dashed curves
and downward pointing arrows were executed under u = −1;
call these trajectories γ−. The time to go from any point on
any of the intersections to the origin on the state trajectories
of Fig. 2 is our approximation problem. This minimum time
admits an analytical solution [51] given by

t?(x1,x2) =


x2 +

√
4x1 + 2x2

2 if x1 >
1

2
x2|x2|

−x2 +
√
−4x1 + 2x2

2 if x1 < −
1

2
x2|x2|

|x2| if x1 =
1

2
x2|x2|.

(69)

Fig. 3: Analytical time to reach the origin on the state grid, (R× R);
the switching curve corresponds to the bright orange coloration for states
on (0, 0).

Let us define R+ as the portions of the state space above
the curve γ and R− as the portions of the state space below
the curve γ. The confluence of the locus of points on γ+ and
γ− is the switching curve, depicted on the left inset of Fig. 3,
and given as

γ , γ+ ∪ γ− =

{
(x1,x2) : x1 =

1

2
x2 | x2 |

}
. (70)

We now state the time-optimal control problem: The control
problem is to find the control law that forces (68) to the origin
(0, 0) in the shortest possible time. The time-optimal control
law, u?, that solves this problem is unique and is

u? = u?(x1,x2) = +1 ∀ (x1,x2) ∈ γ+ ∪ R+

u? = u?(x1,x2) = −1 ∀ (x1,x2) ∈ γ− ∪ R− (71)
u? = −sgn {x2} ∀ (x1,x2) ∈ γ.

The minimum cost for the problem at hand is the minimum
time for states (x1,x2) to reach the origin (0, 0), defined as

V ?(x, t) = t?(x1,x2) (72)

with the associated terminal value

−∂V
?(x, t)

∂t
= H

(
t,x,

∂V ?(x, t)

∂t
,u

) ∣∣∣∣
x=x?

u=u?

(73)

where

H(t;x,u, p1, p2) = x2(t)p1(t) + u(t)p2(t) (74)

and

p1 =
∂t?

∂x1
, p2 =

∂t?

∂x2
(75)

so that the HJ equation is

∂t?

∂t
+ x2

∂t?

∂x1
− ∂t?

∂x2
= 0 if x1 > −

1

2
x2|x2|

∂t?

∂t
+ x2

∂t?

∂x1
+
∂t?

∂x2
= 0 if x1 < −

1

2
x2|x2|

∂t?

∂t
+ x2

∂t?

∂x1
− sgn{x2}

∂t?

∂x2
= 0 if x1 = −1

2
x2|x2|.

(76)
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Fig. 4: Time to reach the origin at different integration steps. Left: Analytic
Time to Reach the Origin. Right: Lax-Friedrichs Approximation to Time to
Reach the Origin.

We compare our approximated terminal value solution using
our proposal against (i) the numerical solution found via level
sets methods [31] and (ii) the analytical solution of the time
to reach (TTR) the origin problem.

A point (x1,x2) on the state grid belongs to the set of
states S(t?) from which it can be forced to the origin (0, 0)
in the same minimum time t?. We call the set S(t?) the
minimum isochrone9. The level sets of (76) correspond to the
isochrones of the system as illustrated in Fig. 4. From the
results shown in Fig. 4, we see that the the approximation to
the isochrones by a Lax-Fridrichs scheme (right insets in the
figure) are very similar. The expansion in the sets is because
we overapproximate the reachable sets at each step of the
integration scheme.

B. Dubins Car Dynamics in Absolute coordinates

• All vehicles have identical dynamics
• anisotropy is reinforced by having one player being a

pursuer in a local group and all other agents being evaders
• It is assumed that the roles of P and E do not change

during the game, so that, when capture can occur, a

9These are the isochrones of the system – akin to the isochrone map used
in geography, hydrology and transportation planning for depicting areas of
equal travel time to a goal state.

necessary condition to be satisfied by the saddle-point
controls of the players is the Hamiltonian (which can be
derived as in Ref. 1) [21]

• controls are normalized turn rates of P and all other E’s
• we turn off the capture parameter by ensuring players’

speeds and maximum turn radius are equal in a flock
• to do this, make initial velocities parallel so that the

equations of relative motion mean that the Evaders can
maintain the initial separation forever by simply dupli-
cating the strategy of the P. The barrier of a local flock
is thus closed, so that the game of kind is ensued with
finding the determination of the closed surface.
–

• see solution to the homicidal chauffeur game in 9.1 of
Isaacs

VI. DISCUSSIONS

TO-DO: Relation with Game Theory
TO-DO: Relation with Reachability analysis

VII. CONCLUSION.

APPENDIX

APPENDIX A
VALUE FUNCTION’S ROM PROJECTION ERROR.

The projection error between the original value function V
and its reduced basis V̂ is

‖V − V̂‖2F = ‖V −Vc ⊗0 U0 · · · ⊗N−1 UN−1‖2F
= ‖V‖2F − 2〈V,Vc ⊗0 U0 · · · ⊗N−1 UN−1〉+
‖Vc ⊗0 U0 · · · ⊗N−1 UN−1‖2F (77)

= ‖V‖2F − 2 〈V ⊗0 UT
0 · · · ⊗N−1 UT

N−1,V
c〉︸ ︷︷ ︸

〈Vc,Vc〉

+‖Vc‖2F

or ‖V − V̂‖2F = ‖V‖2F − ‖Vc‖2F . (78)
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