
Under review as a conference paper at ICLR 2023

PCLAST: DISCOVERING PLANNABLE CONTINUOUS LA-
TENT STATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Goal-conditioned planning benefits from learned low-dimensional representations
of rich, high-dimensional observations. While compact latent representations,
typically learned from variational autoencoders or inverse dynamics, enable goal-
conditioned planning they ignore state affordances, thus hampering their sample-
efficient planning capabilities. In this paper, we learn a representation that as-
sociates reachable states together for effective onward planning. We first learn
a latent representation with multi-step inverse dynamics (to remove distracting
information); and then transform this representation to associate reachable states
together in ℓ2 space. Our proposals are rigorously tested in various simulation
testbeds. Numerical results in reward-based and reward-free settings show signif-
icant improvements in sampling efficiency, and yields layered state abstractions
that enable computationally efficient hierarchical planning.

1 INTRODUCTION

Deep reinforcement learning (RL) has emerged as a choice tool in mapping rich and complex percep-
tual information to compact low-dimensional representations for onward (motor) control in virtual
environments Silver et al. (2016), software simulations Brockman et al. (2016), and hardware-in-the-
loop tests Finn & Levine (2017). Its impact traverses diverse disciplines spanning games (Moravčík
et al., 2017; Brown & Sandholm, 2018), virtual control (Tunyasuvunakool et al., 2020), health-
care (Johnson et al., 2016), and autonomous driving (Maddern et al., 2017; Yu et al., 2018). Fundamen-
tal catalysts that have spurred these advancements include progress in algorithmic innovations (Mnih
et al., 2013; Schrittwieser et al., 2020; Hessel et al., 2017) and learned (compact) latent representations
(Bellemare et al., 2019; Lyle et al., 2021; Lan et al., 2022; Rueckert et al., 2023; Lan et al., 2023).

Latent representations, typically learned by variational autoencoders (Kingma & Welling, 2013) or
inverse dynamics (Paster et al., 2020), are mappings from high-dimensional observation spaces to a
reduced space of essential information where extraneous perceptual information has already been
discarded. These compact representations foster sample efficiency in learning-based control settings
(Ha & Schmidhuber, 2018; Lamb et al., 2022). Latent representations however often fail to correctly
model the underlying states’ affordances. Consider an agent in the 2D maze of Fig. 1a. A learned
representation correctly identifies the agent’s (low-level) position information; however, it ignores

(a) Maze-Spiral (b) ACRO (c) PCLAST

Figure 1: Comparative view of clustering representations learned for a 2D maze (a) environment
with spiral walls. The agent’s location is marked by black-dot in the maze image. The clustering of
representations learned via ACRO (b) and PCLAST (c) are overlaid on the maze image.

1

Under review as a conference paper at ICLR 2023

Figure 2: (a) Overview of the proposed method: The encoder, which maps observations x to
continuous latents z, is learned with a multi-step inverse model (left). A temporal contrastive
objective is used to learn a metric space (middle), a forward model is learned in the latent space
(right). (b) High-level and low-level planners. The high-level planner generates coarse goals (s) using
a low-level continuous planner. The dashed line indicates the expected trajectory after zg is reached.

the scene geometry such as the wall barriers so that states naturally demarcated by obstacles are
represented as close to each other without the boundary between them (see Fig. 1b). This inadequacy
in capturing all essential information useful for onward control tasks is a drag on the efficacy of
planning with deep RL algorithms despite their impressive showings in the last few years.

In this paper, we develop latent representations that accurately reflect states reachability in the quest
towards sample-efficient planning from dense observations. We call this new approach plannable
continuous latent states or PCLAST. Suppose that a latent representation, Z , has been learned from
a dense observation, X , a PCLAST map from Z is learned via random data exploration. The map
associates neighboring states together through this random exploration by optimizing a contrastive
objective based on the likelihood function of a Gaussian random walk; The Gaussian is a reasonable
model for random exploration in the embedding space. Figure 2 shows an overview of our approach,
with a specific choice of the initial latent representation based on inverse dynamics.

We hypothesize that PCLAST representations are better aligned with the reachability structure of
the environment. Our experiments validate that these representations improve the performance of
reward-based and reward-free RL schemes. One key benefit of this representation is that it can be
used to construct a discretized model of the environment and enable model-based planning to reach
an arbitrary state from another arbitrary state. A discretized model (in combination with a simple
local continuous planner) can also be used to solve more complex planning tasks that may require
combinatorial solvers, like planning a tour across several states in the environment. Similarly to
other latent state learning approaches, the learned representations can be used to drive more effective
exploration of new states (Machado et al., 2017; Hazan et al., 2019; Jinnai et al., 2019; Amin et al.,
2021). Since the distance in the PCLAST representation corresponds to the number of transitions
between states, discretizing states at different levels of granularity gives rise to different levels of state
abstraction. These abstractions can be efficiently used for hierarchical planning. In our experiments,
we show that using multiple levels of hierarchy leads to substantial speed-ups in plan computation.

2 RELATED WORK

Our work relates to challenges in representation learning for forward/inverse latent-dynamics and
using it for ad-hoc goal conditioned planning. In the following, we discuss each of these aspects.

Representation Learning. Learning representations can be decomposed into reward-based and
reward-free approaches. The former involves both model-free and model-based methods. In model-
free (Mnih et al., 2013), a policy is directly learned with rich observation as input. One can consider

2

Under review as a conference paper at ICLR 2023

the penultimate layer as a latent-state representation. Model-based approaches like Hafner et al.
(2019a) learn policy, value, and/or reward functions along with the representation. These end-to-end
approaches induce task-bias in the representation which makes them unsuitable for diverse tasks.
In reward-free approaches, the representation is learned in isolation from the task. This includes
model-based approaches (Ha & Schmidhuber, 2018), which learn a low-dimensional auto-encoded
latent-representation. To robustify, contrastive methods (Laskin et al., 2020) learn representations
that are similar across positive example pairs, while being different across negative example pairs.
They still retain exogenous noise requiring greater sample and representational complexity. This
noise can be removed (Efroni et al., 2021) from latent-state by methods like ACRO (Islam et al.,
2022) which learns inverse dynamics (Mhammedi et al., 2023). These reward-free representations
tend to generalize better for various tasks in the environment. The prime focus of discussed reward-
based/free approaches is learning a representation robust to observational/distractor noise; whereas
not much attention is paid to enforce the geometry of the state-space. Existing approaches hope
that such geometry would emerge as a result of end-to-end training. We hypothesize lack of this
geometry affects sample efficiency of learning methods. Temporal contrastive methods (such as
HOMER Misra et al. (2020) and DRIML Mazoure et al. (2020)) attempt to address this by learning
representations that discriminate among adjacent observations during rollouts, and pairs random
observations. However, this is still not invariant to exogenous information (Efroni et al., 2021).

Planning. Gradient descent methods abound for planning in learned latent states. For example,
UPN (Srinivas et al., 2018) applies gradient descent for planning. For continuous latent states and
actions, the cross-entropy method (CEM) (Rubinstein, 1999), has been widely used as a trajectory
optimizer in model-based RL and robotics (Finn & Levine, 2017; Wang & Ba, 2019; Hafner et al.,
2019b). Variants of CEM have been proposed to improve sample efficiency by adapting the sampling
distribution of Pinneri et al. (2021) and integrating gradient descent methods (Bharadhwaj et al.,
2020). Here, trajectory optimizers are recursively called in an online setting using an updated
observation. This conforms with model predictive control (MPC) (Mattingley et al., 2011). In
our work, we adopt a multi-level hierarchical planner that uses Dijkstra’s graph-search algorithm
(Dijkstra, 1959) for coarse planning in each hierarchy-level for sub-goal generation; this eventually
guides the low-level planner to search action sequences with the learned latent model.

Goal Conditioned Reinforcement Learning (GCRL). In GCRL, the goal is specified along with the
current state and the objective is to reach the goal in least number of steps. A number of efforts have
been made to learn GCRL policies (Kaelbling, 1993; Nasiriany et al., 2019; Fang et al., 2018; Nair
et al., 2018). Further, reward-free goal-conditioned (Andrychowicz et al., 2017) latent-state planning
requires estimating the distance between the current and goal latent state, generally using Euclidean
norm (ℓ2) for the same. However, it’s not clear whether the learned representation is suitable for ℓ2
norm and may lead to infeasible/non-optimal plans; even if one has access to true state. So, either one
learns a new distance metric (Tian et al., 2020; Mezghani et al., 2023) which is suitable for the learned
representation or learns a representation suitable for the ℓ2 norm. In our work, we focus on the latter.
Further, GCRL reactive policies often suffer over long-horizon problems which is why we use an
alternate solution strategy focusing on hierarchical planning on learned latent state abstractions.

3 PCLAST: DISCOVERY, REPRESENTATION, AND PLANNING

In this section, we discuss learning the PCLAST representation, constructing a transition model, and
implementing a hierarchical planning scheme for variable-horizon state transitions.

3.1 NOTATIONS AND PRELIMINARIES.

We assume continuous state and action spaces throughout. Indices of time e.g. t, t0, τ will always
be integers and τ ≫ t > t0. The Euclidean norm of a matrix, X , is denoted ∥X∥. We adopt
the exogenous block Markov decision process of (Efroni et al., 2021), characterized as the tuple
(X ,S,Ξ,A, T, q, R, µ0). Here, X ,S,Ξ, and A are respectively the spaces of observations, latent and
exogenous noise states, and actions, respectively. The transition distribution is denoted T (st+1, ξt+1 |
st, ξt, at) with latent states (st, st+1) ∈ S, exogenous noise states (ξt, ξt+1) ∈ Ξ, and action at ∈ A.
At a fixed time t, the emission distribution over observations x ∈ X is q(x | s, ξ), the reward function
is R : X ×A → R, and µ0(z, ξ) is the distribution over initial states, z. The agent interacts with its
environment E generating latent state-action pairs {st, at}τt=0; here st ∼ µ(xt, ξt) for xt ∼ q(· | st).
An encoder network maps observations {xt}τt=0 to latent states {st}τt=0 while the transition function

3

Under review as a conference paper at ICLR 2023

factorizes over actions and noise states as T (st+1, ξt+1 | st, ξt, at) = Ts(s
′
t+1|st, a)Tξ(ξt+1|ξt).

The emission distribution enforces unique latent states from (unknown) mapped observations. We
map each {xt}τt=0 to {st}τt=0 under reachability constraints. We employ two encoder networks i.e.
ϕ(x) and ψ(x), and compose them as ψ(ϕ(x)). In this manner, ϕ(x) eliminates exogenous noise
whilst preserving latent state information, while ψ(x), the PCLAST map, enforces the reachability
constraints. The encoder ϕ(x) is based on the ACRO multi-step inverse kinematics objective of (Islam
et al., 2022) whereas the encoder ψ(x) uses a likelihood function in the form of a Gaussian random
walk. Next, we discuss the learning scheme for the encoders and the PCLAST map, the forward
model and planning schemes.

3.2 ENCODER DESCRIPTION.
The encoder is a mapping from observations to estimated (continuous) latent states, ẑ ∈ Z , i.e.,
ϕ(x) : x → ẑ. Following Lamb et al. (2022); Islam et al. (2022), a multi-step inverse objective
(reiterated in (1)) is employed to eliminate the exogenous noise. The loss (1) is optimized over the
fAC network and the encoder ϕ(x) to predict at from current and future state tuples,

Lϕ(ϕ, fAC, xt, at, xt+k, k) = ||at − fAC(ϕ(xt), ϕ(xt+k); k)||2, (1a)

ϕ̂(x) = argmin
ϕ∈Φ

min
fAC

E
t
E
k
Lϕ (ϕ, fAC, xt, at, xt+k, k) , (1b)

where fAC ∈ FAC is the action predictor, t ∼ U(1, T) is the index of time, and k ∼ U (1,Kmax)
is the amount of look-ahead steps. We uniformly sample k from the interval [1,Kmax], where
Kmax is the diameter of the control-endogenous MDP (Lamb et al., 2022). The encoder ϕ(x),
as a member of a parameterized encoders family Φ, maps images, x, to a low-dimensional latent
representation, s. A fully-connected network fAC : Z × Z × [Kmax] → A, belonging to a
parameterized family fAC ∈ FAC, is optimized alongside ϕ(x). This predicts the action, a, from a
concatenation of representation vectors [s0, · · · , sτ], and an embedding; this embedding is based
on k from (1). Intuitively, the action-predictor f models the conditional probability over actions
p(at|ϕ(xt), ϕ(xt+k); k)1.

3.3 LEARNING THE PCLAST MAP.
While the encoder ϕ(x) is designed to filter out the exogenous noise, it does not lead to representations
that reflect the reachability structure (see Fig. 1b). To enforce states’ reachability, we learn a map
ψ(x), which associates nearby states based on transition deviations. Learning ψ(x) is inspired from
local random exploration that enforces a Gaussian random walk in the embedding space. This allows
states visited in fewer transitions to be closer to each other.

We employed a Gaussian random walk with variance σI (where I is an identity matrix) for k steps to
induce a conditional distribution, given as (st+k|st) ∝ exp

{
− ||st+k−s||2

2kσ2

}
. Instead of optimizing

ψ(x) to fit this likelihood directly, we fit a contrastive version, based on the following generative
process for generating triples y, st, st+1. First, we flip a random coin whose outcome y ∈ {0, 1}; and
then predict y using st and st+k. This objective takes the form,

Pk(y = 1|st, st+k) = σ(β − α||st − st+k||), (2)
and it is sufficient as shown in Appendix B. Another encoder ψ(x) : Z → Z estimates the states
reachability so that the output of ψ(x) prescribes that close-by points be locally reachable with
respect to the latent agent-centric latent state.

A contrastive learning loss Lψ is minimized to find ψ(x) along with the scaling parameters α and β
by averaging over the expected loss as

Lm+(ψ, ẑA, ẑB , α, β) = − log(σ(eα − eβ ||ψ(ẑA)− ψ(ẑB)||2)), (3a)

Lm−(ψ, ẑA, ẑB , α, β) = − log(1− σ(eα − eβ ||ψ(ẑA)− ψ(ẑB)||2)), (3b)
Lψ(ψ, ϕ, α, β, xt, xt+d, xr) = Lm+

(ψ, ϕ(xt), ϕ(xt+d), α, β)+Lm−(ψ, ϕ(xt), ϕ(xr), α, β), (3c)
ψ, α, β = arg min

ψ∈Ψ,
α,β∈R

E
t,r

E
d
Lψ(ψ, ϕ, α, β, xt, xt+d, xr), (3d)

1We assume that this conditional distribution is Gaussian with a fixed variance.

4

Under review as a conference paper at ICLR 2023

where t ∼ U(1, T), r ∼ U(1, T), d ∼ U (1, dm) for a hyperparameter dm, and eα and eβ provide
smoothly enforced value greater than 0. Positive examples are drawn for the contrastive objective
uniformly over dm steps, and negative examples are sampled uniformly from a data buffer

3.4 LEARNING A LATENT FORWARD MODEL AND COMPOSITIONAL PLANNING.
We now describe the endowment of learned latent representations with a forward model, which is
then used to construct a compositional multi-layered planning algorithm.

Forward Model. A simple latent forward model F : Z × A → Z estimates the latent forward
dynamics ϕ(xt+1) ≈ F (ϕ(xt), at). The forward model F is parameterized as a fully-connected
network of a parameterized family F , optimized with a prediction objective,

LF (F, xt, at, xt+1) = ||ϕ(xt+1)− F (ϕ(xt), at)||2, (4a)
F = arg min

F∈F
E
t
LF (F, ϕ(xt), at, ϕ(xt+1)). (4b)

High-Level Planner. Let zt = ϕ(xt) denote the latent state. In the planning problem, we aim to
navigate the agent from an initial latent state zinit to a target latent state zgoal following the latent
forward dynamics zt+1 = F (zt, at). Since F is highly nonlinear, it presents challenges for use
in global planning tasks. Therefore, we posit that a hierarchical planning scheme with multiple
abstraction layers can improve the performance and efficacy of planning by providing waypoints for
the agent to track using global information of the environment.

To find a waypoint z∗ in the latent space, we first divide the latent space into C clusters by applying
k-means to an offline collected latent states dataset, and use the discrete states {si}Ci=1 to denote
each cluster. An abstraction of the environment is given by a graph G with nodes {si}Ci=1 and edges
defined by the reachability of each cluster, i.e., an edge from node si to node sj is added to the graph
if there are transitions of latent states from cluster si to cluster sj in the offline dataset. On the graph
G, we apply Dijkstra’s shortest path algorithm (Dijkstra, 1959) to find the next cluster the agent
should go to and choose the center latent state of that cluster as the waypoint z∗. This waypoint is
passed to a low-level planner to compute the action.

Low-Level Planner. Given the current latent state z0 and the waypoint z∗ to track, the low-level
planner finds the action to take by solving a trajectory optimization problem using the cross-entropy
method (CEM) (De Boer et al., 2005). The details are shown in Appendix D.

Multi-Layered Planner. To improve the efficiency of finding the waypoint z∗, we propose to build
a hierarchical abstraction of the environment such that the high-level planner can be applied at
different levels of granularity, leading to an overall search time reduction of Dijkstra’s shortest path
algorithm. Let n ≥ 2 denote the number of abstraction levels 2 and a higher number means coarser
abstraction. At level 2 ≤ i ≤ n, we partition the latent space into Ci clusters using k-means, and
we have C2 > C3 > · · · > Cn. For each abstraction level, we construct the discrete transition
graph Gi accordingly, which is used to search for the waypoint z∗ with increasing granularity as
shown in Algorithm 1. This procedure guarantees that the start and end nodes are always a small
number of hops away in each call of Dijkstra’s algorithm. In Section 4.4, our experiments show that
multi-layered planning leads to a significant speedup compared with using only the finest granularity.

4 EXPERIMENTS

In this section, we address the following questions via experimentation over environments of different
complexities: 1) Does the PCLAST representation lead to performance gains in reward-based
and reward-free goal-conditioned RL settings? 2) Does increasing abstraction levels lead to more
computationally efficient and better plans? 3) What is the effect of PCLAST map on abstraction?

4.1 ENVIRONMENTS

We consider three categories of environments for our experiments and discuss them as follows:

Maze2D - Point Mass. We created a variety of 2D maze point-mass environments with continuous
actions and states. The environments are comprised of different wall configurations with the goal of

2When n = 1, we only apply the low-level planner without searching for any waypoint.

5

Under review as a conference paper at ICLR 2023

Algorithm 1: Multi-Layered planner
Data: Current observation xt, goal observation xgoal, planning horizon T , encoder ϕ(·), latent

forward dynamics F (·, ·), multi-layer discrete transition graphs {Gi}ni=2.
Result: Action sequence {ai}T−1

i=0 .
1 Compute current continuous latent state zt = ϕ(xt) and target latent state z∗ = ϕ(xgoal).
2 //* See Appendix D for details of high-level planner and low-level planner.
3 for i = n, n− 1, · · · , 2 do
4 z∗ = high-level planner(zt, z∗, Gi). ▷ Update waypoint using a hierarchy of abstraction.
5 end
6 {ai}T−1

i=0 = low-level planner(zt, z∗, T, F); ▷ Solve the trajectory optimization problem.

navigating a point-mass. The size of the grid is (100×100) and each observation is a 1-channel image
of the grid with “0" marking an empty location and “1" marking the ball’s coordinate location (x, y).
Actions comprise of (∆x,∆y) and specify the coordinate space change by which the ball should
be moved. This action change is bounded by [−0.2, 0.2]. There are three different maze variations:
MAZE-HALLWAY, MAZE-SPIRAL, and MAZE-ROOMS whose layouts are shown in Fig. 3(a,b and c).
Further, we have dense and sparse reward variants for each environment, details of which are given
in Appendix C.1. We created an offline dataset of 500K transitions using a random policy for each
environment which gives significant coverage of the environment’s state-action space.

Robotic-Arm. We extended our experiments to the Sawyer-Reach environment of Nair et al. (2018)
(shown in Fig. 3d). It consists of a 7 DOF robotic arm on a table with an end-effector. The end-effector
is constrained to move only along the planar surface of the table. The observation is a (84× 84) RGB
image of the top-down view of the robotic arm and actions are 2 dimensional continuous vectors
that control the end-effector coordinate position. The agent is tested on its ability to control the
end-effector to reach random goal positions. The goals are given as images of the robot arm in the
goal state. Similar to maze2d environment, we generate an offline dataset of 20K transitions using
rollouts from a random policy. Likewise to maze, it has dense and sparse reward variant.

Exogenous Noise Mujoco. We adopted control-tasks “Cheetah-Run" and “Walker-walk" from visual-
d4rl (Lu et al., 2022) benchmark which provides offline transition datasets of various qualities. We
consider "medium, medium-expert, and expert" datasets. The datasets include high-dimensional agent
tracking camera images. We add exogenous noise to these images to make tasks more challenging,
details are given in the Appendix C.2. The general objective in these task is to keep agent alive and
move forward, while agent feed on exogenous noised image.

(a) Hallway (b) Rooms (c) Spiral (d) Sawyer Reach Environment

Figure 3: Environments: (a), (b) and (c) show different wall-configurations of Maze2d environment
for point-mass navigation task and (d) shows top-down view of robot-arm environment with the task
of reaching various goal positions in 2D-planar space.

4.2 IMPACT OF REPRESENTATION LEARNING ON GOAL CONDITIONED RL
We investigate the impact of different representations on performance in goal-conditioned model-free
methods. First, we consider methods which use explicit-reward signal for representation learning. As
part of this, we trained goal-conditioned variant of PPO (Schulman et al., 2017) on each environment
with different current state and goal representation methods. This includes : (1) Image representation
for end-to-end learning, (2) ACRO representation Islam et al. (2022), and (3) PCLAST representation.
For (1), we trained PPO for 1 million environment steps. For (2) and (3), we first trained representation
using offline dataset and then used frozen representation with PPO during online training for 100K
environment steps only. In the case of Sawyer-Reach, we emphasize the effect of limited data and

6

Under review as a conference paper at ICLR 2023

reserved experiments to 20K online environment steps. We also did similar experiment with offline
CQL (Kumar et al., 2020) method with pre-collected dataset.

Secondly, we consider RL with Imagined Goals (RIG) (Nair et al., 2018) a method which doesn’t
need an explicit reward signal for representation learning and planning. It is an online algorithm
which first collects data with simple exploration policy. Thereafter, it trains an embedding using VAE
on observations (images) and fine-tunes it over the course of training. Goal conditioned policy and
value functions are trained over the VAE embedding of goal and current state. The reward function
is the negative of ℓ2 distance in the latent representation of current and goal observation. In our
experiments, we consider pre-trained ACRO and PCLAST representation in addition to default VAE
representation. Pre-training was done over the datasets collected in Section 4.1.

Our results in Table 1 show PPO and CQL have poor performance when using direct images as
representations in maze environments. However, ACRO and PCLAST representations improve
performance. Specifically, in PPO, PCLAST leads to significantly greater improvement compared to
ACRO for maze environments. This suggests that enforcing a neighborhood constraint facilitates
smoother traversal within the latent space, ultimately enhancing goal-conditioned planning. PCLAST
in CQL gives significant performance gain for Maze-Hallway over ACRO; but they remain within
standard error of each other in Maze-Rooms and Maze-Spiral. Generally, each method does well
on Sawyer-Reach environment. We assume it is due to lack of obstacles which allows a linear
path between any two positions easing representation learning and planning from images itself. In
particular, different representations tend to perform slightly better in different methods such as ACRO
does better in PPO (sparse), PCLAST does in CQL, and image itself does well in PPO(dense) and
RIG.

4.3 IMPACT OF PCLAST ON STATE-ABSTRACTION

We now investigate the quality of learned latent representations by visualizing relationships created
by them across true-states. This is done qualitatively by clustering the learned representations of
observations using k-means. Distance-based planners use this relationship when traversing in latent-
space. In Fig. 4 (2nd row), we show clustering of PCLAST representation of offline-observation
datasets for maze environments. We observe clusters having clear separation from the walls. This
implies only states which are reachable from each other are clustered together. On the other hand,
with ACRO representation in Fig. 4 (3rd row), we observe disjoint sets of states are categorized as
single cluster such as in cluster-10 (orange) and cluster-15 (white) of Maze-Hallway environment.
Further, in some cases, we have clusters which span across walls such as cluster-14 (light-pink) and
cluster-12 (dark-pink) in Maze-spiral environment. These disjoint sets of states violate a planner’s
state-reachability assumption, leading to infeasible plans.

Method Reward type Hallway Rooms Spiral Sawyer-Reach
PPO Dense 6.7 ± 0.6 7.5 ± 7.1 11.2 ± 7.7 86.00 ± 5.367

PPO + ACRO Dense 10.0 ± 4.1 23.3 ± 9.4 23.3 ± 11.8 84.00 ± 6.066
PPO + PCLAST Dense 66.7 ± 18.9 43.3 ± 19.3 61.7 ± 6.2 78.00 ± 3.347

PPO Sparse 1.7 ± 2.4 0.0 ± 0.0 0.0 ± 0.0 68.00 ± 8.198
PPO + ACRO Sparse 21.7 ± 8.5 5.0 ± 4.1 11.7 ± 8.5 92.00 ± 4.382

PPO + PCLAST Sparse 50.0 ± 18.7 6.7 ± 6.2 46.7 ± 26.2 82.00 ± 5.933
CQL Sparse 3.3 ± 4.7 0.0 ± 0.0 0.0 ± 0.0 32.00 ± 5.93

CQL + ACRO Sparse 15.0 ± 7.1 33.3 ± 12.5 21.7 ± 10.3 68.00 ± 5.22
CQL + PCLAST Sparse 40.0 ± 0.5 23.3 ± 12.5 20.0 ± 8.2 74.00 ± 4.56

RIG None 0.0 ± 0.0 0.0 ± 0.0 3.0 ± 0.2 100.0 ± 0.0
RIG + ACRO None 15.0 ± 3.5 4.0 ± 1. 12.0 ± 0.2 100.0 ± 0.0

RIG + PCLAST None 10.0 ± 0.5 4.0 ± 1.8 10.0 ± 0.1 90.0 ± 5
H-Planner + PCLAST None 97.78 ± 4.91 89.52 ± 10.21 89.11 ± 10.38 95.0 ± 1.54

Table 1: Impact of different representations on policy learning and planning. The numbers represent
mean and standard error of the percentage success rate of reaching goal states, estimated over 5 random
seeds. RIG and H-planner do not use an external reward signal. In H-planner, we use n = 5 abstrac-
tion levels. Highlighted in bold font are the methods with the best mean performance in each task.

7

Under review as a conference paper at ICLR 2023

Tr
aj

ec
to

ri
es

P
C

L
A

S
T

C
lu

st
er

s
P

C
L

A
S

T
C

lu
st

er
s

A
C

R
O

St
at

e
tr

an
si

tio
ns

P
C

L
A

S
T

(a) MAZE-HALLWAY (b) MAZE-SPIRAL (c) MAZE-ROOMS

Figure 4: Clustering, Abstract-MDP, and Planning are shown for Maze environments in each column.
In the first row, we show the maze configuration and the executed trajectories of the agent from
the initial location (black) to the target location (red) using high+low planners (blue) and just low-
level planners (orange). In the second and third rows, we show k-means “(k = 16)" clustering of
latent states learned by PCLAST and ACRO, respectively. Finally, in the fourth row, we show the
abstract transition model of the discrete states learned by PCLAST (2nd row) which captures the
environment’s topology.

4.4 MULTI-LEVEL ABSTRACTION AND HIERARCHICAL PLANNING

In Section 4.2, we found PCLAST embedding improves goal-conditioned policy learning. However,
reactive policies tend to generally have limitations for long-horizon planning. This encourages us
to investigate the suitability of PCLAST for n-level state-abstraction and hierarchical planning with
Algorithm 1 which holds promise for long-horizon planning. Abstractions for each level are generated
using k-means with varying k over the PCLAST embedding as done in Section 4.3.

For simplicity, we begin by considering 2-level abstractions and refer to them as high and low levels.
In Fig. 4, we show that the learned clusters of high-level in the second row and the abstract transition
models of the discrete states in the last row, which match with the true topology of the mazes. Using
this discrete state representation, MPC is applied with the planner implemented in Algorithm 1. Our
results show that in all cases, our hierarchical planner (high + low) generates feasible and shortest
plans (blue-line), shown in the top row of the Fig. 4. As a baseline, we directly evaluate our low-level
planner (see the orange line) over the learned latent states which turns out to be failing in all the cases
due to the long-horizon planning demand of the task and complex navigability of the environment.

Increasing Abstraction Levels. We investigate planning with multiple abstraction levels and
consider n ∈ {2, 3, 4, 5}. Performance score for “n = 5" are reported in Table 1 (lowest-row). These
abstractions help us create a hierarchy of graphs that describes the environment. In Fig. 5, we use
k = {32, 16, 8, 4} for n = {2, 3, 4, 5} abstraction levels, respectively, and show graph-path for each
abstraction-level for planning between two locations in the maze-environment. This multi-level
planning gives a significant boost to planning performance as compared to our model-free baselines.

8

Under review as a conference paper at ICLR 2023

Figure 5: Visualization of hierarchical graphs in the Maze2d-hallway environment. At every level,
num clusters is the k used for clustering. The transition graph (in black) constructed from the cluster
centers is superimposed over the environment. The hierarchy is indexed from 1 for the lowest level
and increases the higher the level.

Similarly, we observe 3.8× computational time efficiency improvement in planning with “n = 5"
(0.07 ms) as compared to “n = 2" (0.265 ms) abstraction levels. However, no significant performance
gains were observed. We assume this is due to the good quality of temporal abstraction at just n = 2
which leads to the shortest plans and increasing the levels just helps to save on computation time.
However, for more complex tasks, increasing the abstraction levels may further increase the quality
of plans.

4.5 EXOGENOUS-NOISE OFFLINE RL EXPERIMENTS

Finally, we evaluate PCLAST exclusively on exogenous noised control environments described
in Section 4.1. We follow the same experiment setup as done by Islam et al. (2022) and consider
ACRO Islam et al. (2022), DRIML Mazoure et al. (2020), HOMER Misra et al. (2020), CURL
Laskin et al. (2020) and 1-step inverse model Pathak et al. (2017) as our baselines. We share results
for “Cheetah-Run" with “expert, medium-expert, and medium" dataset in Fig. 6. It shows PCLAST
helps gain significant performance over the baselines (Islam et al., 2022). Extended results for

“Walker-Walk" with similar performance trends are shown in Fig. 9(Appendix).

4 5 6 7 8 9
Iterations 1e3

150

200

250

300

350

400

450

500

550

C
um

ul
at

iv
e

R
et

ur
ns

cheetah_run_expert

PCLAST
ACRO
DRIML
HOMER
1-Step Inverse
CURL

4 5 6 7 8 9
Iterations 1e3

150

200

250

300

350

400

450

C
um

ul
at

iv
e

R
et

ur
ns

cheetah_run_medium_expert

PCLAST
ACRO
DRIML
HOMER
1-Step Inverse
CURL

4 5 6 7 8 9
Iterations 1e3

100

150

200

250

300

350

400

450

500

C
um

ul
at

iv
e

R
et

ur
ns

cheetah_run_medium

PCLAST
ACRO
DRIML
HOMER
1-Step Inverse
CURL

Figure 6: Comparisons of PCLAST with several other baselines, following the 4 × 4 exo-grid
observation space offline RL setup from Islam et al. (2022). Experimental results on the Cheetah-Run
and Walker-Walk domain.

5 SUMMARY

Learning competent agents to plan in environments with complex sensory inputs, exogenous
noise, non-linear dynamics, along with limited sample complexity requires learning compact latent-
representations which maintain state affordances. Our work introduces an approach which learns a
representation via a multi-step inverse model and temporal contrastive loss objective. This makes
the representation robust to exogenous noise as well as retains local neighbourhood structure. Our
diverse experiments suggest the learned representation is better suited for reactive policy learning,
latent-space planning as well as multi-level abstraction for computationally-efficient hierarchical
planning.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Susan Amin, Maziar Gomrokchi, Harsh Satija, Herke van Hoof, and Doina Precup. A survey of
exploration methods in reinforcement learning. arXiv preprint arXiv:2109.00157, 2021.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in neural information processing systems, 30, 2017.

Marc Bellemare, Will Dabney, Robert Dadashi, Adrien Ali Taiga, Pablo Samuel Castro, Nicolas
Le Roux, Dale Schuurmans, Tor Lattimore, and Clare Lyle. A geometric perspective on optimal
representations for reinforcement learning. Advances in neural information processing systems,
32, 2019.

Homanga Bharadhwaj, Kevin Xie, and Florian Shkurti. Model-predictive control via cross-entropy
and gradient-based optimization. In Learning for Dynamics and Control, pp. 277–286. PMLR,
2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker: Libratus beats top
professionals. Science, 359(6374):418–424, 2018.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134:19–67, 2005.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik, 1(1):
269–271, December 1959. doi: 10.1007/bf01386390. URL https://doi.org/10.1007/
bf01386390.

Rick Durrett. Probability: theory and examples, volume 49. Cambridge university press, 2019.

Yonathan Efroni, Dipendra Misra, Akshay Krishnamurthy, Alekh Agarwal, and John Langford.
Provably filtering exogenous distractors using multistep inverse dynamics. In International
Conference on Learning Representations, 2021.

Meng Fang, Cheng Zhou, Bei Shi, Boqing Gong, Jia Xu, and Tong Zhang. Dher: Hindsight experience
replay for dynamic goals. In International Conference on Learning Representations, 2018.

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. In 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp. 2786–2793. IEEE, 2017.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019a.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019b.

Elad Hazan, Sham Kakade, Karan Singh, and Abby Van Soest. Provably efficient maximum entropy
exploration. In International Conference on Machine Learning, pp. 2681–2691. PMLR, 2019.

M Hessel, J Modayil, H van Hasselt, T Schaul, G Ostrovski, W Dabney, and D Silver. Rainbow:
Combining improvements in deep reinforcement learning, corr abs/1710.02298. arXiv preprint
arXiv:1710.02298, 2017.

Riashat Islam, Manan Tomar, Alex Lamb, Yonathan Efroni, Hongyu Zang, Aniket Didolkar, Dipendra
Misra, Xin Li, Harm van Seijen, Remi Tachet des Combes, et al. Agent-controller representations:
Principled offline rl with rich exogenous information. arXiv preprint arXiv:2211.00164, 2022.

10

https://doi.org/10.1007/bf01386390
https://doi.org/10.1007/bf01386390

Under review as a conference paper at ICLR 2023

Yuu Jinnai, Jee Won Park, Marlos C Machado, and George Konidaris. Exploration in reinforcement
learning with deep covering options. In International Conference on Learning Representations,
2019.

Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a
freely accessible critical care database. Scientific data, 3(1):1–9, 2016.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, volume 2, pp. 1094–8. Citeseer, 1993.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Alex Lamb, Riashat Islam, Yonathan Efroni, Aniket Didolkar, Dipendra Misra, Dylan Foster, Lekan
Molu, Rajan Chari, Akshay Krishnamurthy, and John Langford. Guaranteed discovery of control-
lable latent states with multi-step inverse models. arXiv preprint arXiv:2207.08229, 2022.

Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, and Marc G Bellemare. On the
generalization of representations in reinforcement learning. arXiv preprint arXiv:2203.00543,
2022.

Charline Le Lan, Stephen Tu, Mark Rowland, Anna Harutyunyan, Rishabh Agarwal, Marc G
Bellemare, and Will Dabney. Bootstrapped representations in reinforcement learning. arXiv
preprint arXiv:2306.10171, 2023.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations
for reinforcement learning. In International Conference on Machine Learning, pp. 5639–5650.
PMLR, 2020.

Cong Lu, Philip J. Ball, Tim G. J. Rudner, Jack Parker-Holder, Michael A. Osborne, and Yee Whye
Teh. Challenges and opportunities in offline reinforcement learning from visual observations.
CoRR, abs/2206.04779, 2022. doi: 10.48550/arXiv.2206.04779. URL https://doi.org/10.
48550/arXiv.2206.04779.

Clare Lyle, Mark Rowland, Georg Ostrovski, and Will Dabney. On the effect of auxiliary tasks on
representation dynamics. In International Conference on Artificial Intelligence and Statistics, pp.
1–9. PMLR, 2021.

Marlos C Machado, Clemens Rosenbaum, Xiaoxiao Guo, Miao Liu, Gerald Tesauro, and Murray
Campbell. Eigenoption discovery through the deep successor representation. arXiv preprint
arXiv:1710.11089, 2017.

Will Maddern, Geoffrey Pascoe, Chris Linegar, and Paul Newman. 1 year, 1000 km: The oxford
robotcar dataset. The International Journal of Robotics Research, 36(1):3–15, 2017.

Jacob Mattingley, Yang Wang, and Stephen Boyd. Receding horizon control. IEEE Control Systems
Magazine, 31(3):52–65, 2011.

Bogdan Mazoure, Remi Tachet des Combes, Thang Long Doan, Philip Bachman, and R Devon
Hjelm. Deep reinforcement and infomax learning. Advances in Neural Information Processing
Systems, 33:3686–3698, 2020.

Lina Mezghani, Sainbayar Sukhbaatar, Piotr Bojanowski, A. Lazaric, and Alahari Karteek. Learning
goal-conditioned policies offline with self-supervised reward shaping. Conference on Robot
Learning, 2023. doi: 10.48550/arXiv.2301.02099. URL https://arxiv.org/abs/2301.
02099v1.

Zakaria Mhammedi, Dylan J Foster, and Alexander Rakhlin. Representation learning with multi-step
inverse kinematics: An efficient and optimal approach to rich-observation rl. arXiv preprint
arXiv:2304.05889, 2023.

11

https://doi.org/10.48550/arXiv.2206.04779
https://doi.org/10.48550/arXiv.2206.04779
https://arxiv.org/abs/2301.02099v1
https://arxiv.org/abs/2301.02099v1

Under review as a conference paper at ICLR 2023

Dipendra Misra, Mikael Henaff, Akshay Krishnamurthy, and John Langford. Kinematic state abstrac-
tion and provably efficient rich-observation reinforcement learning. In International conference on
machine learning, pp. 6961–6971. PMLR, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor
Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level artificial
intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017.

Ashvin V Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. Advances in neural information processing systems,
31, 2018.

Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey Levine. Planning with goal-conditioned
policies. Advances in Neural Information Processing Systems, 32, 2019.

Keiran Paster, Sheila A McIlraith, and Jimmy Ba. Planning from pixels using inverse dynamics
models. arXiv preprint arXiv:2012.02419, 2020.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learning Research, pp. 2778–2787. PMLR, 2017.
URL http://proceedings.mlr.press/v70/pathak17a.html.

Cristina Pinneri, Shambhuraj Sawant, Sebastian Blaes, Jan Achterhold, Joerg Stueckler, Michal
Rolinek, and Georg Martius. Sample-efficient cross-entropy method for real-time planning. In
Conference on Robot Learning, pp. 1049–1065. PMLR, 2021.

Reuven Rubinstein. The cross-entropy method for combinatorial and continuous optimization.
Methodology and computing in applied probability, 1:127–190, 1999.

Fotios Lygerakis Rueckert et al. Cr-vae: Contrastive regularization on variational autoencoders for
preventing posterior collapse. arXiv preprint arXiv:2309.02968, 2023.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Aravind Srinivas, Allan Jabri, Pieter Abbeel, Sergey Levine, and Chelsea Finn. Universal plan-
ning networks: Learning generalizable representations for visuomotor control. In International
Conference on Machine Learning, pp. 4732–4741. PMLR, 2018.

Stephen Tian, Suraj Nair, Frederik Ebert, Sudeep Dasari, Benjamin Eysenbach, Chelsea Finn, and
Sergey Levine. Model-based visual planning with self-supervised functional distances. arXiv
preprint arXiv:2012.15373, 2020.

Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu, Steven Bohez, Josh Merel, Tom
Erez, Timothy Lillicrap, Nicolas Heess, and Yuval Tassa. dm_control: Software and tasks for
continuous control. Software Impacts, 6:100022, 2020.

Tingwu Wang and Jimmy Ba. Exploring model-based planning with policy networks. arXiv preprint
arXiv:1906.08649, 2019.

12

http://proceedings.mlr.press/v70/pathak17a.html

Under review as a conference paper at ICLR 2023

Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, Trevor
Darrell, et al. Bdd100k: A diverse driving video database with scalable annotation tooling. arXiv
preprint arXiv:1805.04687, 2(5):6, 2018.

13

Under review as a conference paper at ICLR 2023

A INTUITIVE ARGUMENT: LEARNING LNS VIA CONTRASTIVE LEARNING

In the previous section we introduced a contrastive learning objective which allows us to learn the
underlying LNS in a scalable and differentiable way (see equations (3a)-(3)). Next, we elaborate on
the intuition that resulted in this objective. We show that the newly introduced temporal contrastive
loss can be derived assuming a natural diffusion process on the underlying dynamics.

Consider a simple discrete time multi-dimensional Brownian motion. The conditional probability to
observe the process at position z′ at time step k conditioning on it starting from z at time step k = 0,
denoted as Pk(z′|z0 = z), is given as (see Durrett (2019), Section 7):

Pk(z′|z0 = z) ∝ exp

(
||z − z′||2

σ0k

)
.

With this fact in mind we can study the distribution of the contrastive learning process which outputs
the tuple (y, z, z′). A simple way to define this process is as follows: sample z uniformally from Z ,
sample z′ after k steps where z̄ ∼ Pk(·|z0 = z), independently, sample y ∼ Bernoulli(0.5), if y = 1
set z′ = z̄ and otherwise sample z′ uniformally at random. We refer to this process as the Contrastive
Learning(CL) generating process. The following can be readily derived from these assumptions (see
proof in Appendix B).
Proposition 1. Assume the tuple (y, z, z′) is sampled via the CL generating process described above.
Then, Pk(y = 1 | z, z′) = sigmoid(c− b||z − z′||2), where sigmoid(x) = exp(x)/(exp(x) + 1).

Although this generating process does not take into account the geometry of the underlying space and
subtle intricacies of the environment, for small time scales this process can capture the dynamics to a
reasonable degree. Further, the contrastive learning objective follows directly from Proposition 1:
this objective can be interpreted as a log-likelihood learning procedure of the CL generating process.

14

Under review as a conference paper at ICLR 2023

B BAYES SOLUTION OF CONTRASTIVE LOSS

Proposition 1. Assume the tuple (y, z, z′) is sampled via the CL generating process described above.
Then, Pk(y = 1 | z, z′) = sigmoid(c− b||z − z′||2), where sigmoid(x) = exp(x)/(exp(x) + 1).

Proof. The proof following by direct analysis of the conditional probability distribution together with
the assumption of the CL generating process, i.e., the underlying Brownian motion.

Pk(y = 1|z, z′) = Pk(z|z′, y = 1)Pk(y = 1|z)
Pk(z′|z′, y = 1)Pk(y = 1|z) + Pk(z′|z, y = 0)Pk(y = 0|z)

=
Pk(z|z′, y = 1)

Pk(z′|z′, y = 1) + Pk(z′|z, y = 0)

=
Pk(z|z′, y = 1)

Pk(z′|z′, y = 1) + 1/ |Z|

=
C exp

(
− ||z−z′||2

σ0k

)
C exp

(
−||z−z′||2

σ0k

)
+ 1/ |Z|

=
exp

(
log(C |Z|)− ||z−z′||2

σ0k

)
exp

(
log(C |Z|)− ||z−z′||2

σ0k

)
+ 1

= sigmoid(c− b||z − z′||2).

The first relation is an application of Bayes’ rule; the second relation follows since y ∼ Bernoulli(0.5)
sampled independently from z and z′; the third relation holds since z′ is assumed to be sampled
uniformly when y = 0; the forth relation holds by the Brownian motion assumption (where C is a
positive constant); the sixth relation holds by defining b = 1/(σ0k) and c = log(C |Z|).

C EXPERIMENTS

Over here, we discuss our environment in details.

C.1 MAZE-2D POINT MASS

Environment setup The state st of the point-mass experiment is the 2D position of a point and the
action at is the position displacement, i.e., st+1 = st + at. The action is bounded by ∥at∥∞ ≤ 0.2.
In the presence of obstacles, the point mass starting from st is moved along the direction of at until it
collides with an obstacle. Further, we have two reward variants for each maze : 1) Dense-reward
and 2) Sparse-reward. In the dense case, the agent receives a reward for the first time it crosses a
particular distance threshold from the goal. Specifically, if dg is the distance to the goal, the agent
receives a reward r encouraging it to go closer to the goal. The thresholds for reaching the goal, as
well as the corresponding reward values are given below.

r = 0.25 if this is the first time dg < 0.1

= 0.5 if this is the first time dg < 0.05

= 1 if dg < 0.03

In the sparse setting, the agent receives a reward of 1 when it’s within a distance of 0.03 to the goal
state. For evaluation, we randomize the start and goal states from across the maze so as to test the
agent’s ability to reach diverse goals.

As shown in Fig. 4 in the main paper, we consider three environments with distinct layouts of
obstacles. In each of these environments, a dataset of 500K samples is collected using random actions.

15

Under review as a conference paper at ICLR 2023

Figure 7: Mean square error of predicting the true state using the learned latent states during the
training.

An instance of the dataset has <obs-image, state, action, next-state, next-obs-image>, where state
and next-state are the coordinates of the agent in the maze and represent the true environment state
as the obstacles are fixed. We use the transaction data to train the latent dynamics and extract an
abstract transaction model using k-means clustering over the latent states with the continuous actions
discretized with a resolution of 0.01 for identifying transitions of the latent states across different
clusters.

Quality of the latent representation Here we demonstrate the quality of the learned latent represen-
tation. Since, in the 2D point-mass experiment, we have access to the true state of the environment,
we train a feed-forward network to predict the true state from the learned latent state. In Fig. 7, we
show the regression error of predicting the true state from the latent state. A significant low error
implies that the learned latent state captures information about the true state.

Transition model generation In constructing the transition models between the clusters of latent
states, we filter out the infrequent transitions to avoid giving hard-to-reach goals to the low-level
planner. For the cluster si, let si1 , si2 , · · · , siN denote the N clusters such that there is at least a state
transaction from si to sij in the collected samples. This means it is feasible to move the point mass
from si to sij . Let 0 < pij ≤ 1 for j = 1, · · · , N denote the ratio of the number of transactions
from si to sij to the total number of outward transactions from si. We observe that if pij is small,
the following issues may happen: (i) The transition from si to sij is caused by the clustering errors
and does not give a feasible transaction of the agent in practice. (ii) Even if such a transition is
feasible, it is difficult for the low-level planner to find such a path as indicated by the sparsity of such
transitions in the collected dataset. Therefore, in generating the transition models, we add the edge
si → sij to the graph only when pij is large enough. Without loss of generality, assume that pij
for j = 1, · · · , N have been arranged in descending order. Motivated by the nucleus sampling, we
choose N∗ = argmink

∑k
j=1 pij ≥ 0.9 and only add the edges si → sij for j = 1, · · · , N∗ to the

graph. In this way, the sparse transactions are filtered out.

C.2 EXOGENOUS NOISE OFFLINE RL EXPERIMENTS

We add exogenous noise by sampling 3 observations from “random" quality dataset and adding them
around the main observation as shown in Figure 8. This creates a 4× 4 exogenous observation from
the offline dataset. This is same setup as from Islam et al. (2022). In our experiments, we have the
controllable environment in one corner of the grid, and 3 other uncontrollable environments, taken
from a random dataset, placed randomly in the 4× 4 grid. Figure 9 shows additional results in the
offline RL experimental setup.

16

Under review as a conference paper at ICLR 2023

Figure 8: Illustration of the exogenous observations from the offline dataset, where the exogenous
uncontrollable noise is placed in a 4 × 4 grid beside the controllable environment. We follow a
setup similar to Islam et al. (2022), where both the endogenous and the exogenous observations
are taken from the same domain (e.g Cheetah-Run domain as demonstrated here), except that
the controllable observation may come from an expert or medium-expert dataset, whereas all the
exogenous observations are tasken from a random dataset.

4 5 6 7 8 9
Iterations 1e3

300

400

500

600

700

800

900

C
um

ul
at

iv
e

R
et

ur
ns

walker_walk_expert

PCLAST
ACRO
DRIML
HOMER
1-Step Inverse
CURL

4 5 6 7 8 9
Iterations 1e3

100

200

300

400

500

600

700

800

900

C
um

ul
at

iv
e

R
et

ur
ns

walker_walk_medium_expert

PCLAST
ACRO
DRIML
HOMER
1-Step Inverse
CURL

4 5 6 7 8 9
Iterations 1e3

250

300

350

400

450

C
um

ul
at

iv
e

R
et

ur
ns

walker_walk_medium

PCLAST
ACRO
DRIML
HOMER
1-Step Inverse
CURL

Figure 9: Comparisons of PCLAST with several other baselines, following the 4 × 4 exo-grid
observation space offline RL setup from Islam et al. (2022). Experimental results on the Cheetah-Run
and Walker-Walk domain.

D MULTI-LAYERED PLANNER IMPLEMENTATION DETAILS

D.1 HIGH-LEVEL PLANNER

Given the current latent state zt and the target latent state z∗, the high-level planner aims to find an
intermediate waypoint z̃ such that the low-level planner can effectively track z̃. The search for the
waypoint is based on the discrete abstraction of the environment which is given by the graph G as
described in Section 3.4. We denote ϕd(·) as the node (or cluster) membership function for the graph
abstraction G such that ϕd(z) returns the node in G for any latent state z ∈ Z . The high-level planner
is outlined in Algorithm 2

Algorithm 2: High-level planner
Data: Current latent state zt, target latent state z∗, graph abstraction G. ▷ The node membership

function ϕd(·) is given by G.
Result: Waypoint z̃.

1 Find the discrete latent states st = ϕd(zt) and s∗ = ϕd(z
∗).

2 if st ̸= s∗ then
3 s̃ = Dijkstra(st, s∗,G) ▷ s̃ is the next node on the shortest path from st to s∗.
4 set z̃ as the center of the cluster of s̃.
5 else
6 s̃ = s∗, z̃ = z∗.
7 end
8 Return z̃.

17

Under review as a conference paper at ICLR 2023

Algorithm 3: Cross-entroy method
Data: Number of iteration N , number of samples M each iteration, and parameter K.
Result: Action sequence {a∗i }

T−1
i=0 .

1 Initialize a multivariate Gaussian distribution N (µ(0),Σ(0)) with mean µ(0) = 0 and covariance
matrix Σ(0) = I .

2 for j = 0, · · · , N − 1 do
3 Sample M action sequences {a(m)

i }T−1
i=1 from N (µ(j),Σ(j)) for m = 1, · · · ,M .

4 For each action sequence {a(m)
i }T−1

i=1 , evaluate the rendered cost J (m) of Problem (5).
5 Select the K smallest costs from {J (m)}Mm=1 and the corresponding action sequences

{a∗,(k)i }T−1
i=1 for k = 1, · · · ,K.

6 Update µ(j+1) and Σ(j+1) as the mean and covariance of {a∗,(k)i }T−1
i=1 , k = 1, · · · ,K.

7 end
8 Sample the action sequence {a∗i }

T−1
i=0 from N (µ(N),Σ(N)) as the output.

D.2 LOW-LEVEL PLANNER

Note that the latent forward dynamics is given by zt+1 = F (zt, at). Without loss of generality, we
consider z0 as the current latent state and z∗ as the target latent state. Given a horizon T ≥ 1, our
low-level planner generates actions {at}T−1

t=0 that drive the latent state zt to reach z∗ by solving a
trajectory optimization problem

minimize
a0,··· ,aT−1

T∑
t=0

∥zt − z∗∥2

subject to zt+1 = F (zt, at), t = 0, · · · , T − 1.

(5)

In this work, we apply CEM to solve the low-level planning problem (5). CEM has been successfully
applied in model-based reinforcement learning (Finn & Levine, 2017; Wang & Ba, 2019; Hafner et al.,
2019b) and is outlined in Algorithm Algorithm 3. In the CEM, the actions {ai}T−1

i=0 are drawn from
a multivariate Gaussian distribution whose parameters (mean and covariance matrix) are updated
iteratively to approximate the optimal distribution of actions.

18

	Introduction
	Related Work
	PCLaSt: Discovery, Representation, and Planning
	Notations and Preliminaries.
	Encoder Description.
	Learning the PCLaSt map.
	Learning a latent forward model and compositional planning.

	Experiments
	Environments
	Impact of representation learning on Goal Conditioned RL
	 Impact of PCLaSt on state-abstraction
	Multi-Level Abstraction and Hierarchical Planning
	Exogenous-Noise Offline RL Experiments

	Summary
	Intuitive Argument: Learning LNS via Contrastive Learning
	Bayes Solution of Contrastive Loss
	Experiments
	Maze-2D point mass
	Exogenous Noise Offline RL Experiments

	Multi-Layered Planner Implementation Details
	High-level planner
	Low-level planner

