
PcLast: Discovering Plannable Continuous Latent States

Anurag Koul * 1 Shivakanth Sujit * 2 3 4 Shaoru Chen 1 Ben Evans 5 Lili Wu 1 Byron Xu 1 Rajan Chari 1

Riashat Islam 3 6 Raihan Seraj 3 6 Yonathan Efroni 7 Lekan Molu 1 Miro Dudik 1 John Langford 1 Alex Lamb 1

Abstract
Goal-conditioned planning benefits from learned
low-dimensional representations of rich observa-
tions. While compact latent representations typi-
cally learned from variational autoencoders or in-
verse dynamics enable goal-conditioned decision
making, they ignore state reachability, hampering
their performance. In this paper, we learn a repre-
sentation that associates reachable states together
for effective planning and goal-conditioned pol-
icy learning. We first learn a latent representation
with multi-step inverse dynamics (to remove dis-
tracting information), and then transform this rep-
resentation to associate reachable states together
in ℓ2 space. Our proposals are rigorously tested in
various simulation testbeds. Numerical results in
reward-based settings show significant improve-
ments in sampling efficiency. Further, in reward-
free settings this approach yields layered state
abstractions that enable computationally efficient
hierarchical planning for reaching ad hoc goals
with zero additional samples.

1. Introduction
Deep reinforcement learning (RL) has emerged as a choice
tool in mapping rich and complex perceptual information to
compact low-dimensional representations for onward (mo-
tor) control in virtual environments (Silver et al., 2016),
software simulations (Brockman et al., 2016), and hardware-
in-the-loop tests (Finn & Levine, 2017). Its impact traverses
diverse disciplines spanning games (Moravčı́k et al., 2017;
Brown & Sandholm, 2018), virtual control (Tunyasuvu-
nakool et al., 2020), healthcare (Johnson et al., 2016), and

*Equal contribution 1Microsoft Research 2Work done as In-
tern at Microsoft, NYC 3Mila - Quebec AI Institute 4ETS Mon-
treal 5New York University 6McGill University 7Meta. Cor-
respondence to: Anurag Koul <anuragkoul@microsoft.com>,
Shivakanth Sujit <shivakanth.sujit.1@ens.etsmtl.ca>, Alex Lamb
<lambalex@microsoft.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

autonomous driving (Maddern et al., 2017; Yu et al., 2018).
Fundamental catalysts that have spurred these advancements
include progress in algorithmic innovations (Mnih et al.,
2013; Hessel et al., 2017; Schrittwieser et al., 2020) and
learned (compact) latent representations (Bellemare et al.,
2019; Lyle et al., 2021; Lan et al., 2022; Rueckert et al.,
2023; Lan et al., 2023).

Latent representations, typically learned by variational au-
toencoders (Kingma & Welling, 2013) or inverse dynamics
(Paster et al., 2020; Wu et al., 2023), are mappings from
high-dimensional observation spaces to a reduced space of
essential information where extraneous perceptual informa-
tion has already been discarded. Good compact represen-
tations foster sample efficiency in learning-based control
settings (Ha & Schmidhuber, 2018; Lamb et al., 2022). La-
tent representations however often fail to correctly model
the underlying states’ affordances. Consider an agent in the
2D maze of Figure 1a. If we learn a typical representation
(such as ACRO of Islam et al., 2022) and cluster it, we ob-
serve it correctly identifies the agent’s (low-level) position
information as indicated by states with nearby coordinate
position falling in the same clusters. However, it ignores the
scene geometry such as the wall barriers so that states natu-
rally demarcated by obstacles are clustered together (see in
Figure 1b). This inadequacy in creating poor abstractions is
a drag on the efficacy of planning and deep RL algorithms
despite their impressive showings in the last few years.

In this paper, we present two contributions. First, we de-

(a) Maze-Spiral (b) ACRO (c) PCLAST

Figure 1. Comparative view of clustering representations learned
for a 2D maze environment with spiral walls (a). The agent’s
location is marked by black-dot in the maze image. The clustering
of representations learned via ACRO (b) and PCLAST (c) are
overlaid on the maze image.

1

ar
X

iv
:2

31
1.

03
53

4v
2

 [
cs

.L
G

]
 1

1
Ju

n
20

24

PcLast: Discovering Plannable Continuous Latent States

Stop Gradient

Discrete High-Level
Planner

Figure 2. (a) Overview of the proposed method: (a) The encoder ϕ, which maps observations x to continuous latent states ŝ, is learned
with a multi-step inverse model fAC (left). A temporal contrastive objective (Lm− and Lm+) is used to learn a metric space s̄ (middle), a
forward model (δ) is learned in the latent space ŝ (right). (b) High-level and low-level planners. The high-level planner generates coarse
goals (ŝy) to be used as targets for low-level continuous planner. The dashed line indicates the expected trajectory after ŝy is reached.

velop latent representations that accurately abstract state
reachability in the quest towards sample-efficient plan-
ning from rich observations. We call this new approach
Plannable Continuous Latent States or PCLAST which is
a map from observations to latent representation and as-
sociates neighboring states together by optimizing a con-
trastive objective inspired by the likelihood function of a
Gaussian random walk. The Gaussian is a reasonable model
for random exploration in the embedding space. Figure 2
shows an overview of our approach, with a specific choice of
the initial latent representation based on inverse dynamics.

We hypothesize that PCLAST representations are better
aligned with the reachability structure of the environment.
Our experiments validate that these representations improve
the performance of reward-based policy learning and reward-
free task completion schemes. One key benefit of this rep-
resentation is that it can be used to construct a discretized
model of the environment and enable model-based plan-
ning to reach an arbitrary state from another arbitrary state.
A discretized model (in combination with a simple local
continuous planner) can also be used to solve more com-
plex planning tasks that may require combinatorial solvers,
like planning a tour across several states in the environ-
ment. Similarly to other latent state learning approaches,
the learned representations can be used to drive more effec-
tive exploration of new states (Machado et al., 2017; Hazan
et al., 2019; Jinnai et al., 2019; Amin et al., 2021).

Secondly, since the distance in the PCLAST representation

corresponds to the number of transitions between states,
discretizing states at different levels of granularity gives rise
to different levels of state abstraction. We hypothesize these
abstractions can be efficiently used for hierarchical planning.
This is validated in our experiments 1 where we show using
multiple levels of hierarchy leads to substantial speed-ups
in plan computation.

2. Related Work
Our work relates to challenges in representation learning for
forward/inverse latent-dynamics and using it for ad-hoc goal
conditioned planning. We next discuss each of these aspects.

Representation Learning. Learning representations can be
decomposed into reward-based and reward-free approaches.
The former involves both model-free and model-based meth-
ods. Model-free methods (e.g., Mnih et al., 2013) directly
learn a policy with rich observation as input. One can con-
sider the penultimate layer as a latent-state representation.
Model-based approaches (e.g. Hafner et al., 2019a) learn
policy, value, and/or reward functions along with the rep-
resentation. These end-to-end approaches induce task-bias
in the representation which makes them unsuitable for di-
verse tasks. In reward-free approaches, the representation
is learned in isolation from the task. This includes model-
based approaches (Ha & Schmidhuber, 2018), which learn a

1Code for reproducing our experimental results can be found
at https://github.com/shivakanthsujit/pclast

2

https://github.com/shivakanthsujit/pclast

PcLast: Discovering Plannable Continuous Latent States

low-dimensional auto-encoded latent-representation. To ro-
bustify, contrastive methods (Laskin et al., 2020) learn rep-
resentations that are similar across positive example pairs,
while being different across negative example pairs. They
still retain exogenous noise requiring greater sample and
representational complexity. This noise can be removed
from latent state by methods like ACRO (Islam et al., 2022)
which learns inverse dynamics (Mhammedi et al., 2023).
These reward-free representations tend to generalize better
for various tasks in the environment. The prime focus of
discussed reward-based/free approaches is learning a repre-
sentation robust to observational/distractor noise; whereas
not much attention is paid to enforce the geometry of the
state-space. Existing approaches hope that such geometry
would emerge as a result of end-to-end training. We hy-
pothesize lack of this geometry affects sample efficiency
of learning methods. Temporal contrastive methods (such
as HOMER (Misra et al., 2020) and DRIML (Mazoure
et al., 2020)) attempt to address this by learning representa-
tions that discriminate among adjacent observations during
rollouts, and pairs random observations (Wang & Gupta,
2015; Nair et al., 2022). However, this is still not invariant
to exogenous information (Efroni et al., 2021).

Planning. Gradient descent methods abound for planning
in learned latent states. For example, UPN (Srinivas et al.,
2018) applies gradient descent for planning. For continuous
latent states and actions, the cross-entropy method (CEM)
(Rubinstein, 1999), has been widely used as a trajectory
optimizer in model-based RL and robotics (Finn & Levine,
2017; Wang & Ba, 2019; Hafner et al., 2019b). Variants of
CEM have been proposed to improve sample efficiency by
adapting the sampling distribution of Pinneri et al. (2021)
and integrating gradient descent methods (Bharadhwaj
et al., 2020). Here, trajectory optimizers are recursively
called in an online setting using an updated observation.
This conforms with model predictive control (MPC)
(Mattingley et al., 2011). However, it s limited by planning
horizon and returns suboptimal plans in complex tasks.
In our work, we ease planning by generating multi-level
representation hierarchy and adopting multi-level planner
that uses Dijkstra’s graph-search algorithm (Dijkstra, 1959)
for coarse planning in each hierarchy level for subgoal
generation. A low-level planner (such as CEM) along
with a learned latent world model is used to search action
sequences to reach next subgoal.

Goal Conditioned Reinforcement Learning (GCRL). In
GCRL, the goal is specified along with the current state
and the objective is to reach the goal in least number of
steps. Several efforts have been made to learn GCRL poli-
cies (Kaelbling, 1993; Andrychowicz et al., 2017; Nasiriany
et al., 2019; Fang et al., 2018; Nair et al., 2018). Further,
reward-free goal-conditioned latent-state planning requires
estimating the distance between the current and goal la-

tent state, generally using Euclidean norm (ℓ2) for the same.
However, it is not clear whether the learned representation is
suitable for ℓ2 norm and may lead to infeasible/non-optimal
plans; even if one has access to true state. So, either one
learns a new distance metric (Tian et al., 2020; Mezghani
et al., 2023; Wang et al., 2023) which is suitable for the
learned representation or learns a representation suitable for
the ℓ2 norm. In our work, we focus on the latter. Further,
GCRL reactive policies often suffer over long-horizon prob-
lems which is why we use hierarchical planning on learned
latent state abstractions as discussed earlier.

3. PCLAST: Discovery, Representation, and
Planning

In this section, we discuss learning the PCLAST representa-
tion, constructing a transition model, and implementing a
hierarchical planning scheme.

3.1. Notations and Preliminaries.

In our work, we extend Exogenous Block Markov Decision
Process (EX-BMDP) (Efroni et al., 2021) with continuous
state and action spaces. We begin by introducing BMDP
(Du et al., 2019) and then discuss its extension with ex-
ogenous (EX) noise. In our discussion, indices of time
like t, t0, τ will always be integers and τ ≫ t > t0. The
Euclidean norm of a matrix X is denoted as ∥X∥.

BMDP. A BMDP is a tuple (X ,Z,A, T, q, R, µ). Here,
X ,Z, and A are the spaces of observations, latent states,
and actions, respectively. The transition function (T) is
defined over the latent states as T : Z ×A → Z . Observa-
tions are sampled using the emission function q : Z → X ,
with initial latent state distribution given by z0 ∼ µ(·). The
reward is given as R : X × A → R. In contrast to MDPs,
BMDP requires block assumption (Du et al., 2019), i.e.,
emission distribution of any two latent states is disjoint.

EX-BMDP. An EX-BMDP is a BMDP whose latent states
can be decoupled into two parts z = (s, ξ), where s ∈ S
is an endogenous state and ξ ∈ Ξ is the exogenous state.
Further, the transition function and initial distribution can be
decoupled as T (z′|z, a) = T (s′|s, a)Tξ(ξ′|ξ) and µ(z) =
µ(s)µξ(ξ), respectively.

3.2. ACRO: Learning Endogenous State

We learn endogenous state representation (ŝ) using an en-
coder ϕ and an action-controllable (AC) multi-step inverse
dynamics fAC as done in ACRO (Islam et al., 2022). The
encoder ϕ : X → S maps high-dimensional images to
low-dimensional representation and the inverse dynamics
model fAC : S × S × [Kmax] → A predicts the likelihood
of the next action (at) between a pair of states separated

3

PcLast: Discovering Plannable Continuous Latent States

by k steps, i.e., P(at|ϕ(xt), ϕ(xt+k)) (we assume that this
conditional distribution is Gaussian with a fixed variance).
The functions ϕ and fAC are optimized together using Equa-
tions (1a) and (1b) below, where t ∼ U(1, T) is the index
of time, and k ∼ U (1,Kmax) is the amount of look-ahead
steps with Kmax as the diameter of the control-endogenous
MDP (Lamb et al., 2022; Islam et al., 2022):

Ls(ϕ, fAC, xt, at, xt+k, k)

= ∥at − fAC(ϕ(xt), ϕ(xt+k); k)∥2, (1a)

argmin
ϕ

min
fAC

E
t
E
k
Ls (ϕ, fAC, xt, at, xt+k, k) (1b)

3.3. Learning the PCLAST map

While the encoder ϕ and the inverse dynamics model fAC
are designed to filter out the exogenous noise, they do not
lead to representations that reflect the reachability structure
(see Figure 1b). To enforce states’ reachability, we learn a
map ψ : S → S̄, which associates nearby states (s ∈ S)
to have similar representation in s̄ ∈ S̄, based on transition
deviations.

Learning ψ is inspired by local random exploration that
enforces a Gaussian random walk in the embedding space
(S̄). This allows states visited in fewer transitions to be
closer to each other. A Gaussian random walk with vari-
ance σI (where I is an identity matrix) for k steps in
S̄ would induce a conditional distribution P(s̄t+k|s̄t) ∝
exp

{
−∥s̄t+k−s̄t∥2

2kσ2

}
. This also requires a reversibility as-

sumption that there exists a k-step path from st+k to st.
Instead of fitting ψ to this likelihood directly, we fit a con-
trastive version, based on the following process for gener-
ating triples ⟨y, s̄t, s̄t+k⟩. First, we flip a random coin with
outcome y ∈ {0, 1} and then predict y using s̄t and s̄t+k,
yielding the likelihood function

Pk(y = 1|s̄t, s̄t+k) = σ(eα − eβ∥s̄t − s̄t+k∥), (2)

for suitable α and β (see the derivation in Appendix C). We
use eα and eβ to smoothly enforce positive values.

We employ a contrastive learning loss Lψ in Equations (3a)
to (3d) to fit ψ as well as the parameters α and β by av-
eraging over the expected loss. In Lψ, t ∼ U(1, T),
r ∼ U(1, T), d ∼ U (1, dm) for a hyperparameter dm.
Positive examples (xt and xt+d) are drawn for the con-
trastive objective uniformly over dm steps and optimized
using Equation (3a). Negative examples (xr) are sampled
uniformly from a data buffer and optimized with Equa-
tion (3b), which encourages change in state representation

to be higher for negative samples.

Lm+
(ψ, ŝA, ŝB , α, β)

= − log(σ(eα − eβ∥ψ(ŝA)− ψ(ŝB)∥2)) (3a)
Lm−(ψ, ŝA, ŝB , α, β)

= − log(1− σ(eα − eβ∥ψ(ŝA)− ψ(ŝB)∥2)) (3b)

Lψ(ψ, ϕ, α, β, xt, xt+d, xr)
= Lm+

(ψ, ϕ(xt), ϕ(xt+d), α, β)

+ Lm−(ψ, ϕ(xt), ϕ(xr), α, β) (3c)

arg min
ψ∈Ψ,
α,β∈R

E
t,r

E
d
Lψ(ψ, ϕ, α, β, xt, xt+d, xr) (3d)

In our approach, ϕ is not optimized with respect to the
contrastive loss Lψ . This is motivated by the work of Efroni
et al. (2022), who proved that temporal contrastive objective
loss can be reduced by capturing exogenous noise. Hence,
optimizing ϕ with contrastive loss may lead it to acquire
information on the exogenous state. To avoid this failure
case, we task ϕ with capturing the agent-centric state and
task ψ with learning the local neighborhood structure.

3.4. Learning a latent forward model

In order to plan in our learned latent space, we learn a
one-step latent dynamics δ : S×A → S . This estimates ob-
servational dynamics by predicting ϕ(xt+1) ≈ δ(ϕ(xt), at).
The forward model δ is parameterized as a fully-connected
network of a parameterized family F , optimized with the
following objective:

Lδ(δ, xt, at, xt+1) = ∥ϕ(xt+1)− δ(ϕ(xt), at)∥2, (4a)
argmin

δ∈F
E
t
Lδ(δ, xt, at, xt+1) (4b)

In our approach, we jointly optimize all of our architecture
components ϕ(·), fAC(·), ψ(·), and δ(·, ·).

3.5. Planning

We describe utility of PCLAST for abstraction and generat-
ing goal-conditioned abstract plans.

High-Level Planner. Let ŝt = ϕ(xt) denote the latent state.
In the planning problem, we aim to navigate the agent from
an initial latent state sinit to a target latent state sgoal fol-
lowing the latent forward dynamics ŝt+1 = δ(ŝt, at). Since
δ is highly nonlinear, it presents challenges for use in global
planning tasks. Therefore, we posit that a hierarchical plan-
ning scheme with abstractions can improve the performance
and efficacy of planning by providing waypoints for the
agent to track using global information of the environment.

To find a waypoint ŝ∗ in the latent space, we first divide
the latent space into C clusters by applying k-means to an

4

PcLast: Discovering Plannable Continuous Latent States

offline datasetDψ , which is created by PCLAST transforma-
tion of offline observations, i.e., Dψ = {. . . , ψ(ϕ(x)), . . . }.
We use {ci}Ci=1 to denote each cluster. Our assumption of
reversibility described in Section 3.3 ensures a path exists
between any two states of the same cluster. For each clus-
ter, we store the latent-state representation of its centroid
alongside the PCLAST transformation of this latent state.

An abstraction of the environment is given by a graph G with
nodes {ci}Ci=1 and edges defined by the reachability of each
cluster, i.e., an edge from node ci to node cj is added to the
graph if there are transitions of latent states from cluster ci
to cluster cj in the offline transition dataset. On the graph G,
we apply Dijkstra’s shortest path algorithm (Dijkstra, 1959)
to find the next cluster the agent should go to and choose the
latent state corresponding to centroid of that cluster as the
waypoint ŝ∗. This waypoint is passed to a low-level planner
to compute the action.

Low-Level Planner. Given the current latent state ŝ0 and
the waypoint ŝ∗ to track, the low-level planner finds the
action to take by solving a trajectory optimization problem
using the cross-entropy method (CEM) (De Boer et al.,
2005). The details are shown in Appendix E.2.

n-Level Planner. To improve the efficiency of finding the
waypoint ŝ∗, we propose to build a hierarchical abstrac-
tion of the environment such that the high-level planner can
be applied at different levels of granularity, leading to an
overall search time reduction of Dijkstra’s shortest path al-
gorithm. The n-Level Planner creates n abstraction levels,
indexed by i = 1, . . . , n, from finest to coarsest, with i = 1
corresponding to low-level planner.2 At level i ≥ 2, we par-
tition the latent space into Ci clusters using k-means, and
we have C2 > C3 > · · · > Cn. For each abstraction level,
we construct the discrete transition graph Gi accordingly,
which is used to search for the waypoint ŝ∗ with increas-
ing granularity as shown in Algorithm 1. This procedure
guarantees that the start and end nodes are always a small
number of hops away in each call of Dijkstra’s algorithm. In
Section 4.4, our experiments show that multi-level planning
leads to a significant speedup compared with using only the
finest granularity.

4. Experiments
In this section, we address the following questions via ex-
perimentation over environments of different complexities:
(1) Does the PCLAST representation lead to performance
gains in reward-based and reward-free goal-conditioned
tasks? (2) Does increasing abstraction levels lead to more
computationally efficient and better plans? (3) What is the
effect of PCLAST map on abstraction?

2When n = 1, we only apply the low-level planner without
searching for any waypoint.

Algorithm 1 n-Level Planner

Require:
Current observation xt
Goal observation xgoal
Planning horizon H
Encoder ϕ(·)
PCLAST map ψ(·)
Latent forward dynamics δ(·, ·)
Multi-Level discrete transition graphs {Gi}ni=2

Ensure: Action sequence {ai}H−1
i=0

1: Compute current continuous latent state ŝt = ϕ(xt) and
target latent state ŝ∗ = ϕ(xgoal).
{See Appendix E for details of high-level planner and
low-level planner.}

2: for i = n, n− 1, . . . , 2 do
3: ŝ∗ = high-level planner(ŝt, ŝ∗, Gi)

{Update waypoint using a hierarchy of abstraction.}
4: end for
5: {ai}H−1

i=0 = low-level planner(ŝt, ŝ∗, H, δ, ψ)
{Solve the trajectory optimization problem.}

4.1. Environments

We consider three categories of environments for our exper-
iments and discuss them as follows:

Maze2D—Point Mass. We created 2D maze point-mass
environments with continuous actions and states. The en-
vironments comprise of different wall configurations with
the goal of navigating a point mass. The size of the grid
is (100× 100) and each observation is a 1-channel image
of the grid with “0” marking an empty location and “1”
marking the ball’s coordinate location (x, y). Actions com-
prise of (∆x,∆y) and specify the coordinate space change
by which the ball should be moved. This action change
is bounded by [−0.2, 0.2]. There are three different maze
variations: MAZE-HALLWAY, MAZE-SPIRAL, and MAZE-
ROOMS whose layouts are shown in Figure 3(a, b and c).
Further, we have dense and sparse reward variants for each
environment, details of which are given in Appendix D.1.
We created an offline dataset of 500K transitions using a
random policy for each environment which gives significant
coverage of the environment’s state-action space.

Robotic Arm. We extended our experiments to the
Sawyer-Reach environment of Nair et al. (2018) (shown
in Fig. 3d). It consists of a 7 DOF robotic arm on a table
with an end-effector. The end-effector is constrained to
move only along the planar surface of the table. The
observation is an 84-by-84 RGB image of the top-down
view of the robotic arm and actions are 2-dimensional
continuous vectors that control the end-effector coordinate
position. The agent is tested on its ability to control the
end-effector to reach random goal positions. The goals are

5

PcLast: Discovering Plannable Continuous Latent States

(a) Hallway (b) Rooms (c) Spiral

(d) Sawyer Reach Environment

Figure 3. Environments: (a), (b) and (c) show different wall con-
figurations of Maze2d environment for point-mass navigation task
and (d) shows top-down view of robot-arm environment with the
task of reaching various goal positions in 2D-planar space.

given as images of the robot arm in the goal state. Similar
to maze2d environment, we generate an offline dataset
of 20K transitions using rollouts from a random policy.
Likewise to maze, it has dense and sparse reward variants.

Exogenous Noise Mujoco. We adopted control-tasks
“Cheetah-Run” and “Walker-walk” from visual-d4rl (Lu
et al., 2022) benchmark which provides offline transition
datasets of various qualities. The datasets include high-
dimensional agent tracking camera images, to which exoge-
nous noise is added by concatenating randomly sampled
images from another distribution as shown in Figure 4 and
discussed further in Appendix D.2. We consider “medium,
medium-expert, and expert” datasets and use “random”
dataset of same domain as source of exogenous noise. The
general objective in these tasks is to keep the agent alive
and move forward based on images with exogenous noise.

Figure 4. Illustration of an observation for Cheetah-Run, where the
controllable environment image (1) is placed along with exogenous
noise images (2-4) in a 4 × 4 grid. Numbers on images are for
reference only. This grid of images is given as input to agent.

4.2. Impact of representation learning on
goal-conditioned RL

We investigate the impact of different representations on
performance in goal-conditioned model-free methods. First,
we consider methods which use explicit-reward signal for
representation learning. As part of this, we trained goal-
conditioned variant of PPO (Schulman et al., 2017) on each
environment with different current state and goal represen-
tation methods. This includes: (1) Image representation
for end-to-end learning, (2) ACRO representation (Islam
et al., 2022), and (3) PCLAST representation. For (1), we
trained PPO for 1 million environment steps. For (2) and
(3), we first trained representation using an offline dataset
and then used frozen representation with PPO during online
training for 100K environment steps only. In the case of
Sawyer-Reach, we emphasize the effect of limited data and
reserved experiments to 20K online environment steps. We
also did similar experiment with offline CQL (Kumar et al.,
2020) method with pre-collected dataset.

Secondly, we consider RL with Imagined Goals (RIG) (Nair
et al., 2018), a method which doesn’t need an explicit re-
ward signal for representation learning and planning. It is
an online algorithm which first collects data with simple
exploration policy. Thereafter, it trains an embedding using
VAE on images and fine-tunes it over the course of training.
Goal-conditioned policy and value functions are trained over
the VAE embedding of goal and current state. The reward
function is the negative of ℓ2 distance in the latent represen-
tation of current and goal observation. In our experiments,
we consider pre-trained ACRO and PCLAST representation
in addition to default VAE representation. Pre-training was
done over the datasets collected in Section 4.1.

Our results in Table 1 show PPO and CQL have poor per-
formance when using direct images as representations in
maze environments. However, ACRO and PCLAST rep-
resentations improve performance. Specifically, in PPO,
PCLAST leads to significantly greater improvement com-
pared to ACRO for maze environments; training curves for
the same are shown in Figure 13 (Appendix). This sug-
gests that enforcing a neighborhood constraint facilitates
smoother traversal within the latent space, ultimately en-
hancing goal-conditioned planning. PCLAST in CQL gives
significant performance gain for Maze-Hallway over ACRO;
but they remain within standard error of each other in Maze-
Rooms and Maze-Spiral. Generally, each method does well
on Sawyer-Reach environment. We assume it is due to lack
of obstacles which allows a linear path between any two
positions easing representation learning and planning from
images itself. In particular, different representations tend to
perform slightly better in different methods such as ACRO
does better in PPO (sparse), PCLAST does in CQL, and
image itself does well in PPO (dense) and RIG.

6

PcLast: Discovering Plannable Continuous Latent States

Table 1. Impact of different representations on policy learning and planning. The numbers represent mean and standard error of the
percentage success rate of reaching goal states, estimated over 5 random seeds. RIG and n-Level Planner do not use an external reward
signal. In n-Level Planner, we use n = 5 abstraction levels. Best mean performance in each task is highlighted in bold.

METHOD REWARD TYPE HALLWAY ROOMS SPIRAL SAWYER-REACH

PPO DENSE 6.7 ± 0.6 7.5 ± 7.1 11.2 ± 7.7 86.00 ± 5.367
PPO + ACRO DENSE 10.0 ± 4.1 23.3 ± 9.4 23.3 ± 11.8 84.00 ± 6.066

PPO + PCLAST DENSE 66.7 ± 18.9 43.3 ± 19.3 61.7 ± 6.2 78.00 ± 3.347
PPO SPARSE 1.7 ± 2.4 0.0 ± 0.0 0.0 ± 0.0 68.00 ± 8.198

PPO + ACRO SPARSE 21.7 ± 8.5 5.0 ± 4.1 11.7 ± 8.5 92.00 ± 4.382
PPO + PCLAST SPARSE 50.0 ± 18.7 6.7 ± 6.2 46.7 ± 26.2 82.00 ± 5.933

CQL SPARSE 3.3 ± 4.7 0.0 ± 0.0 0.0 ± 0.0 32.00 ± 5.93
CQL + ACRO SPARSE 15.0 ± 7.1 33.3 ± 12.5 21.7 ± 10.3 68.00 ± 5.22

CQL + PCLAST SPARSE 40.0 ± 0.5 23.3 ± 12.5 20.0 ± 8.2 74.00 ± 4.56
RIG NONE 0.0 ± 0.0 0.0 ± 0.0 3.0 ± 0.2 100.0 ± 0.0

RIG + ACRO NONE 15.0 ± 3.5 4.0 ± 1. 12.0 ± 0.2 100.0 ± 0.0
RIG + PCLAST NONE 10.0 ± 0.5 4.0 ± 1.8 10.0 ± 0.1 90.0 ± 5

LOW-LEVEL PLANNER + PCLAST NONE 86.7 ± 3.4 69.3± 3.4 50.0 ± 4.3 ±
n-LEVEL PLANNER + PCLAST NONE 97.78 ± 4.91 89.52 ± 10.21 89.11 ± 10.38 95.0 ± 1.54

4.3. Impact of PCLAST on state abstraction

We now investigate the quality of learned latent representa-
tions by visualizing relationships created by them across true
states. This is done qualitatively by clustering the learned
representations of observations using k-means. Distance-
based planners use this relationship when traversing in la-
tent space. In Figures 5b and 6b, we show clustering of
PCLAST representation of offline-observation datasets for
Maze-Hallway and Maze-Spiral environment. We observe
clusters having clear separation from the walls. This im-
plies only states which are reachable from each other are
clustered together. On the other hand, with ACRO repre-
sentation in Figures 5a and 6a, we observe disjoint sets of
states are categorized as single cluster such as in cluster-10
(orange) and cluster-15 (white) of Maze-Hallway environ-
ment. Further, in some cases, we have clusters which span
across walls such as cluster-14 (light-pink) and cluster-12
(dark-pink) in Maze-Spiral environment. These disjoint sets
of states violate a planner’s state-reachability assumption,
leading to infeasible plans.

4.4. Multi-Level Abstraction and Hierarchical Planning

In Section 4.2, we found PCLAST embedding improves
goal-conditioned policy learning. However, reactive policies
tend to generally have limitations for long-horizon planning.
This encourages us to investigate the suitability of PCLAST
for n-level state abstraction and hierarchical planning with
Algorithm 1 which holds promise for long-horizon planning.
Abstractions for each level are generated using k-means
with varying k over the PCLAST embedding as done in
Section 4.3. We do not consider ACRO embedding due to
poor clustering behavior shown in Section 4.3.

(a) Clusters ACRO (b) Clusters PCLAST

(c) State-transitions PCLAST (d) Planning Trajectories

Figure 5. Clustering, Abstract-MDP, and Planning are shown for
Maze-Hallway environment. In (a) and (b), we show k-means
(k = 16) clustering of latent states learned by PCLAST and
ACRO, respectively. In (c), we show the abstract transition model
of the discrete states learned by PCLAST (b) which captures the en-
vironment’s topology. Finally, in (d), we show maze configuration
and the executed trajectories of the agent from the initial location
(black) to the target location (red) using n-Level (n = 2) planner
(blue) with PCLAST and just low-level planner with ACRO (or-
ange) and PCLAST (green) representation for cost minimization .

For simplicity, we begin by considering 2-level abstractions
and refer to them as high and low levels. In Figures 5b
and 6b, we show the learned high-level clusters. The corre-
sponding transitions models between the abstract discrete
states are shown in Figures 5c and 6c. Note that they match

7

PcLast: Discovering Plannable Continuous Latent States

(a) Clusters ACRO (b) Clusters PCLAST

(c) State-transitions PCLAST (d) Planning Trajectories

Figure 6. Clustering, Abstract-MDP, and Planning are shown for
Maze-Spiral environment. Details same as Figure 5.

the true topology of the corresponding mazes. Using this
discrete state representation, MPC is applied with the plan-
ner implemented in Algorithm 1. The planned trajectories
are shown in Figures 5d and 6d and agent’s performance is
reported in Table 1 (last row). It suggests, n-Level planner
(n = 2) generates feasible and shortest plans (blue line) in
all cases. As a baseline, we directly evaluate our low-level
planner with PCLAST map (ψ) (green line) representation
for cost minimization (Equation (5)) which struggles due to
long-horizon planning demand of the task and complex nav-
igability of the environment and leads to suboptimal results.
At the same time, we observe low-level planner with ACRO
representation (orange line) for cost minimization fails in
all the cases. This is simply due to lack of neighborhood
structure in ACRO representation.

Increasing Abstraction Levels. We investigate plan-
ning with multiple abstraction levels and consider n ∈
{2, 3, 4, 5}. Performance scores for n = 5 are reported
in Table 1 (bottom row). These abstractions help us create
a hierarchy of graphs that describes the environment. In
Figure 7, we use k = {32, 16, 8, 4} for n = {2, 3, 4, 5} ab-
straction levels, respectively, and show graph-path for each
abstraction-level for planning between two locations. This
multi-level planning gives a significant boost to planning
performance as compared to our model-free baselines. At
the same time, we observe 3.8× computational time effi-
ciency improvement in planning with n = 5 (0.07 ms) as
compared to n = 2 (0.265 ms) abstraction levels. However,
no significant performance gains were observed by increas-
ing levels. We assume this is due to the good quality of
temporal abstraction at just n = 2 levels which leads to the
shortest plans and increasing the levels just helps to save

on computation time. However, for more complex tasks,
increasing the abstraction levels may further increase the
quality of plans.

Figure 7. Visualization of hierarchical graphs in the Maze-Hallway
environment. At every level, num clusters is the k used for cluster-
ing. The transition graph (in black) constructed from the cluster
centers is superimposed over the environment.

4.5. Exogenous-Noise Offline RL Experiments

Here, we evaluate PCLAST exclusively on exogenous
noised control environments described in Section 4.1. We
follow the same experiment setup as done by Islam et al.
(2022) and consider ACRO (Islam et al., 2022), DRIML
(Mazoure et al., 2020), HOMER (Misra et al., 2020), CURL
(Laskin et al., 2020) and 1-step inverse model (Pathak et al.,
2017) as our baselines. We share results for “Cheetah-Run”
with “expert, medium, and medium-expert” dataset in Fig-
ure 8. It shows PCLAST helps gain significant performance
over the baselines (Islam et al., 2022). Extended results for

“Walker-Walk” show similar performance trends as shown
in Figure 12 (Appendix). These results along with results
in Section 4.2 suggest PCLAST to be suitable for environ-
ments with non-linear dynamics such as caused by presence
of obstacles/walls.

4.6. PCLAST Ablations

In Appendix D.3, we detail our network architecture and
hyperparameters. Here, we investigate critical hyperparame-
ters in PCLAST. These include: 1) the impact of Kmax on
multi-step inverse dynamics, 2) cluster sizes in the n-Level
planner, and 3) the importance of training a separate map ψ
instead of ϕ (ACRO) with contrastive loss (Equation (3d)).

8

PcLast: Discovering Plannable Continuous Latent States

4 5 6 7 8 9
Iterations 1e3

150

200

250

300

350

400

450

500

550

C
um

ul
at

iv
e

R
et

ur
ns

cheetah_run_expert

PCLAST
ACRO
DRIML
HOMER
1-Step Inverse
CURL

4 5 6 7 8 9
Iterations 1e3

150

200

250

300

350

400

450

C
um

ul
at

iv
e

R
et

ur
ns

cheetah_run_medium_expert

PCLAST
ACRO
DRIML
HOMER
1-Step Inverse
CURL

4 5 6 7 8 9
Iterations 1e3

100

150

200

250

300

350

400

450

500

C
um

ul
at

iv
e

R
et

ur
ns

cheetah_run_medium

PCLAST
ACRO
DRIML
HOMER
1-Step Inverse
CURL

Figure 8. Comparisons of PCLAST in Cheetah-Run exogenous-
noise environment with several other baselines.

These ablation studies are conducted in Maze environments.

Kmax. In Figure 9, we see that agent performance im-
proves with increasing Kmax but drops significantly when
Kmax is too large. This is likely due to higher variance in
action prediction in multi-step inverse dynamics (fAC) for
large values of Kmax.

10 20 30
K

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Hallway

10 20 30
K

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Rooms

10 20 30
K

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Spiral

Figure 9. Effect of Kmax over agents performance in Maze envi-
ronments. The graph shows the normalized mean and standard
deviation of scores over 3 seeds.

Cluster-Size (C). In Figure 10, we observe that increasing

the number of clusters in n-Level (n=2) planner improves
performance, as it makes clusters more robust to errors in
the ψ space, reducing planning errors.

Figure 10. Effect of cluster sizes (C) for abstractions in n-Level
planner over agent’s performance in Maze environments. The
graph shows the normalized mean and standard deviation of scores
over 3 seeds.

Contrastive Loss. In PCLAST, we learn a representation ψ
with the contrastive loss (Equation (3d)). Here, we examine
the effect on agent’s performance if we use ACRO represen-
tation (ϕ) trained via contrastive loss with n-Level planner
instead of using ψ. The results are reported in Table 2. As
motivated in Section 3.3, PCLAST tends to perform better
than just applying contrastive loss on the ACRO (ϕ).

Table 2. Comparing agent’s performance when applying con-
trastive loss to ACRO (ϕ) versus using the PCLAST map ψ. Scores
are reported over 3 seeds with Kmax = 10.

ENV. SCORE
ϕ + CONTRASTIVE LOSS PCLAST

HALLWAY 89.3 ± 8.1 97.8 ± 4.9
ROOMS 79.3 ± 9.2 89.6 ± 10.2
SPIRAL 81.3 ± 10 89.2 ± 10.3

5. Summary
Learning competent agents to plan in environments with
complex sensory inputs, exogenous noise, non-linear
dynamics, along with limited sample complexity requires
learning compact latent representations which maintain state
affordances. Our work introduces an approach that learns a
representation via a multi-step inverse model and temporal
contrastive loss objective. This makes the representation
robust to exogenous noise as well as retains local neighbor-
hood structure. Our diverse experiments suggest the learned
representation is better suited for reactive policy learning,
latent-space planning as well as multi-level abstraction for
computationally efficient hierarchical planning.

9

PcLast: Discovering Plannable Continuous Latent States

Impact Statement
Decision making agents for real-world problems face chal-
lenges of rich high-dimensional observations embedded
with significant exogenous elements. These noisy rich obser-
vations limit the usage of agent-training algorithms. It is ad-
dressed either by hand-crafting relevant feature extraction or
controlling observable world elements such as in factories;
both of which require additional human-engineering/effort
and are still erroneous. Neural Networks have also been
used to learn compact representations of the world to im-
prove sample efficiency of agent-training algorithms. How-
ever, when planning in compact representation space, agents
still tend to underperform. Further, agents are generally
trained for a specific task and struggle to adapt to unseen
similar tasks; which requires more data collection and train-
ing, increasing economic cost.

In our work, we build on task-agnostic representation meth-
ods which is robust to exogenous noise element of the ob-
servations; thereby increasing adaptability of trained agents
in more realistic environments as well as reducing human-
engineering effort to control the environment. Further, the
learned representation maintains navigability relation to
underlying true state space; easing the generalization and
adaptability of agents to unseen interpolated states. On top
of that, our framework enables efficient zero-shot planning
for new tasks in the environment by decomposing the world
into multiple levels of abstraction. This opens up the door
to efficient and feasible solutions of complex problems with
long horizon solutions. It also reduces human/computational
effort spend in collecting data for new tasks as well as re-
duces economic/carbon costs for training new agents.

In terms of applications, we believe our approach would
benefit any decision making agent which is deployed in real-
world and/or requires quick adaptability to new tasks such as
last-mile delivery robots, house robots, autonomous driving,
and others. Our approach takes a step towards robustifying
agents to real-world elements and can potentially help with
safer interaction with the real-world.

References
Amin, S., Gomrokchi, M., Satija, H., van Hoof, H., and Pre-

cup, D. A survey of exploration methods in reinforcement
learning. arXiv preprint arXiv:2109.00157, 2021.

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Pieter Abbeel, O.,
and Zaremba, W. Hindsight experience replay. Advances
in neural information processing systems, 30, 2017.

Bellemare, M., Dabney, W., Dadashi, R., Ali Taiga, A.,
Castro, P. S., Le Roux, N., Schuurmans, D., Lattimore,
T., and Lyle, C. A geometric perspective on optimal

representations for reinforcement learning. Advances in
neural information processing systems, 32, 2019.

Bharadhwaj, H., Xie, K., and Shkurti, F. Model-predictive
control via cross-entropy and gradient-based optimization.
In Learning for Dynamics and Control, pp. 277–286.
PMLR, 2020.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym.
arXiv preprint arXiv:1606.01540, 2016.

Brown, N. and Sandholm, T. Superhuman ai for heads-up
no-limit poker: Libratus beats top professionals. Science,
359(6374):418–424, 2018.

De Boer, P.-T., Kroese, D. P., Mannor, S., and Rubinstein,
R. Y. A tutorial on the cross-entropy method. Annals of
operations research, 134:19–67, 2005.

Dijkstra, E. W. A note on two problems in connexion
with graphs. Numerische Mathematik, 1(1):269–271,
December 1959. doi: 10.1007/bf01386390. URL
https://doi.org/10.1007/bf01386390.

Du, S., Krishnamurthy, A., Jiang, N., Agarwal, A., Dudik,
M., and Langford, J. Provably efficient rl with rich obser-
vations via latent state decoding. In International Con-
ference on Machine Learning, pp. 1665–1674. PMLR,
2019.

Durrett, R. Probability: theory and examples, volume 49.
Cambridge university press, 2019.

Efroni, Y., Misra, D., Krishnamurthy, A., Agarwal, A., and
Langford, J. Provably filtering exogenous distractors
using multistep inverse dynamics. In International Con-
ference on Learning Representations, 2021.

Efroni, Y., Misra, D., Krishnamurthy, A., Agarwal, A., and
Langford, J. Provably filtering exogenous distractors us-
ing multistep inverse dynamics. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=RQLLzMCefQu.

Fang, M., Zhou, C., Shi, B., Gong, B., Xu, J., and Zhang, T.
Dher: Hindsight experience replay for dynamic goals. In
International Conference on Learning Representations,
2018.

Finn, C. and Levine, S. Deep visual foresight for planning
robot motion. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pp. 2786–2793. IEEE,
2017.

Ha, D. and Schmidhuber, J. World models. arXiv preprint
arXiv:1803.10122, 2018.

10

https://doi.org/10.1007/bf01386390
https://openreview.net/forum?id=RQLLzMCefQu
https://openreview.net/forum?id=RQLLzMCefQu

PcLast: Discovering Plannable Continuous Latent States

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream to
control: Learning behaviors by latent imagination. arXiv
preprint arXiv:1912.01603, 2019a.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. In International conference on
machine learning, pp. 2555–2565. PMLR, 2019b.

Hazan, E., Kakade, S., Singh, K., and Van Soest, A. Prov-
ably efficient maximum entropy exploration. In Interna-
tional Conference on Machine Learning, pp. 2681–2691.
PMLR, 2019.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostro-
vski, G., Dabney, W., and Silver, D. Rainbow: Combin-
ing improvements in deep reinforcement learning, corr
abs/1710.02298. arXiv preprint arXiv:1710.02298, 2017.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. The
curious case of neural text degeneration. arXiv preprint
arXiv:1904.09751, 2019.

Ioffe, S. and Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International conference on machine learning, pp. 448–
456. pmlr, 2015.

Islam, R., Tomar, M., Lamb, A., Efroni, Y., Zang, H., Di-
dolkar, A., Misra, D., Li, X., van Seijen, H., Combes, R.
T. d., et al. Agent-controller representations: Principled
offline rl with rich exogenous information. arXiv preprint
arXiv:2211.00164, 2022.

Jinnai, Y., Park, J. W., Machado, M. C., and Konidaris, G.
Exploration in reinforcement learning with deep cover-
ing options. In International Conference on Learning
Representations, 2019.

Johnson, A. E., Pollard, T. J., Shen, L., Lehman, L.-w. H.,
Feng, M., Ghassemi, M., Moody, B., Szolovits, P., An-
thony Celi, L., and Mark, R. G. Mimic-iii, a freely ac-
cessible critical care database. Scientific data, 3(1):1–9,
2016.

Kaelbling, L. P. Learning to achieve goals. In IJCAI, vol-
ume 2, pp. 1094–8. Citeseer, 1993.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114, 2013.

Kumar, A., Zhou, A., Tucker, G., and Levine, S. Con-
servative q-learning for offline reinforcement learning.
Advances in Neural Information Processing Systems, 33:
1179–1191, 2020.

Lamb, A., Islam, R., Efroni, Y., Didolkar, A., Misra, D.,
Foster, D., Molu, L., Chari, R., Krishnamurthy, A., and
Langford, J. Guaranteed discovery of controllable latent
states with multi-step inverse models. arXiv preprint
arXiv:2207.08229, 2022.

Lan, C. L., Tu, S., Oberman, A., Agarwal, R., and Belle-
mare, M. G. On the generalization of representations in
reinforcement learning. arXiv preprint arXiv:2203.00543,
2022.

Lan, C. L., Tu, S., Rowland, M., Harutyunyan, A., Agarwal,
R., Bellemare, M. G., and Dabney, W. Bootstrapped
representations in reinforcement learning. arXiv preprint
arXiv:2306.10171, 2023.

Laskin, M., Srinivas, A., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.
In International Conference on Machine Learning, pp.
5639–5650. PMLR, 2020.

Lu, C., Ball, P. J., Rudner, T. G. J., Parker-Holder, J., Os-
borne, M. A., and Teh, Y. W. Challenges and opportuni-
ties in offline reinforcement learning from visual observa-
tions. CoRR, abs/2206.04779, 2022. doi: 10.48550/arXiv.
2206.04779. URL https://doi.org/10.48550/
arXiv.2206.04779.

Lyle, C., Rowland, M., Ostrovski, G., and Dabney, W. On
the effect of auxiliary tasks on representation dynamics.
In International Conference on Artificial Intelligence and
Statistics, pp. 1–9. PMLR, 2021.

Machado, M. C., Rosenbaum, C., Guo, X., Liu, M.,
Tesauro, G., and Campbell, M. Eigenoption discovery
through the deep successor representation. arXiv preprint
arXiv:1710.11089, 2017.

Maddern, W., Pascoe, G., Linegar, C., and Newman, P. 1
year, 1000 km: The oxford robotcar dataset. The Interna-
tional Journal of Robotics Research, 36(1):3–15, 2017.

Mattingley, J., Wang, Y., and Boyd, S. Receding horizon
control. IEEE Control Systems Magazine, 31(3):52–65,
2011.

Mazoure, B., Tachet des Combes, R., Doan, T. L., Bachman,
P., and Hjelm, R. D. Deep reinforcement and infomax
learning. Advances in Neural Information Processing
Systems, 33:3686–3698, 2020.

Mezghani, L., Sukhbaatar, S., Bojanowski, P., Lazaric, A.,
and Karteek, A. Learning goal-conditioned policies of-
fline with self-supervised reward shaping. Conference
on Robot Learning, 2023. doi: 10.48550/arXiv.2301.
02099. URL https://arxiv.org/abs/2301.
02099v1.

11

https://doi.org/10.48550/arXiv.2206.04779
https://doi.org/10.48550/arXiv.2206.04779
https://arxiv.org/abs/2301.02099v1
https://arxiv.org/abs/2301.02099v1

PcLast: Discovering Plannable Continuous Latent States

Mhammedi, Z., Foster, D. J., and Rakhlin, A. Representa-
tion learning with multi-step inverse kinematics: An effi-
cient and optimal approach to rich-observation rl. arXiv
preprint arXiv:2304.05889, 2023.

Misra, D., Henaff, M., Krishnamurthy, A., and Langford, J.
Kinematic state abstraction and provably efficient rich-
observation reinforcement learning. In International con-
ference on machine learning, pp. 6961–6971. PMLR,
2020.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Moravčı́k, M., Schmid, M., Burch, N., Lisỳ, V., Morrill, D.,
Bard, N., Davis, T., Waugh, K., Johanson, M., and Bowl-
ing, M. Deepstack: Expert-level artificial intelligence in
heads-up no-limit poker. Science, 356(6337):508–513,
2017.

Nair, A. V., Pong, V., Dalal, M., Bahl, S., Lin, S., and Levine,
S. Visual reinforcement learning with imagined goals.
Advances in neural information processing systems, 31,
2018.

Nair, S., Rajeswaran, A., Kumar, V., Finn, C., and Gupta,
A. R3m: A universal visual representation for robot
manipulation, 2022.

Nasiriany, S., Pong, V., Lin, S., and Levine, S. Planning
with goal-conditioned policies. Advances in Neural Infor-
mation Processing Systems, 32, 2019.

Paster, K., McIlraith, S. A., and Ba, J. Planning from
pixels using inverse dynamics models. arXiv preprint
arXiv:2012.02419, 2020.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell,
T. Curiosity-driven exploration by self-supervised
prediction. In Precup, D. and Teh, Y. W. (eds.),
Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Aus-
tralia, 6-11 August 2017, volume 70 of Proceedings
of Machine Learning Research, pp. 2778–2787. PMLR,
2017. URL http://proceedings.mlr.press/
v70/pathak17a.html.

Pinneri, C., Sawant, S., Blaes, S., Achterhold, J., Stueckler,
J., Rolinek, M., and Martius, G. Sample-efficient cross-
entropy method for real-time planning. In Conference on
Robot Learning, pp. 1049–1065. PMLR, 2021.

Rubinstein, R. The cross-entropy method for combinatorial
and continuous optimization. Methodology and comput-
ing in applied probability, 1:127–190, 1999.

Rueckert, F. L. et al. Cr-vae: Contrastive regularization on
variational autoencoders for preventing posterior collapse.
arXiv preprint arXiv:2309.02968, 2023.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K.,
Sifre, L., Schmitt, S., Guez, A., Lockhart, E., Hassabis,
D., Graepel, T., et al. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839):
604–609, 2020.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Srinivas, A., Jabri, A., Abbeel, P., Levine, S., and Finn, C.
Universal planning networks: Learning generalizable rep-
resentations for visuomotor control. In International Con-
ference on Machine Learning, pp. 4732–4741. PMLR,
2018.

Tian, S., Nair, S., Ebert, F., Dasari, S., Eysenbach, B.,
Finn, C., and Levine, S. Model-based visual planning
with self-supervised functional distances. arXiv preprint
arXiv:2012.15373, 2020.

Tolstikhin, I. O., Houlsby, N., Kolesnikov, A., Beyer, L.,
Zhai, X., Unterthiner, T., Yung, J., Steiner, A., Keysers,
D., Uszkoreit, J., et al. Mlp-mixer: An all-mlp architec-
ture for vision. Advances in neural information process-
ing systems, 34:24261–24272, 2021.

Tunyasuvunakool, S., Muldal, A., Doron, Y., Liu, S., Bohez,
S., Merel, J., Erez, T., Lillicrap, T., Heess, N., and Tassa,
Y. dm control: Software and tasks for continuous control.
Software Impacts, 6:100022, 2020.

Wang, T. and Ba, J. Exploring model-based planning with
policy networks. arXiv preprint arXiv:1906.08649, 2019.

Wang, T., Torralba, A., Isola, P., and Zhang, A. Opti-
mal goal-reaching reinforcement learning via quasimetric
learning. arXiv preprint arXiv:2304.01203, 2023.

Wang, X. and Gupta, A. Unsupervised learning of visual
representations using videos, 2015.

Wu, L., Evans, B., Islam, R., Seraj, R., Efroni, Y., and
Lamb, A. Agent-centric state discovery for finite-memory
POMDPs. In CoRL 2023 Workshop on Learning Effective
Abstractions for Planning (LEAP), 2023. URL https:
//openreview.net/forum?id=nVgjCpz5mG.

12

http://proceedings.mlr.press/v70/pathak17a.html
http://proceedings.mlr.press/v70/pathak17a.html
https://openreview.net/forum?id=nVgjCpz5mG
https://openreview.net/forum?id=nVgjCpz5mG

PcLast: Discovering Plannable Continuous Latent States

Wu, Y. and He, K. Group normalization. In Proceedings of
the European conference on computer vision (ECCV), pp.
3–19, 2018.

Yu, F., Xian, W., Chen, Y., Liu, F., Liao, M., Madhavan,
V., Darrell, T., et al. Bdd100k: A diverse driving video
database with scalable annotation tooling. arXiv preprint
arXiv:1805.04687, 2(5):6, 2018.

13

PcLast: Discovering Plannable Continuous Latent States

A. Limitations
PCLAST representation and n-Level hierarchical planning enables us to do computationally efficient plans as well as
achieves higher success rate in goal conditioned tasks. However, we observe PCLAST is primarily effective in non-linear
dynamic environments (such as with obstacles), and conventional methods (such as PPO) tend to have similar performance
in linear environments. When training PCLAST, one needs domain knowledge to have good candidate of Kmax value,
which is used for learning multi-step inverse dynamics. Further, when clustering the representation with PCLAST map for
the lowest level of hierarchy, one re-needs the domain knowledge to determine good number of clusters. In practice, we
examine the environment to determine cluster count such that it leads to near-linear dynamics within the state-action space
of a cluster at the lowest level. We also assume the presence of offline dataset with significant coverage of task-relevant
state-action space. Though, our method just relies on the coverage and not on the quality of behavior policy; implying even
a random policy data is sufficient for our method.

B. Intuitive Argument: Learning Local Neighborhood Structure via Contrastive Learning
In Section 3.3, we introduced a contrastive learning objective which allows us to learn the underlying local neighborhood
structure in scalable and differentiable way (see equations (3a)-(3d)). Here, we elaborate on the intuition that resulted in this
objective. We show that the newly introduced temporal contrastive loss can be derived assuming a natural diffusion process
on the underlying dynamics.

Consider a simple discrete time multi-dimensional Brownian motion in S̄ state-space. The conditional probability to observe
state s̄′ after stepping for k steps from state s̄, denoted as Pk(s̄′|s̄), is given as (see Durrett (2019), Section 7):

Pk(s̄′|s̄) ∝ exp

(
−||s̄− s̄′||2

σ0k

)
.

With this fact in mind, we can study the distribution of the contrastive learning process which outputs the tuple (y, s̄, s̄′).
A simple way to define this process is as follows: (1) sample s̄ uniformly from S̄, (2) After k-steps, set s̄′ by sampling
y ∼ Bernoulli(0.5); if y = 1, set s̄′ ∼ Pk(·|s̄) otherwise set s̄′ by uniformly sampling from S̄. We refer to this process as
the Contrastive Learning(CL) generating process. The following can be readily derived from these assumptions (see proof
in Appendix C).

Proposition 1. Assume the tuple (y, s̄, s̄′) is sampled via the CL generating process described above. Then, Pk(y = 1 |
s̄, s̄′) = sigmoid(c− b||s̄− s̄′||2), where sigmoid(x) = exp(x)/(exp(x) + 1).

Although this generating process does not take into account the geometry of the underlying space and subtle intricacies of
the environment, for small time scales this process can capture the dynamics to a reasonable degree. Further, the contrastive
learning objective follows directly from Proposition 1. This objective can be interpreted as a log-likelihood learning
procedure of the CL generating process.

14

PcLast: Discovering Plannable Continuous Latent States

C. Bayes Solution of Contrastive Loss
Proposition 1. Assume the tuple (y, s̄, s̄′) is sampled via the CL generating process described above. Then, Pk(y = 1 |
s̄, s̄′) = sigmoid(c− b||s̄− s̄′||2), where sigmoid(x) = exp(x)/(exp(x) + 1).

Proof. The proof following by direct analysis of the conditional probability distribution together with the assumption of the
CL generating process, i.e., the underlying Brownian motion.

Pk(y = 1|s̄, s̄′) = Pk(s̄|s̄′, y = 1)Pk(y = 1|s̄)
Pk(s̄′|s̄, y = 1)Pk(y = 1|s̄) + Pk(s̄′|s̄, y = 0)Pk(y = 0|s̄)

∵ Bayes’ rule

=
Pk(s̄|s̄′, y = 1)

Pk(s̄′|s̄, y = 1) + Pk(s̄′|s̄, y = 0)
∵ Pk(y = 1|s̄) = Pk(y = 0|s̄) = 0.5; Bernoulli

=
Pk(s̄|s̄′, y = 1)

Pk(s̄′|s̄, y = 1) + 1/
∣∣S̄∣∣ ∵ Pk(s̄′|s̄, y = 0) ≈ 1/

∣∣S̄∣∣
=

C exp
(
− ||s̄−s̄′||2

σ0k

)
C exp

(
−||s̄−s̄′||2

σ0k

)
+ 1/

∣∣S̄∣∣ ∵ Assuming brownian motion (where C is a positive constant)

=
exp

(
log(C

∣∣S̄∣∣)− ||s̄−s̄′||2
σ0k

)
exp

(
log(C

∣∣S̄∣∣)− ||s̄−s̄′||2
σ0k

)
+ 1

= sigmoid(c− b||s̄− s̄′||2) where b = 1/(σ0k) and c = log(C
∣∣S̄∣∣)

D. Experiments
We discuss design of the considered environments as well as implementation details of our work.

D.1. Maze-2D point mass

Environment Setup. The state st of the point-mass experiment is the 2D position of a point and the action at is the position
displacement, i.e., st+1 = st + at. The action is bounded by ∥at∥∞ ≤ 0.2. In the presence of obstacles, the point mass
starting from st is moved along the direction of at until it collides with an obstacle. Further, we have two reward variants
for each maze : 1) Dense-reward and 2) Sparse-reward. In the dense case, the agent receives a reward for the first time
it crosses a particular distance threshold from the goal. Specifically, if dg is the distance to the goal, the agent receives a
reward r encouraging it to go closer to the goal. The thresholds for reaching the goal, as well as the corresponding reward
values are given below.

r = 0.25 if this is the first time dg < 0.1

= 0.5 if this is the first time dg < 0.05

= 1 if dg < 0.03

In the sparse setting, the agent receives a reward of 1 when it’s within a distance of 0.03 to the goal state. For evaluation, we
randomize the start and goal states from across the maze so as to test the agent’s ability to reach diverse goals.

As shown in Figures 5 and 6 in the main paper, we consider three environments with distinct layouts of obstacles. In each
of these environments, a dataset of 500K samples is collected using random actions. An instance of the dataset has <
obs-image, state, action, next-state, next-obs-image >, where state and next-state are the coordinates of the agent in the
maze and represent the true environment state as the obstacles are fixed. We use the transaction data to train the latent

15

PcLast: Discovering Plannable Continuous Latent States

Figure 11. Mean square error of predicting the true state using the learned latent states during the training.

dynamics and extract an abstract transaction model using k-means clustering over the latent states with the continuous
actions discretized with a resolution of 0.01 for identifying transitions of the latent states across different clusters.

Latent Representation Quality. Here we demonstrate the quality of the learned latent representation. Since, in the 2D
point-mass experiment, we have access to the true state of the environment, we train a feed-forward network to predict the
true state from the learned latent state. In Figure 11, we show the regression error of predicting the true state from the latent
state. A significant low error implies that the learned latent state captures information about the true state.

Transition Model Generation. In constructing the transition models between the clusters of latent states, we filter out the
infrequent transitions to avoid giving hard-to-reach goals to the low-level planner. For the cluster ci, let ci1 , ci2 , · · · , ciN
denote the N clusters such that there is at least a state transaction from ci to cij in the collected samples. This means
it is feasible to move the point mass from ci to cij . Let 0 < pij ≤ 1 for j = 1, · · · , N denote the ratio of the number
of transactions from ci to cij to the total number of outward transactions from ci. We observe that if pij is small, the
following issues may happen: (i) The transition from ci to cij is caused by the clustering errors and does not give a feasible
transaction of the agent in practice. (ii) Even if such a transition is feasible, it is difficult for the low-level planner to find
such a path as indicated by the sparsity of such transitions in the collected dataset. Therefore, in generating the transition
models, we add the edge ci → cij to the graph only when pij is large enough. Without loss of generality, assume that pij
for j = 1, · · · , N have been arranged in descending order. Motivated by the nucleus sampling (Holtzman et al., 2019), we
choose N∗ = argmink

∑k
j=1 pij ≥ 0.9 and only add the edges ci → cij for j = 1, · · · , N∗ to the graph. In this way, the

spurious transitions are filtered out.

D.2. Exogenous Noise Offline RL Experiments

We add exogenous noise by sampling 3 observations from “random” quality dataset and adding them around the main
observation as shown in Figure 4. This creates a 4× 4 exogenous observation from the offline dataset. This is same setup as
from (Islam et al., 2022). In our experiments, we have the controllable environment in one corner of the grid, and 3 other
uncontrollable environments, taken from a random dataset, placed randomly in the 4× 4 grid. Figure 12 shows additional
results in the offline RL experimental setup.

16

PcLast: Discovering Plannable Continuous Latent States

4 5 6 7 8 9
Iterations 1e3

300

400

500

600

700

800

900

C
um

ul
at

iv
e

R
et

ur
ns

walker_walk_expert

PCLAST
ACRO
DRIML
HOMER
1-Step Inverse
CURL

4 5 6 7 8 9
Iterations 1e3

100

200

300

400

500

600

700

800

900

C
um

ul
at

iv
e

R
et

ur
ns

walker_walk_medium_expert

PCLAST
ACRO
DRIML
HOMER
1-Step Inverse
CURL

4 5 6 7 8 9
Iterations 1e3

250

300

350

400

450

C
um

ul
at

iv
e

R
et

ur
ns

walker_walk_medium

PCLAST
ACRO
DRIML
HOMER
1-Step Inverse
CURL

Figure 12. Extended results of PCLAST with several other baselines in Walker-Walk task, following the 4× 4 exo-grid observation space
offline RL setup from (Islam et al., 2022).

Figure 13. Performance comparison of PPO with ACRO and PCLAST Embedding. The graph shows mean and standard deviation over 3
seeds.

17

PcLast: Discovering Plannable Continuous Latent States

D.3. Network Architecture and Implementation Detail

PCLAST comprises of an encoder (ϕ), multi-step inverse dynamics (fAC), PCLAST map (ψ) and one-step forward dynamics
(δ). These networks are trained using Adam (Kingma & Ba, 2014) optimizer with learning rate of 1e−3 over batches of size
512. Unless specified otherwise, we sample transitions with Kmax = 10. In the following, we discuss each of the networks.

• Encoder. It comprises of 2 layer MLP-Mixer Network (Tolstikhin et al., 2021) with an image patch size of 10, followed
by a layer of BatchNorm (Ioffe & Szegedy, 2015) and GroupNorm (Wu & He, 2018). The output of GroupNorm
is passed through a 2 layer network with intermediate Leaky ReLU activation. We use the same encoder output(ŝ)
dimension of 256 for all our experiments.

• Multi-Step Inverse Dynamics.. It operates over a batch of < ŝt, ŝt+k, k >. We use an Embedding layer to transform
scalar k into an embedding of size 45 and concatenate it with ŝt and ŝt+k before feeding the network. The inverse
dynamics network is a multi-layer network with the first linear layer of size 256. This is followed by a 2-layer residual
unit with in-between Gelu activation. Finally, we have two output head layers. The first outputs deterministic continuous
actions and is trained with Mean square error loss. The second layer outputs categorical distribution over continuous
values by binning the continuous action space and is trained via cross entropy loss. We divide the action-space of
considered environments into 20 bins. During backprop, mean-square loss and categorical loss are scaled by 10 and
0.01 respectively.

• PCLAST map. It’s a 3-layer fully-connected network with Leaky ReLU as intermediate activations and hidden layers
of size 512. For training, we sample positive examples using dm = 2, and negative samples are drawn randomly.
Gradients from PCLAST map are not propagated back to the encoder.

• Forward dynamics. It’s 4 layer fully-connected network with 512 as hidden layer size. It outputs a Gaussian
distribution over the next state prediction. Again, gradients from forward dynamics are not propagated back to the
encoder network.

E. Multi-Level Planner Implementation Details
E.1. High-level planner

Given the current latent state ŝt and the target latent state ŝ∗, the high-level planner aims to find an intermediate waypoint ˜̂s
such that the low-level planner can effectively track ˜̂s. The search for the waypoint is based on the discrete abstraction of the
environment which is given by the graph G as described in Section 3.4. We denote ϕd(·) as the node (or cluster) membership
function for the graph abstraction G such that ϕd(ψ(ŝ)) returns the node in G for any latent state ŝ ∈ S. The high-level
planner is outlined in Algorithm 2

Algorithm 2 High-level planner

Require:
Current latent state ŝt
target latent state ŝ∗

PCLAST map ψ(.)
graph abstraction G
{The node membership function ϕd(·) is given by G.}

Ensure: Waypoint ˜̂s
1: Find the discrete latent states c = ϕd(ψ(ŝ)) and c∗ = ϕd(ψ(ŝ

∗)).
2: if c ̸= c∗ then
3: c̃ = Dijkstra(c, c∗,G)

{c̃ is the next node on the shortest path from discrete states c to c∗.}
4: ˜̂s = center of cluster c̃. { ˜̂s ∈ S}
5: else
6: ˜̂s = ŝ∗, c̃ = c∗

7: end if

18

PcLast: Discovering Plannable Continuous Latent States

E.2. Low-level planner

Note that the latent forward dynamics is given by ŝt+1 = δ(ŝt, at). Without loss of generality, we consider ŝ0 as the current
latent state and ŝ∗ as the target latent state. Given a horizon T ≥ 1, our low-level planner generates actions {at}T−1

t=0 that
drive the latent state ŝt to reach ŝ∗ by solving a trajectory optimization problem using PCLAST map ψ.

minimize
a0,··· ,aT−1

T∑
t=0

∥ψ(ŝt)− ψ(ŝ∗)∥2

subject to ŝt+1 = δ(ŝt, at), t = 0, · · · , T − 1.

(5)

In this work, we apply CEM to solve the low-level planning problem (5). CEM has been successfully applied in model-based
reinforcement learning (Finn & Levine, 2017; Wang & Ba, 2019; Hafner et al., 2019b) and is outlined in Algorithm Algo-
rithm 3. In the CEM, the actions {ai}T−1

i=0 are drawn from a multivariate Gaussian distribution whose parameters (mean and
covariance matrix) are updated iteratively to approximate the optimal distribution of actions.

Algorithm 3 Cross-Entroy method

Require:
Number of iteration N
number of samples M each iteration
parameter K

Ensure: Action sequence {a∗i }
T−1
i=0

1: Initialize a multivariate Gaussian distribution N (µ(0),Σ(0)) with mean µ(0) = 0 and covariance matrix Σ(0) = I .
2: for j = 0, · · · , N − 1 do
3: Sample M action sequences {a(m)

i }T−1
i=1 from N (µ(j),Σ(j)) for m = 1, · · · ,M .

4: For each action sequence {a(m)
i }T−1

i=1 , evaluate the rendered cost J (m) of Problem (5).
5: Select the K smallest costs from {J (m)}Mm=1 and the corresponding action sequences {a∗,(k)i }T−1

i=1 for k = 1, · · · ,K.
6: Update µ(j+1) and Σ(j+1) as the mean and covariance of {a∗,(k)i }T−1

i=1 , k = 1, · · · ,K.
7: end for
8: Sample the action sequence {a∗i }

T−1
i=0 from N (µ(N),Σ(N)) as the output.

Low-level planners comparison. In Figure 14, we evaluate the performances of the hierarchical planner and the low-level
planner with two different methods, namely CEM and a first-order gradient descent-based method Adam (Kingma & Ba,
2014), to solve problem (5). In both cases, the hierarchical planner reaches the goal while solely using the low-level planner
fails. This means directly using the ACRO representation ŝ for planning faces significant difficulty. Figure 14 shows that the
high-level planner (Algorithm 2) derived on ψ(ŝ) is a key enabler of successful planning in the latent space and over a long
horizon.

(a) Cross-Entropy Method (b) Adam (Kingma & Ba,
2014)

Figure 14. Comparison of the CEM (Left) and Adam (Right) methods in solving the low-level planning problem (5) in the Maze-Hallway
environment. 16 clusters are used for the high-level planner. It shows that the inherent complexity of problem (5) poses significant
challenges for both low-level planners. A high-level planner shown in Algorithm 2 is a necessary enabler of goal reaching.

19

