# Towards Adaptive Soft Robots with Improved Motion Strategies: Strides in Modeling and Control

#### Lekan Molu

Microsoft Research

New York City, NY 10012

Presented by Lekan Molu (Lay-con Mo-lu)

October 31, 2024

#### Outline

Morphological Computation Finite Models for Infinite-DoF Morphology Singular Perturbation Theory: Overview Hierarchical Decomposition of Dynamics References

## Talk Overview

- The principle of morphological computation in nature
  - Morphology: shape, geometry, and mechanical properties.
  - Computation: sensorimotor information transmission among geometrical components.
- Morphology and computation in artificial robots
  - Cosserat Continua and reduced soft robot models.
  - <u>Reductions</u>: Structural Lagrangian properties and control.
- Towards real-time strain regulation and control
  - **Simplexity**: Hierarchical and fast versatile control with reduced variables.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

## Morphology and computation

- Morphology: Emergent behaviors of natural organisms from complex sensorimotor nonlinear mechanical feedback from the environment.
  - Shape affecting behavioral response.
  - Geometrical Arrangement of motors such that processing and perception affect computational characteristics.
  - Mechanical properties that allow the engineering of emergent behaviors via adaptive environmental interaction.
- Computation: The information transformation among the system geometrical units, upon environmental perception, that effect morphological changes in shape and material properties.

#### MC in vertebrates – a case for soft designs



An adult human skeleton  $\simeq 11\%$  of the body mass.  $_{\mbox{\scriptsize CBrittanica}}$ 

- The arrangement and compliance of body parts, perception, and computation creates emergence of complex interactive behavior.
- Soft bodies seem critical to the emergence of adaptive natural behaviors.
- Morphological computation is crucial in the design of robots that execute adaptive natural behavior.

イロト イヨト イヨト イヨト

# Simplexity in Morphological Computation

- Simplexity: Exploiting structure for effective control.
  - The geometrical tuning of the morphology and neural circuitry in the brain of mammals that simplify the perception and control of complex natural phenomena.
  - Not exactly simplified models or reduced complexity.
  - But rather, sparse connections and finite variables to execute adaptive sensorimotor strategies!
- Example: Saccades (focused eye movements) are controlled by (small) Superior Colliculus in the human brain.
  - Plug: Complex neural circuitry; simple control systems!

## Simplexity: The Central Pattern Generator

- A neural mechanism (in vertebrates) that generates motor control with minimal parameters.
- CPG: Neurons and synapses couple to generate effective motor activation for rhythmic environmental motion.
  - In Lampreys, only two signals trigger swimming motion, for example!
  - This CPG enables indirect use of brain computational power via nonlinear feedback from stretch receptor neurons on Lamprey's skin.

#### Saccades and the Superior Colliculus



CAnatomical Justice.



Credit: Vision and Learning Center.

(日)(周)((日)(日)(日)(日)

#### Morphing in Invertebrates: Cephalopods



Cuttlefish. ©Monterey Bay Museum



Octopus. ©Smithsonian Magazine

## The Octopus and Cuttlefish

- No exoskeleton, or spinal cord.
- A muscular hydrostat: transversal, longitudinal, and oblique muscles along richly innervated arms and mechanoreceptors:
  - Allows for bending, stretching, stiffening, and retraction.
  - Diverse compliance across eight arms imply sophisticated motion strategies in the wild!
- Simplexity enhanced by a peripheral nervous system and a central nervous system.

#### Soft Robot Mechanism in Focus



A continuum soft robot whose mechanics can be well-described with Cosserat rod theory. Reprinted from (Della Santina et al. (2023))

- One dimension is quintessentially longer than the other two.
- Characterized by a central axis with undeformable discs that characterize deformable cross-sectional segments.
- Strain and deformation, via e.g. Cosserat rod theory, enables precise finite-dimensional mathematical models.

э

ヘロン 人間 とくほど 人間 とう

Model Types Cosserat models

## A Finite and Reliable Model

- A soft robot's usefulness is informed by control system that melds its body deformation with internal actuators.
- By design, this calls for a high-fidelity model or a delicate balancing of complex morphology and data-driven methods.



- Non-interpretable; non-reliable.
- ×Continuous coupled interaction between the material, actuators, and external affordances.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ● ●

Model Types Cosserat models

#### The case for model-based control

- Soft robots are infinite degrees-of-freedom continua i.e., PDEs are the main tools for analysis.
- Nonlinear PDE theory is tedious and computationally intensive.
- Notable strides in reduced-order, finite-dimensional mathematical models that induce tractability in continuum models.

Model Types Cosserat models

## Tractable reduced-order models

- Morphoelastic filament theory: Moulton et al. (2020); Kaczmarski et al. (2023); Gazzola et al. (2018);
- Generalized Cosserat rod theory: Rubin (2000); Cosserat and Cosserat (1909);
- The constant curvature model: Godage et al. (2011);
- The piecewise constant curvature model: Webster and Jones (2010); Qiu et al. (2023); and
- Ordinary differential equations-based discrete Cosserat model: Renda et al. (2016, 2018).

Model Types Cosserat models

#### Cosserat-based piecewise constant strain model

- A discrete Cosserat model: Renda et al. (2018).
  - Shapes defined by a finite-dimensional functional space, parameterized by a curve, X : [0, L]..
  - Assumes constant strains between finite nodal points on robot's body.
  - Strain-parameterized dynamics on a reduced special Euclidean-3 group (SE(3)).

Model Types Cosserat models

#### The piecewise constant strain model



Credit: Renda et al. (2018).

- C-space:  $g(X) : X \rightarrow$  $\mathbb{SE}(3) = \begin{pmatrix} R(X) & p(X) \\ 0^{\top} & 1 \end{pmatrix}.$
- Strain and twist vectors:  $\{ \boldsymbol{\eta}, \boldsymbol{\xi} \} \in \mathbb{R}^{6}.$ 
  - $\{\eta, \xi\} := \{q, \dot{q}\}$
- Strain field:  $\breve{\eta}(X) = g^{-1} \partial g / \partial X.$
- Twist field:  $\check{\xi}(X) = g^{-1} \partial g / \partial t.$

・ロト ・回ト ・ヨト ・ヨト … ヨ

Model Types Cosserat models

#### Dynamic equations

From the continuum equations for a cable-driven soft arm [Renda et al. (2014)], we can derive the following dynamic equation [Renda et al. (2018)]:

$$\underbrace{\left[\int_{0}^{L_{N}} J^{T} \mathcal{M}_{\partial} J dX\right]}_{M(q)} \ddot{q} + \underbrace{\left[\int_{0}^{L_{N}} J^{T} \operatorname{ad}_{J\dot{q}}^{*} \mathcal{M}_{\partial} J dX\right]}_{C_{1}(q,\dot{q})} \dot{q} + \underbrace{\left[\int_{0}^{L_{N}} J^{T} \mathcal{M}_{\partial} J dX\right]}_{C_{2}(q,\dot{q})} \dot{q} + \underbrace{\left[\int_{0}^{L_{N}} J^{T} \mathcal{D} J \| J\dot{q} \|_{p} dX\right]}_{D(q,\dot{q})} \dot{q} - \underbrace{\left(1 - \rho_{f} / \rho\right) \left[\int_{0}^{L_{N}} J^{T} \mathcal{M} \operatorname{Ad}_{g}^{-1} dX\right]}_{N(q)} \operatorname{Ad}_{g_{r}}^{-1} \mathcal{G} \\ - \underbrace{J(\bar{X})^{T} \mathcal{F}_{p}}_{F(q)} - \underbrace{\int_{0}^{L_{N}} J^{T} \left[\nabla_{x} \mathcal{F}_{i} - \nabla_{x} \mathcal{F}_{\partial} + \operatorname{ad}_{\xi_{n}}^{*} \left(\mathcal{F}_{i} - \mathcal{F}_{\partial}\right)\right] dX}_{\tau(q)} = 0, \quad (1)$$

Model Types Cosserat models

#### Structural properties – mass inertia operator

$$M(\boldsymbol{q})\ddot{\boldsymbol{q}} + [\boldsymbol{C}_{1}(\boldsymbol{q},\dot{\boldsymbol{q}}) + \boldsymbol{C}_{2}(\boldsymbol{q},\dot{\boldsymbol{q}})]\dot{\boldsymbol{q}} = \boldsymbol{F}(\boldsymbol{q}) + N(\boldsymbol{q})\operatorname{Ad}_{\boldsymbol{g}_{r}}^{-1}\mathcal{G} + \tau(\boldsymbol{q}) - \boldsymbol{D}(\boldsymbol{q},\dot{\boldsymbol{q}})\dot{\boldsymbol{q}}.$$
(2)

#### Property 1 (Boundedness of the Mass Matrix)

The mass inertial matrix M(q) is uniformly bounded from below by mI where m is a positive constant and I is the identity matrix.

#### Proof of Property 1.

This is a restatement of the lower boundedness of M(q) for fully actuated n-degrees of freedom manipulators [Romero et al. (2014)].

Model Types Cosserat models

#### Structural properties – parameters Identification

#### Property 2 (Linearity-in-the-parameters)

There exists a constant vector  $\Theta \in \mathbb{R}^{l}$  and a regressor function  $Y(q, \dot{q}, \ddot{q}) \in \mathbb{R}^{N \times l}$  such that  $M(q)\ddot{(}q) + [C_{1}(q, \dot{q}) + C_{2}(q, \dot{q}) + D(q, \dot{q})]\dot{q} - F(q)N(q)Ad_{q}^{-1}$ 

$$\begin{aligned} (\boldsymbol{q})(\boldsymbol{q}) + \left[ \boldsymbol{C}_{1}(\boldsymbol{q}, \dot{\boldsymbol{q}}) + \boldsymbol{C}_{2}(\boldsymbol{q}, \dot{\boldsymbol{q}}) + \boldsymbol{D}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \right] \dot{\boldsymbol{q}} - \boldsymbol{F}(\boldsymbol{q}) \boldsymbol{N}(\boldsymbol{q}) \boldsymbol{A} \boldsymbol{d}_{\boldsymbol{g}_{r}}^{-1} \boldsymbol{\mathcal{G}} \\ &= \boldsymbol{Y}(\boldsymbol{q}, \dot{\boldsymbol{q}}, \ddot{\boldsymbol{q}}) \boldsymbol{\Theta}. \end{aligned}$$
(3)

Model Types Cosserat models

# Structural properties – skew symmetry of system inertial forces

#### Property 3 (Skew symmetric property)

The matrix  $\dot{M}(\boldsymbol{q}) - 2[C_1(\boldsymbol{q}, \dot{\boldsymbol{q}}) + C_2(\boldsymbol{q}, \dot{\boldsymbol{q}})]$  is skew-symmetric.

Lekan Molu Embodied Intelligence for Soft Robots' Control

Model Types Cosserat models

#### Skew-symmetric of robot's mass and Coriolis forces

By Leibniz's rule, we have

$$\dot{\boldsymbol{M}}(\boldsymbol{q}) = \frac{d}{dt} \left( \int_{0}^{L_{N}} \boldsymbol{J}^{T} \mathcal{M}_{a} \boldsymbol{J} dX \right) = \int_{0}^{L_{N}} \frac{\partial}{\partial t} \left( \boldsymbol{J}^{T} \mathcal{M}_{a} \boldsymbol{J} \right) dX$$
$$\triangleq \int_{0}^{L_{N}} \left( \boldsymbol{\dot{J}}^{T} \mathcal{M}_{a} \boldsymbol{J} + \boldsymbol{J}^{T} \dot{\mathcal{M}}_{a} \boldsymbol{J} + \boldsymbol{J}^{T} \mathcal{M}_{a} \dot{\boldsymbol{J}} \right) dX. \tag{4}$$

Therefore,  $\dot{\boldsymbol{M}}(\boldsymbol{q}) - 2[C_1(\boldsymbol{q}, \dot{\boldsymbol{q}}) + C_2(\boldsymbol{q}, \dot{\boldsymbol{q}})]$  becomes

$$\int_{0}^{L_{N}} \left( \boldsymbol{J}^{\top} \mathcal{M}_{a} \boldsymbol{J} + \boldsymbol{J}^{\top} \dot{\mathcal{M}}_{a} \boldsymbol{J} + \boldsymbol{J}^{\top} \mathcal{M}_{a} \boldsymbol{j} \right) d\boldsymbol{X} - 2 \int_{0}^{L_{N}} \left( \boldsymbol{J}^{\top} \operatorname{ad}_{\boldsymbol{J} \boldsymbol{q}}^{\star} \mathcal{M}_{a} \boldsymbol{J} + \boldsymbol{J}^{\top} \mathcal{M}_{a} \boldsymbol{j} \right) d\boldsymbol{X}$$
(5)

$$\triangleq \int_{0}^{L_{N}} \left( \boldsymbol{J}^{\top} \mathcal{M}_{a} \boldsymbol{J} + \boldsymbol{J}^{\top} \dot{\mathcal{M}}_{a} \boldsymbol{J} - \boldsymbol{J}^{\top} \mathcal{M}_{a} \boldsymbol{J} \right) d\boldsymbol{X} - 2 \int_{0}^{L_{N}} \boldsymbol{J}^{\top} \operatorname{ad}_{\boldsymbol{J}\boldsymbol{q}}^{\star} \mathcal{M}_{a} \boldsymbol{J} d\boldsymbol{X}.$$
(6)

Model Types Cosserat models

## Skew-Symmetric Property Proof

Similarly, 
$$-\left[\dot{\boldsymbol{M}}(\boldsymbol{q})-2\left[\boldsymbol{C}_{1}(\boldsymbol{q},\dot{\boldsymbol{q}})+\boldsymbol{C}_{2}(\boldsymbol{q},\dot{\boldsymbol{q}})\right]\right]^{\top} \text{ expands as}$$
$$-\dot{\boldsymbol{M}}^{\top}(\boldsymbol{q})+2\left[\boldsymbol{C}_{1}^{\top}(\boldsymbol{q},\dot{\boldsymbol{q}})+\boldsymbol{C}_{2}^{\top}(\boldsymbol{q},\dot{\boldsymbol{q}})\right]=$$
$$\int_{0}^{L_{N}}dX^{\top}\left(-\boldsymbol{J}^{\top}\mathcal{M}_{a}\dot{\boldsymbol{J}}-\boldsymbol{J}^{\top}\dot{\mathcal{M}}_{a}\boldsymbol{J}-\dot{\boldsymbol{J}}^{\top}\mathcal{M}_{a}\boldsymbol{J}\right)+2\int_{0}^{L_{N}}dX^{\top}\left(\boldsymbol{J}^{\top}\mathcal{M}_{a}\text{ad}_{\boldsymbol{J}\dot{\boldsymbol{q}}}\boldsymbol{J}+\dot{\boldsymbol{J}}^{\top}\mathcal{M}_{a}\boldsymbol{J}\right)$$
$$\triangleq\int_{0}^{L_{N}}\left(\boldsymbol{J}^{\top}\mathcal{M}_{a}\dot{\boldsymbol{J}}-\dot{\boldsymbol{J}}^{\top}\mathcal{M}_{a}\boldsymbol{J}-\boldsymbol{J}^{\top}\dot{\mathcal{M}}_{a}\boldsymbol{J}\right)dX-2\int_{0}^{L_{N}}\boldsymbol{J}^{\top}\text{ad}_{\boldsymbol{J}\dot{\boldsymbol{q}}}^{*}\mathcal{M}_{a}\boldsymbol{J}dX$$
(7)

which satisfies the identity:

$$\dot{\mathbf{M}}(\mathbf{q}) - 2\left[\mathbf{C}_{1}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{C}_{2}(\mathbf{q}, \dot{\mathbf{q}})\right] = -\left[\dot{\mathbf{M}}(\mathbf{q}) - 2\left[\mathbf{C}_{1}(\mathbf{q}, \dot{\mathbf{q}}) + \mathbf{C}_{2}(\mathbf{q}, \dot{\mathbf{q}})\right]\right]^{\top}.$$
(8)

A fortiori, the skew symmetric property follows.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Model Types Cosserat models

## MC Takeaways: Simplexity

• Simplexity: Reliance on a few parameters to model an infinite-DoF system:

$$egin{aligned} \mathcal{M}(m{q})\ddot{m{q}} + \left[m{\mathcal{C}}_1(m{q},\dot{m{q}}) + m{\mathcal{C}}_2(m{q},\dot{m{q}})
ight]\dot{m{q}} &= m{\mathcal{F}}(m{q}) + m{\mathcal{N}}(m{q}) \mathrm{Ad}_{m{g}_r}^{-1}\mathcal{G} + au(m{q}) \ &- m{\mathcal{D}}(m{q},\dot{m{q}})\dot{m{q}}. \end{aligned}$$

• Simplexity: From PDE to ODE, i.e. inifinite-dimensional analysis (Continuum PDE) to finite-dimensional ODE!

Model Types Cosserat models

## Control exploiting structural properties

Regarding the generalized torque  $\tau(\mathbf{q})$  as a control input,  $u(\mathbf{q}, \dot{\mathbf{q}})$ , feedback laws are sufficient for attaining a desired soft body configuration.

#### Theorem 1 (Cable-driven Actuation)

For positive definite diagonal matrix gains  $K_D$  and  $K_p$ , without gravity/buoyancy compensation, the control law

$$\boldsymbol{u}(\boldsymbol{q}, \dot{\boldsymbol{q}}) = -\boldsymbol{K}_{\rho} \tilde{\boldsymbol{q}} - \boldsymbol{K}_{D} \dot{\boldsymbol{q}} - \boldsymbol{F}(\boldsymbol{q})$$
(9)

under a cable-driven actuation globally asymptotically stabilizes system (2), where  $\tilde{\boldsymbol{q}}(t) = \boldsymbol{q}(t) - \boldsymbol{q}^d$  is the joint error vector for a desired equilibrium point  $\boldsymbol{q}^d$ .

・ロト ・回ト ・ヨト ・ヨト … ヨ

Model Types Cosserat models

## Computational Control exploiting structural properties

#### Corollary 2 (Fluid-driven actuation)

If the robot is operated without cables, and is driven with a dense medium such as pressurized air or water, then the term  $F(\mathbf{q}) = 0$ so that the control law  $\mathbf{u}(\mathbf{q}, \dot{\mathbf{q}}) = -\mathbf{K}_p \tilde{\mathbf{q}} - \mathbf{K}_D \dot{\mathbf{q}}$  globally asymptotically stabilizes the system.

#### Proof.

Proofs in Section V of Molu and Chen (2024).

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 = ∽ へ ⊙

Model Types Cosserat models

#### Robot parameters



- Tip load in the +y direction in the robot's base frame.
- Poisson ratio: 0.45;  $\mathcal{M} = \rho[I_x, I_y, I_z, A, A, A]$  with  $\rho = 2,000 kgm^{-3}$ ;
- $\boldsymbol{D} = -\rho_w \boldsymbol{\nu}^T \boldsymbol{\nu} \, \boldsymbol{\breve{D}} \boldsymbol{\nu} / |\boldsymbol{\nu}|.$

・ロト ・回ト ・ヨト ・ヨト … ヨ

X ∈ [0, L] discretized into 41 segments.

Model Types Cosserat models

### Computational Control exploiting structural properties



Cable-driven, strain twist setpoint terrestrial control.



Fluid-actuated, strain twist setpoint terrestrial control.

Model Types Cosserat models

### Computational Control exploiting structural properties



Fluid-actuated, strain twist setpoint underwater control.



Cable-driven, strain twist setpoint regulation.

Model Types Cosserat models

#### Computational Control exploiting structural properties



Cable-based position control with a small tip load, 0.2N.



Terrestrial position control.

Model Types Cosserat models

#### Exploiting Mechanical Nonlinearity for Feedback!

This page is left blank intentionally.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

## Hierarchical Dynamics and Control

- Reaching steps towards the real-time strain control of multiphysics, multiscale continuum soft robots.
- Separate subdynamics aided by a perturbing time-scale separation parameter.
- Respective stabilizing nonlinear backstepping controllers.
- Stability of the interconnected singularly perturbed. system.
- Fast numerical results on a single arm of the Octopus robot arm.

Outline

Morphological Computation Finite Models for Infinite-DoF Morphology

Singular Perturbation Theory: Overview Hierarchical Decomposition of Dynamics References

#### A case for layered control



# Layered control architecture: Singularly Perturbed Dynamics

- Essentially a layered multirate control scheme (Matni et al. (2024)) of the various interconnected physics components of a soft robot prototype.
- Informed by a standard two-time-scale singularly perturbed system.

$$\dot{\boldsymbol{z}}_1 = \boldsymbol{f}(\boldsymbol{z}_1, \boldsymbol{z}_2, \epsilon, \boldsymbol{u}_s, t), \ \boldsymbol{z}_1(t_0) = \boldsymbol{z}_1(0), \ \boldsymbol{z}_1 \in \mathbb{R}^{6N},$$
(10a)  
$$\epsilon \dot{\boldsymbol{z}}_2 = \boldsymbol{g}(\boldsymbol{z}_1, \boldsymbol{z}_2, \epsilon, \boldsymbol{u}_f, t), \ \boldsymbol{z}_2(t_0) = \boldsymbol{z}_2(0), \ \boldsymbol{z}_2 \in \mathbb{R}^{6N}$$
(10b)

~ • •

## Framework: Singularly Perturbed Dynamics

- *f* and *g* are C<sup>n</sup>(n ≫ 0) differentiable functions of their arguments;
- $\epsilon > 0$  denotes all small parameters to be ignored.
- **u**<sub>s</sub> is the slow sub-dynamics' control law, and
- **u**<sub>f</sub> is the fast sub-dynamics' controller.

#### Isolated Equilibrium Manifold Justification

#### Assumption 1 (Real and distinct root)

Equation (10) has the unique and distinct root  $\mathbf{z}_2 = \phi(\mathbf{z}_1, t)$  (for a sufficiently smooth  $\phi$ ) so that

$$0 = g(z_1, \phi(z_1, t), 0, 0, t) \triangleq \bar{g}(z_1, 0, t), \ z_1(t_0) = z_1(0).$$
(11)

The slow subsystem therefore becomes

$$\dot{\mathbf{z}}_1 = \mathbf{f}(\mathbf{z}_1, \phi(\mathbf{z}_1, t), 0, \mathbf{u}_s, t) \triangleq \mathbf{f}_s(\mathbf{z}_1, \mathbf{u}_s, t).$$
(12)

#### Framework: Slow Dynamics Extraction

- Assumption: the fast feedback law is asymptotically stable;
  - It does not modify the open-loop equilibrium manifold of the fast dynamics.
- With  $\epsilon = 0$  we have,

$$\dot{\mathbf{z}}_1 = \mathbf{f}(\mathbf{z}_1, \mathbf{z}_2, 0, \mathbf{u}_s, t), \ \mathbf{z}_1(t_0) = \mathbf{z}_1(0),$$
(13a)  
 
$$0 = \mathbf{g}(\mathbf{z}_1, \mathbf{z}_2, 0, 0, t).$$
(13b)

#### Framework: Fast Dynamics Extraction

Introduce the time scale  $T = t/\epsilon$ , and write the deviation of  $z_2$  from its isolated equilibrium manifold,  $\phi(z_1, t)$  as  $\tilde{z}_2 = z_2 - \phi(z_1, t)$ . Then, (10) becomes

$$\frac{d\mathbf{z}_1}{dT} = \epsilon \mathbf{f}(\mathbf{z}_1, \tilde{\mathbf{z}}_2 + \phi(\mathbf{z}_1, t), \epsilon, \mathbf{u}_s, t),$$
(14a)

$$\frac{d\tilde{\mathbf{z}}_2}{dT} = \epsilon \frac{d\mathbf{z}_2}{dt} - \epsilon \frac{\partial \phi}{\partial \mathbf{z}_1} \dot{\mathbf{z}}_1, \tag{14b}$$

$$= \boldsymbol{g}(\boldsymbol{z}_1, \tilde{\boldsymbol{z}}_2 + \boldsymbol{\phi}(\boldsymbol{z}_1, t), \boldsymbol{\epsilon}, \boldsymbol{u}_f, t) - \boldsymbol{\epsilon} \frac{\partial \boldsymbol{\phi}(\boldsymbol{z}_1, t)}{\partial \boldsymbol{z}_1} \dot{\boldsymbol{z}}_1.$$
(14c)

#### Framework for singularly perturbed dynamics

Setting  $\epsilon = 0$ , we obtain the algebraic equation

$$\frac{d\tilde{\boldsymbol{z}}_2}{dT} = \boldsymbol{g}(\boldsymbol{z}_1, \tilde{\boldsymbol{z}}_2 + \boldsymbol{\phi}(\boldsymbol{z}_1, t), \boldsymbol{0}, \boldsymbol{u}_f, t)$$
(15)

with  $z_1$  frozen to its initial values.

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

#### Decomposition of SoRo Rod Dynamics

#### This page is left blank intentionally

Lekan Molu Embodied Intelligence for Soft Robots' Control

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

### Decomposition of SoRo Rod Dynamics

- $\mathcal{M}_i^{\text{core}}$ : composite mass distribution as a result of microsolid *i*'s barycenter motion;
- $\mathcal{M}_{i}^{\text{pert}}$ : motions relative to  $\mathcal{M}_{i}^{\text{core}}$ , considered as a perturbation;
- $\mathcal{M} = \mathcal{M}^{\mathsf{pert}} \cup \mathcal{M}^{\mathsf{core}}$ .
- Introduce the transformation:  $[\boldsymbol{q}, \dot{\boldsymbol{q}}] = [\boldsymbol{q}, \boldsymbol{z}]$ , rewrite (2):  $M(\boldsymbol{q})\dot{\boldsymbol{z}} + [C_1(\boldsymbol{q}, \boldsymbol{z}) + C_2(\boldsymbol{q}, \boldsymbol{z}) + D(\boldsymbol{q}, \boldsymbol{z})]\boldsymbol{z} - F(\boldsymbol{q}) - N(\boldsymbol{q})Ad_{g_r}^{-1}\mathcal{G} = \tau(\boldsymbol{q})$

・ロト ・回 ト ・ヨト ・ヨト ・ヨー ・クタマ

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

#### Dynamics separation

Suppose that 
$$M^{\rho} = \int_{L_{\min}^{\rho}}^{L_{\max}^{\rho}} J^{\top} \mathcal{M}^{pert} J dX$$
, and  $M^{c} = \int_{L_{\min}^{c}}^{L_{\max}^{c}} J^{\top} \mathcal{M}^{core} J dX$ , then,

$$\boldsymbol{M}(\boldsymbol{q}) = (\boldsymbol{M}^{c} + \boldsymbol{M}^{p})(\boldsymbol{q}), \ \boldsymbol{N} = (\boldsymbol{N}^{c} + \boldsymbol{N}^{p})(\boldsymbol{q}), \tag{16a}$$

$$\boldsymbol{F}(\boldsymbol{q}) = (\boldsymbol{F}^c + \boldsymbol{F}^p)(\boldsymbol{q}), \quad \boldsymbol{D}(\boldsymbol{q}) = (\boldsymbol{D}^c + \boldsymbol{D}^p)(\boldsymbol{q}) \tag{16b}$$

$$\boldsymbol{C}_{1}(\boldsymbol{q}, \dot{\boldsymbol{q}}) = (\boldsymbol{C}_{1}^{c} + \boldsymbol{C}_{1}^{p})(\boldsymbol{q}, \dot{\boldsymbol{q}}), \qquad (16c)$$

$$\boldsymbol{C}_{2}(\boldsymbol{q},\dot{\boldsymbol{q}}) = (\boldsymbol{C}_{2}^{c} + \boldsymbol{C}_{2}^{p})(\boldsymbol{q},\dot{\boldsymbol{q}}). \tag{16d}$$

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

#### **Dynamics Separation**

Furthermore, let

$$M = \underbrace{\begin{bmatrix} \mathcal{H} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{M^{c}(q)} + \underbrace{\begin{bmatrix} \mathbf{0} & \mathcal{H}_{slow}^{fast} \\ \mathcal{H}_{slow}^{fast} ^{\top} & \mathcal{H}_{slow} \end{bmatrix}}_{M^{p}(q)},$$
(17)

where  $\mathcal{H}_{slow}^{fast}$  denotes the decomposed mass of the perturbed sections of the robot relative to the core sections.

- Let robot's state,  $\mathbf{x} = [\mathbf{q}^{\top}, \mathbf{z}^{\top}]^{\top}$  decompose as  $\mathbf{q} = [\mathbf{q}_{\text{fast}}^{\top}, \mathbf{q}_{\text{slow}}^{\top}]^{\top}$  and  $\mathbf{z} = [\mathbf{z}_{\text{fast}}^{\top}, \mathbf{z}_{\text{slow}}^{\top}]^{\top}$ ,
- Define  $\bar{M}^{\rho} = M^{\rho}/\epsilon$ , and let  $\boldsymbol{u} = [\boldsymbol{u}_{\text{fast}}^{\top}, \boldsymbol{u}_{\text{slow}}^{\top}]^{\top}$  be the applied torque.

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

#### SoRo Dynamics Separation

$$(\boldsymbol{M}^{c} + \epsilon \bar{\boldsymbol{M}}^{p}) \dot{\boldsymbol{z}} = \boldsymbol{s} + \boldsymbol{u}, \qquad (18)$$

where

$$\boldsymbol{s} = \begin{bmatrix} \boldsymbol{s}_{\text{fast}} \\ \boldsymbol{s}_{\text{slow}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{F}^c + \boldsymbol{N}^c \operatorname{Ad}_{\boldsymbol{g}_r}^{-1} \boldsymbol{\mathcal{G}} - [\boldsymbol{C}_1^c + \boldsymbol{C}_2^c + \boldsymbol{D}^c] \boldsymbol{z}_{\text{fast}} \\ \boldsymbol{F}^\rho + \boldsymbol{N}^\rho \operatorname{Ad}_{\boldsymbol{g}_r}^{-1} \boldsymbol{\mathcal{G}} - [\boldsymbol{C}_1^\rho + \boldsymbol{C}_2^\rho + \boldsymbol{D}^\rho] \boldsymbol{z}_{\text{slow}} \end{bmatrix}.$$
(19)

• Since  $\mathcal{H}_{fast}$  is invertible, let

$$\bar{\boldsymbol{M}}^{p} = \begin{bmatrix} \bar{\boldsymbol{M}}_{11}^{p} & \bar{\boldsymbol{M}}_{12}^{p} \\ \bar{\boldsymbol{M}}_{21}^{p} & \bar{\boldsymbol{M}}_{22}^{p} \end{bmatrix} \text{ and } \boldsymbol{\Delta} = \begin{bmatrix} \boldsymbol{0} & \boldsymbol{0} \\ \bar{\boldsymbol{M}}_{21}^{p} \mathcal{H}_{\text{fast}}^{-1} & \boldsymbol{0} \end{bmatrix}.$$
(20)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つくぐ

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

## SoRo Dynamics Separation

Premultiplying both sides by  $I - \epsilon \Delta$ , it can be verified that

$$\begin{bmatrix} \boldsymbol{\mathcal{H}}_{\mathsf{fast}} & \bar{\boldsymbol{M}}_{12}^{p} \\ \boldsymbol{0} & \bar{\boldsymbol{M}}_{22}^{p} \end{bmatrix} \begin{bmatrix} \dot{\boldsymbol{z}}_{\mathsf{fast}} \\ \epsilon \dot{\boldsymbol{z}}_{\mathsf{slow}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{s}_{\mathsf{fast}} \\ \boldsymbol{s}_{\mathsf{slow}} - \epsilon \bar{\boldsymbol{M}}_{21}^{p} \boldsymbol{\mathcal{H}}_{\mathsf{fast}}^{-1} \boldsymbol{s}_{\mathsf{fast}} \end{bmatrix} + \begin{bmatrix} \boldsymbol{u}_{\mathsf{fast}} \\ \boldsymbol{u}_{\mathsf{slow}} - \epsilon \bar{\boldsymbol{M}}_{21}^{p} \boldsymbol{\mathcal{H}}_{\mathsf{fast}}^{-1} \boldsymbol{u}_{\mathsf{fast}} \end{bmatrix}$$
(21)

which is in the standard singularly perturbed form (10):

$$\dot{z}_1 = f(z_1, z_2, \epsilon, u_s, t), \ z_1(t_0) = z_1(0), \ z_1 \in \mathbb{R}^{6N},$$
 (22a)

$$\epsilon \dot{\boldsymbol{z}}_2 = \boldsymbol{g}(\boldsymbol{z}_1, \boldsymbol{z}_2, \epsilon, \boldsymbol{u}_f, t), \ \boldsymbol{z}_2(t_0) = \boldsymbol{z}_2(0), \ \boldsymbol{z}_2 \in \mathbb{R}^{6N}$$
(22b)

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > ・ Ξ ・ のへで

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

## SoRo Fast Subsystem Extraction

On the fast time scale  $T = t/\epsilon$ , with  $dT/dt = 1/\epsilon$  so that,

$$\dot{\mathbf{z}}_{\mathsf{fast}} = rac{d\mathbf{z}_{\mathsf{fast}}}{dt} \equiv rac{1}{\epsilon} rac{d\mathbf{z}_{\mathsf{fast}}}{dT} \triangleq rac{1}{\epsilon} \mathbf{z}_{\mathsf{fast}}'$$

; and

$$\epsilon \dot{\mathbf{z}}_{slow} = \mathbf{z}'_{slow}.$$

Fast subdynamics:

$$\begin{aligned} \mathbf{z}_{\mathsf{fast}}' &= \epsilon \mathcal{H}_{\mathsf{fast}}^{-1} (\mathbf{s}_{\mathsf{fast}} + \mathbf{u}_{\mathsf{fast}}) - \mathcal{H}_{\mathsf{fast}}^{-1} \mathcal{H}_{\mathsf{slow}}^{\mathsf{fast}} \mathbf{z}_{\mathsf{slow}}', \\ \mathbf{z}_{\mathsf{slow}}' &= \mathcal{H}_{\mathsf{slow}}^{-1} (\mathbf{s}_{\mathsf{slow}} - \mathbf{u}_{\mathsf{slow}}) - \mathcal{H}_{\mathsf{fast}}^{-1} (\mathbf{s}_{\mathsf{fast}} - \mathbf{u}_{\mathsf{fast}}) \end{aligned}$$
(23a)

where the slow variables are frozen on this fast time scale.

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

#### SoRo Slow Subsystem Extraction

• We let 
$$\epsilon 
ightarrow$$
 0 in (21), so that what is left, i.e.,

$$\dot{\boldsymbol{z}}_{\mathsf{slow}} = \boldsymbol{\mathcal{H}}_{\mathsf{slow}}^{-1}(\boldsymbol{s}_{\mathsf{slow}} + \boldsymbol{u}_{\mathsf{slow}})$$
 (24)

constitutes the system's slow dynamics; where the fast components are frozen on this slow time scale.

**Hierarchical Control** 

Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

#### This page is left blank intentionally

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

# Control of the Fast Strain Subdynamics

• Consider the transformation: 
$$\begin{vmatrix} \theta \\ \phi \end{vmatrix} = \begin{vmatrix} q_{\text{fast}} \\ z_{\text{fast}} \end{vmatrix}$$
 so that

$$\theta' = \epsilon \mathbf{z}_{\mathsf{fast}} \triangleq \mathbf{\nu} := \mathsf{A} \text{ virtual input.}$$

• Let  $\{\boldsymbol{q}_{\text{fast}}^{d}, \dot{\boldsymbol{q}}_{\text{fast}}^{d}\} = \{\xi_{1}^{d}, \dots, \xi_{n_{\xi}}^{d}, \eta_{1}^{d}, \dots, \eta_{n_{\xi}}^{d}\}_{\text{fast}}$  be the desired joint space configuration for the fast subsystem.

#### Theorem 3 (Molu (2024))

The control law

$$oldsymbol{u}_{fpos} = oldsymbol{q}_{fast}^d(t_f) - oldsymbol{q}_{fast}(t_f) + oldsymbol{q}_{fast}^{\prime d}(t_f)$$

is sufficient to guarantee an exponential stability of the origin of  $\theta' = \nu$  such that for all  $t_f \ge 0$ ,  $\boldsymbol{q}_{fast}(t_f) \in S$  for a compact set  $S \subset \mathbb{R}^{6N}$ . That is,  $\boldsymbol{q}_{fast}(t_f)$  remains bounded as  $t_f \to \infty$ .

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

#### Control of the Fast Strain Subdynamics

#### Proof Sketch 1 (Proof of Theorem 3)

$$\boldsymbol{e}_1 = \boldsymbol{\theta} - \boldsymbol{q}_{fast}^d, \implies \boldsymbol{e}_1' = \boldsymbol{\theta}' - \boldsymbol{q}_{fast}'^d \triangleq \boldsymbol{\nu} - \boldsymbol{q}_{fast}'^d.$$
 (25)

Choose 
$$\boldsymbol{V}_1(\boldsymbol{e}_1) = \frac{1}{2} \boldsymbol{e}_1^\top \boldsymbol{K}_p \boldsymbol{e}_1$$
 (26)

Then, 
$$\mathbf{V}_1' = \mathbf{e}_1^\top \mathbf{K}_{\rho} \mathbf{e}_1' = \mathbf{e}_1^\top \mathbf{K}_{\rho} (\boldsymbol{\nu} - \mathbf{q}_{fast}'^d).$$
 (27)

For  $\boldsymbol{\nu} = \boldsymbol{q}_{\textit{fast}}^{\prime d} - \boldsymbol{e}_1$ ,  $\boldsymbol{V}_1^\prime = -\boldsymbol{e}_1 \boldsymbol{K}_{\rho} \boldsymbol{e}_1 \leq 2 \boldsymbol{V}_1$ .

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

## Stability Analysis of the Fast Velocity Subdynamics

#### Theorem 4 (Molu (2024))

Under the tracking error  $\mathbf{e}_2 = \phi - \nu$  and matrices  $(\mathbf{K}_p, \mathbf{K}_q) = (\mathbf{K}_p^{\top}, \mathbf{K}_q^{\top}) > 0$ , the control input

$$\boldsymbol{u}_{fvel} = \frac{1}{\epsilon} \mathcal{H}_{fast} [\boldsymbol{q}_{fast}^{\prime\prime d} + \boldsymbol{e}_1 - 2\boldsymbol{e}_2 - \boldsymbol{K}_q^\top (\boldsymbol{K}_q \boldsymbol{K}_q^\top)^{-1} \boldsymbol{K}_p \boldsymbol{e}_1] + \frac{1}{\epsilon} \mathcal{H}_{slow}^{fast} \boldsymbol{z}_{slow}^\prime - \boldsymbol{s}_{fast}$$
(28)

exponentially stabilizes the fast subdynamics (23).

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ● ● ● ●

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

#### Stability Analysis of Fast Velocity Subdynamics

#### Proof Sketch 2 (Sketch Proof of Theorem 4)

Recall from the position dynamics controller:

$$oldsymbol{e}_1' = oldsymbol{ heta}' - oldsymbol{q}_{fast}^{\prime d} \stackrel{ riangle}{=} oldsymbol{z}_{fast} - oldsymbol{q}_{fast}^{\prime d} + (
u - 
u)$$
 (29a)

$$= (\phi - \boldsymbol{\nu}) + (\boldsymbol{\nu} - \boldsymbol{q}_{fast}'^d) \triangleq \boldsymbol{e}_2 - \boldsymbol{e}_1.$$
 (29b)

It follows that

$$\boldsymbol{e}_{2}^{\prime} = \boldsymbol{\phi}^{\prime} - \boldsymbol{\nu}^{\prime} = \boldsymbol{z}_{fast}^{\prime} + \boldsymbol{e}_{1}^{\prime} - \boldsymbol{q}_{fast}^{\prime\prime d}$$
(30)  
$$= \boldsymbol{\mathcal{H}}_{fast}^{-1} \left[ \epsilon \boldsymbol{u}_{fast} + \epsilon \boldsymbol{s}_{fast} - \boldsymbol{\mathcal{H}}_{slow}^{fast} \boldsymbol{z}_{slow}^{\prime} \right] + (\boldsymbol{e}_{2} - \boldsymbol{e}_{1}) - \boldsymbol{q}_{fast}^{\prime\prime d}.$$

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

## Stability Analysis of the Fast Velocity Subdynamics

#### Proof Sketch 3 (Sketch Proof of Theorem 4)

For diagonal matrices  $K_p$ ,  $K_q$  with positive damping, let us choose the Lyapunov candidate function

$$\boldsymbol{V}_{2}(\boldsymbol{e}_{1},\boldsymbol{e}_{2}) = \boldsymbol{V}_{1} + \frac{1}{2}\boldsymbol{e}_{2}^{\top}\boldsymbol{K}_{q}\boldsymbol{e}_{2} = \frac{1}{2}[\boldsymbol{e}_{1} \ \boldsymbol{e}_{2}]\begin{bmatrix}\boldsymbol{K}_{p} & \boldsymbol{0}\\ \boldsymbol{0} & \boldsymbol{K}_{q}\end{bmatrix}\begin{bmatrix}\boldsymbol{e}_{1}\\ \boldsymbol{e}_{2}\end{bmatrix}$$

If  $\tilde{q}_{fast}=q_{fast}-q_{fast}^d$  and  $\tilde{q}_{fast}'=q_{fast}'-q_{fast}'^d,$  then the controller

$$egin{aligned} m{u}_{\mathit{fvel}} &= rac{1}{\epsilon} m{\mathcal{H}}_{\mathit{fast}}[m{q}_{\mathit{fast}}^{\prime\prime\prime d} - m{ ilde{m{q}}}_{\mathit{fast}} - 2m{ ilde{m{q}}}_{\mathit{fast}}^{\prime} - m{\mathcal{K}}_{\mathit{q}}^{ op} (m{\mathcal{K}}_{\mathit{q}} m{\mathcal{K}}_{\mathit{q}}^{ op})^{-1} m{\mathcal{K}}_{\mathit{p}} m{ ilde{m{q}}}_{\mathit{fast}}] \ &+ rac{1}{\epsilon} m{\mathcal{H}}_{\mathit{slow}}^{\mathit{fast}} m{z}_{\mathit{slow}}^{\prime\prime} - m{s}_{\mathit{fast}}, \end{aligned}$$

exponentially stabilizes the system;

・ロト ・回ト ・ヨト ・ヨト ・ヨ

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

#### Stability Analysis of the Fast Velocity Subdynamics

#### Proof Sketch 4 (Sketch Proof of Theorem 4)

since it can be verified that

$$V_{2}' = \boldsymbol{e}_{1}^{\top} \boldsymbol{K}_{p} (\boldsymbol{e}_{2} - \boldsymbol{e}_{1}) - \boldsymbol{e}_{2}^{\top} \boldsymbol{K}_{q} \left( \boldsymbol{e}_{2} - \boldsymbol{K}_{q}^{\top} (\boldsymbol{K}_{q} \boldsymbol{K}_{q}^{\top})^{-1} \boldsymbol{K}_{p} \boldsymbol{e}_{1} \right)$$
(31a)  
$$= -\boldsymbol{e}_{1}^{\top} \boldsymbol{K}_{p} \boldsymbol{e}_{1} - \boldsymbol{e}_{2}^{\top} \boldsymbol{K}_{q} \boldsymbol{e}_{2}$$
(31b)

$$\triangleq -2\mathbf{V}_2 \le 0. \tag{31c}$$

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

#### Stability analysis of the slow subdynamics

Set  $e_3 = z_{slow} - \nu$  so that  $\dot{e}_3 = \dot{z}_{slow} - \dot{\nu}$ . Then,

$$\dot{\boldsymbol{e}}_3 = \dot{\boldsymbol{z}}_{slow} - \ddot{\boldsymbol{q}}_{fast}^d + (\boldsymbol{e}_2 - \boldsymbol{e}_1),$$
 (32a)

$$= \mathcal{H}_{\text{slow}}^{-1}(\boldsymbol{s}_{\text{slow}} + \boldsymbol{u}_{\text{slow}}) - \ddot{\boldsymbol{q}}_{\text{fast}}^{d} + (\boldsymbol{e}_{2} - \boldsymbol{e}_{1}). \tag{32b}$$

#### Theorem 5

The control law

$$\boldsymbol{u}_{slow} = \boldsymbol{\mathcal{H}}_{slow}(\boldsymbol{e}_1 - \boldsymbol{e}_2 - \boldsymbol{e}_3 + \ddot{\boldsymbol{q}}_{fast}^d) - \boldsymbol{s}_{slow} \tag{33}$$

exponentially stabilizes the slow subdynamics.

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 第二のQ@

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

#### Stability analysis of the slow subdynamics

Proof.

Consider the Lyapunov function candidate

$$\boldsymbol{V}_3(\boldsymbol{e}_3) = \frac{1}{2} \boldsymbol{e}_3^\top \boldsymbol{K}_r \boldsymbol{e}_3 \text{ where } \boldsymbol{K}_r = \boldsymbol{K}_r^\top > 0. \tag{34}$$

It follows that

$$\dot{\boldsymbol{V}}_{3}(\boldsymbol{e}_{3}) = \boldsymbol{e}_{3}^{\top} \boldsymbol{K}_{r} \dot{\boldsymbol{e}}_{3} \tag{35a}$$

$$= \boldsymbol{e}_{3}^{\top} \boldsymbol{\mathcal{K}}_{r} \left[ \boldsymbol{\mathcal{H}}_{\text{slow}}^{-1}(\boldsymbol{s}_{\text{slow}} + \boldsymbol{u}_{\text{slow}}) - \ddot{\boldsymbol{q}}_{\text{fast}}^{d} + \boldsymbol{e}_{2} - \boldsymbol{e}_{1} \right].$$
(35b)

Substituting  $u_{slow}$  in (33), it can be verified that

$$\dot{\boldsymbol{V}}_3(\boldsymbol{e}_3) = \boldsymbol{e}_3^\top \boldsymbol{K}_r \boldsymbol{e}_3 \triangleq -2 \boldsymbol{V}_3(\boldsymbol{e}_3) \leq 0.$$
(36)

Hence, the controller (33) stabilizes the slow subsystem.

・ロト ・四ト ・ヨト ・ヨト

э

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

## Stability of the singularly perturbed interconnected system

Let  $\varepsilon = (0, 1)$  and consider the composite Lyapunov function candidate  $\Sigma(z_{fast}, z_{slow})$  as a weighted combination of  $V_2$  and  $V_3$  i.e.,

$$\Sigma(\mathbf{z}_{\mathsf{fast}}, \mathbf{z}_{\mathsf{slow}}) = (1 - \varepsilon) \mathbf{V}_2(\mathbf{z}_{\mathsf{fast}}) + \varepsilon \mathbf{V}_3(\mathbf{z}_{\mathsf{slow}}), \ 0 < \varepsilon < 1. \tag{37}$$

It follows that,

$$\begin{split} \dot{\boldsymbol{\Sigma}}(\boldsymbol{z}_{\text{fast}}, \boldsymbol{z}_{\text{slow}}) &= (1 - \varepsilon) [\boldsymbol{e}_1^\top \boldsymbol{K}_p \dot{\boldsymbol{e}}_1 + \boldsymbol{e}_2^\top \boldsymbol{K}_q \dot{\boldsymbol{e}}_2] + \varepsilon \boldsymbol{e}_3^\top \boldsymbol{K}_r \dot{\boldsymbol{e}}_3, \\ &= -2(\boldsymbol{V}_2 + \boldsymbol{V}_3) + 2\varepsilon \boldsymbol{V}_2 \le 0 \end{split}$$
(38)

which is clearly negative definite for any  $\varepsilon \in (0, 1)$ . Therefore, we conclude that the origin of the singularly perturbed system is asymptotically stable under the control laws.

$$\boldsymbol{u}(\boldsymbol{z}_{\text{fast}}, \boldsymbol{z}_{\text{slow}}) = (1 - \varepsilon)\boldsymbol{u}_{\text{fast}} + \varepsilon \boldsymbol{u}_{\text{slow}}. \tag{39}$$

Lekan Molu Embodied Intelligence for Soft Robots' Control

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

#### Asynchronous, time-separated control



Ten discretized PCS sections: 6 fast, 4 slow subsections.  $\mathcal{F}_p^{\gamma} = 10 N$ , with  $K_p = 10$ ,  $K_d = 2.0$  for  $\eta^d = [0, 0, 0, 1, 0.5, 0]^{\top}$  and  $\xi^d = \mathbf{0}_{6 \times 1}$ .

Outline

Morphological Computation Finite Models for Infinite-DoF Morphology Singular Perturbation Theory: Overview Hierarchical Decomposition of Dynamics References Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

#### Five-axes control



Lekan Molu

Embodied Intelligence for Soft Robots' Control

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

# Time Response Comparison with Non-hierarchical Controller

| Pieces |      |      | Runtime (mins)        |                                 |  |
|--------|------|------|-----------------------|---------------------------------|--|
| Total  | Fast | Slov | v Hierarchical<br>SPT | Single-layer PD control (hours) |  |
|        |      |      | (mins)                |                                 |  |
| 6      | 4    | 2    | 18.01                 | 51.46                           |  |
| 8      | 5    | 3    | 30.87                 | 68.29                           |  |
| 10     | 7    | 3    | 32.39                 | 107.43                          |  |

Table: Time to Reach Steady State.

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

## Contributions

- Layered singularly perturbed techniques for decomposing system dynamics to multiple timescales.
- Stabilizing nonlinear backstepping controllers were introduced to the respective subdynamics for fast strain regulation.

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

## Discussions

- Leverage the *multiphysics* of (often) heterogeneous soft material components;
- Neat manipulation strategies for motion is a *multiscale problem* that requires imbuing geometric mathematical reasoning into the control strategies for desired movements.
- Challenge: Merging the long-term planning horizon of spatial perception tasks with the *fast time-constant* (typically milliseconds or microseconds) requirements of the precise control of soft, compliant pneumatic/mechanical systems across multiple time-scales;

Discussions

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

• Process spatial information (Lagrangian) often within a long-time horizon context (Eulerian) for the real-time control or planning across multiple time-scales.

## Conclusion

Hierarchical Control Fast Strain Subdynamics Fast Strain Velocity (Twist) Subdynamics Slow subdynamics Interconnected System

- Email: lekanmolu@microsoft.com
- Thank you!

#### References I

- Cosimo Della Santina, Christian Duriez, and Daniela Rus. Model-based control of soft robots: A survey of the state of the art and open challenges. *IEEE Control Systems Magazine*, 43(3):30–65, 2023. doi: 10.1109/MCS.2023.3253419.
- Derek E Moulton, Thomas Lessinnes, and Alain Goriely. Morphoelastic Rods III: Differential Growth and Curvature Generation in Elastic Filaments. *Journal of the Mechanics and Physics of Solids*, 142:104022, 2020.
- Bartosz Kaczmarski, Alain Goriely, Ellen Kuhl, and Derek E Moulton. A Simulation Tool for Physics-informed Control of Biomimetic Soft Robotic Arms. *IEEE Robotics and Automation Letters*, 2023.
- Mattia Gazzola, LH Dudte, AG McCormick, and Lakshminarayanan Mahadevan. Forward and inverse problems in the mechanics of soft filaments. *Royal Society open science*, 5(6):171628, 2018.
- M. B. Rubin. Cosserat Theories: Shells, Rods, and Points. Springer-Science+Business Medis, B.V., 2000.

Eugène Maurice Pierre Cosserat and François Cosserat. Théorie des corps déformables. A. Hermann et fils, 1909.

- Isuru S Godage, David T Branson, Emanuele Guglielmino, Gustavo A Medrano-Cerda, and Darwin G Caldwell. Shape function-based kinematics and dynamics for variable length continuum robotic arms. In 2011 IEEE International Conference on Robotics and Automation, pages 452–457. IEEE, 2011.
- Robert J. III Webster and Bryan A. Jones. Design and kinematic modeling of constant curvature continuum robots: A review. The International Journal of Robotics Research, 29(13):1661–1683, 2010.
- Ke Qiu, Jingyu Zhang, Danying Sun, Rong Xiong, Haojian Lu, and Yue Wang. An efficient multi-solution solver for the inverse kinematics of 3-section constant-curvature robots. arXiv preprint arXiv:2305.01458, 2023.
- Federico Renda, Vito Cacucciolo, Jorge Dias, and Lakmal Seneviratne. Discrete cosserat approach for soft robot dynamics: A new piece-wise constant strain model with torsion and shears. *IEEE International Conference on Intelligent Robots and Systems*, 2016-Novem:5495–5502, 2016. ISSN 2130866.

#### References II

- Federico Renda, Frédéric Boyer, Jorge Dias, and Lakmal Seneviratne. Discrete cosserat approach for multisection soft manipulator dynamics. *IEEE Transactions on Robotics*, 34(6):1518–1533, 2018.
- Federico Renda, Michele Giorelli, Marcello Calisti, Matteo Cianchetti, and Cecilia Laschi. Dynamic model of a multibending soft robot arm driven by cables. *IEEE Transactions on Robotics*, 30(5):1109–1122, 2014.
- José Guadalupe Romero, Romeo Ortega, and Ioannis Sarras. A globally exponentially stable tracking controller for mechanical systems using position feedback. IEEE Transactions on Automatic Control, 60(3):818–823, 2014.
- Lekan Molu and Shaoru Chen. Lagrangian Properties and Control of Soft Robots Modeled with Discrete Cosserat Rods. In *IEEE International Conference on Decision and Control, Milan, Italy.* IEEE, 2024.
- Nikolai Matni, Aaron D Ames, and John C Doyle. A quantitative framework for layered multirate control: Toward a theory of control architecture. IEEE Control Systems Magazine, 44(3):52–94, 2024.
- Lekan Molu. Fast Whole-Body Strain Regulation in Continuum Robots. (submitted to) American Control Conference, 2024.
- Gianmarco Mengaldo, Federico Renda, Steven L Brunton, Moritz Bächer, Marcello Calisti, Christian Duriez, Gregory S Chirikjian, and Cecilia Laschi. A concise guide to modelling the physics of embodied intelligence in soft robotics. Nature Reviews Physics, 4(9):595-610, 2022.