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Talk Overview

The principle of morphological computation in nature

Morphology: shape, geometry, and mechanical properties.
Computation: sensorimotor information transmission among
geometrical components.

Morphology and computation in artificial robots

Cosserat Continua and reduced soft robot models.
Reductions: Structural Lagrangian properties and control.

Towards real-time strain regulation and control

Simplexity: Hierarchical and fast versatile control with
reduced variables.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Morphology and computation

Morphology: Emergent behaviors of natural organisms from
complex sensorimotor nonlinear mechanical feedback from the
environment.

Shape affecting behavioral response.

Geometrical Arrangement of motors such that processing and
perception affect computational characteristics.

Mechanical properties that allow the engineering of emergent
behaviors via adaptive environmental interaction.

Computation: The information transformation among the
system geometrical units, upon environmental perception, that
effect morphological changes in shape and material properties.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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MC in vertebrates – a case for soft designs

An adult human skeleton ≊ 11% of
the body mass. ©Brittanica

The arrangement and
compliance of body parts,
perception, and computation
creates emergence of complex
interactive behavior.

Soft bodies seem critical to the
emergence of adaptive natural
behaviors.

Morphological computation is
crucial in the design of robots
that execute adaptive natural
behavior.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Simplexity in Morphological Computation

Simplexity: Exploiting structure for effective control.

The geometrical tuning of the morphology and neural circuitry
in the brain of mammals that simplify the perception and
control of complex natural phenomena.

Not exactly simplified models or reduced complexity.

But rather, sparse connections and finite variables to execute
adaptive sensorimotor strategies!

Example: Saccades (focused eye movements) are controlled
by (small) Superior Colliculus in the human brain.

Plug: Complex neural circuitry; simple control systems!

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Simplexity: The Central Pattern Generator

A neural mechanism (in vertebrates) that generates motor
control with minimal parameters.

CPG: Neurons and synapses couple to generate effective
motor activation for rhythmic environmental motion.

In Lampreys, only two signals trigger swimming motion, for
example!

This CPG enables indirect use of brain computational power
via nonlinear feedback from stretch receptor neurons on
Lamprey’s skin.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Saccades and the Superior Colliculus

©Anatomical Justice.
Credit: Vision and Learning Center.
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Morphing in Invertebrates: Cephalopods

Cuttlefish. ©Monterey Bay Museum Octopus. ©Smithsonian Magazine
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The Octopus and Cuttlefish

No exoskeleton, or spinal cord.

A muscular hydrostat: transversal, longitudinal, and oblique
muscles along richly innervated arms and mechanoreceptors:

Allows for bending, stretching, stiffening, and retraction.

Diverse compliance across eight arms imply sophisticated
motion strategies in the wild!

Simplexity enhanced by a peripheral nervous system and a
central nervous system.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Soft Robot Mechanism in Focus

A continuum soft robot whose mechanics can be

well-described with Cosserat rod theory. Reprinted from

(Della Santina et al. (2023))

One dimension is
quintessentially longer than
the other two.

Characterized by a central
axis with undeformable discs
that characterize deformable
cross-sectional segments.

Strain and deformation, via
e.g. Cosserat rod theory,
enables precise
finite-dimensional
mathematical models.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Model Types
Cosserat models

A Finite and Reliable Model

A soft robot’s usefulness is
informed by control system
that melds its body
deformation with internal
actuators.

By design, this calls for a
high-fidelity model or a
delicate balancing of
complex morphology and
data-driven methods.

Non-interpretable; non-reliable.

ÖContinuous coupled
interaction between the
material, actuators, and external
affordances.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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The case for model-based control

Soft robots are infinite degrees-of-freedom continua i.e., PDEs
are the main tools for analysis.

Nonlinear PDE theory is tedious and computationally
intensive.

Notable strides in reduced-order, finite-dimensional
mathematical models that induce tractability in continuum
models.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Tractable reduced-order models

Morphoelastic filament theory: Moulton et al. (2020);
Kaczmarski et al. (2023); Gazzola et al. (2018);

Generalized Cosserat rod theory: Rubin (2000); Cosserat and
Cosserat (1909);

The constant curvature model: Godage et al. (2011);

The piecewise constant curvature model: Webster and Jones
(2010); Qiu et al. (2023); and

Ordinary differential equations-based discrete Cosserat
model: Renda et al. (2016, 2018).

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Cosserat-based piecewise constant strain model

A discrete Cosserat model: Renda et al. (2018).

Shapes defined by a finite-dimensional functional space,
parameterized by a curve, X : [0, L]..

Assumes constant strains between finite nodal points on
robot’s body.

Strain-parameterized dynamics on a reduced special
Euclidean-3 group (SE(3)).

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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The piecewise constant strain model

Credit: Renda et al. (2018).

C-space: g(X ) : X →

SE(3) =
(

R(X ) p(X )
0⊤ 1

)
.

Strain and twist vectors:

{η, ξ} ∈ R6.

{η, ξ} := {q, q̇}

Strain field:
η̆(X ) = g−1∂g/∂X .

Twist field:
ξ̆(X ) = g−1∂g/∂t.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Dynamic equations

From the continuum equations for a cable-driven soft arm [Renda
et al. (2014)], we can derive the following dynamic
equation [Renda et al. (2018)]:[∫ LN

0

JTMaJdX

]
︸ ︷︷ ︸

M(q)

q̈ +

[∫ LN

0

J
Tad⋆Jq̇MaJdX

]
︸ ︷︷ ︸

C1(q,q̇)

q̇ +

[∫ LN

0

JTMaJ̇dX

]
︸ ︷︷ ︸

C2(q,q̇)

q̇

+

[∫ LN

0

J
TDJ∥Jq̇∥pdX

]
︸ ︷︷ ︸

D(q,q̇)

q̇ − (1− ρf /ρ)

[∫ LN

0

J
TMAd−1

g dX

]
︸ ︷︷ ︸

N(q)

Ad−1
gr G

− J(X̄ )TFp︸ ︷︷ ︸
F (q)

−
∫ LN

0

J
T [

∇xFi −∇xFa + ad⋆ξn (Fi −Fa)
]
dX︸ ︷︷ ︸

τ (q)

= 0, (1)

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Structural properties – mass inertia operator

M(q)q̈ + [C1(q, q̇) + C2(q, q̇)] q̇ = F (q) +N(q)Ad−1
gr G + τ(q)−D(q, q̇)q̇.

(2)

Property 1 (Boundedness of the Mass Matrix)

The mass inertial matrix M(q) is uniformly bounded from below by mI
where m is a positive constant and I is the identity matrix.

Proof of Property 1.

This is a restatement of the lower boundedness of M(q) for fully
actuated n-degrees of freedom manipulators [Romero et al. (2014)].

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Structural properties – parameters Identification

Property 2 (Linearity-in-the-parameters)

There exists a constant vector Θ ∈ Rl and a regressor function
Y (q, q̇, q̈) ∈ RN×l such that

M(q)(̈q)+ [C1(q, q̇) + C2(q, q̇) +D(q, q̇)] q̇ − F (q)N(q)Ad−1
gr G

= Y (q, q̇, q̈)Θ. (3)

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Structural properties – skew symmetry of system inertial
forces

Property 3 (Skew symmetric property)

The matrix Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)] is
skew-symmetric.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Skew-symmetric of robot’s mass and Coriolis forces

By Leibniz’s rule, we have

Ṁ(q)=
d

dt

(∫ LN

0
JTMaJdX

)
=

∫ LN

0

∂

∂t

(
JTMaJ

)
dX

≜
∫ LN

0

(
J̇TMaJ + JTṀaJ + JTMaJ̇

)
dX . (4)

Therefore, Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)] becomes∫ LN

0

(
J̇
⊤MaJ + J

⊤ṀaJ + J
⊤MaJ̇

)
dX − 2

∫ LN

0

(
J
⊤ad⋆Jq̇MaJ + J

⊤MaJ̇
)
dX

(5)

≜
∫ LN

0

(
J̇
⊤MaJ + J

⊤ṀaJ − J
⊤MaJ̇

)
dX − 2

∫ LN

0

J
⊤ad⋆Jq̇MaJdX . (6)

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Skew-Symmetric Property Proof

Similarly, −
[
Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)]

]⊤
expands as

− Ṁ
⊤(q) + 2

[
C

⊤
1 (q, q̇) + C

⊤
2 (q, q̇)

]
=∫ LN

0

dX⊤
(
−J⊤MaJ̇ − J

⊤ṀaJ − J̇
⊤MaJ

)
+ 2

∫ LN

0

dX⊤
(
J
⊤MaadJq̇J + J̇

⊤MaJ
)

≜
∫ LN

0

(
J
⊤MaJ̇ − J̇

⊤MaJ − J
⊤ṀaJ

)
dX − 2

∫ LN

0

J⊤ad⋆Jq̇MaJdX (7)

which satisfies the identity:

Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)] =

−
[
Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)]

]⊤
. (8)

A fortiori, the skew symmetric property follows.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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MC Takeaways: Simplexity

Simplexity: Reliance on a few parameters to model an
infinite-DoF system:

M(q)q̈ + [C1(q, q̇) + C2(q, q̇)] q̇ = F (q) +N(q)Ad−1
gr

G + τ(q)

−D(q, q̇)q̇.

Simplexity: From PDE to ODE, i.e. inifinite-dimensional
analysis (Continuum PDE) to finite-dimensional ODE!

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Control exploiting structural properties

Regarding the generalized torque τ (q) as a control input, u(q, q̇),
feedback laws are sufficient for attaining a desired soft body
configuration.

Theorem 1 (Cable-driven Actuation)

For positive definite diagonal matrix gains KD and Kp, without
gravity/buoyancy compensation, the control law

u(q, q̇) = −Kpq̃ −KD q̇ − F (q) (9)

under a cable-driven actuation globally asymptotically stabilizes
system (2), where q̃(t) = q(t)− qd is the joint error vector for a
desired equilibrium point qd .

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Computational Control exploiting structural properties

Corollary 2 (Fluid-driven actuation)

If the robot is operated without cables, and is driven with a dense
medium such as pressurized air or water, then the term F (q) = 0
so that the control law u(q, q̇) = −Kpq̃ −KD q̇ globally
asymptotically stabilizes the system.

Proof.

Proofs in Section V of Molu and Chen (2024).

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Robot parameters

Tip load in the +y direction
in the robot’s base frame.

Poisson ratio: 0.45;
M = ρ[Ix , Iy , Iz ,A,A,A] with
ρ = 2, 000kgm−3;

D = −ρwν
TνD̆ν/|ν|.

X ∈ [0, L] discretized into 41
segments.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Computational Control exploiting structural properties
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Computational Control exploiting structural properties

2 4 6 8 10
Total RKF Iterations (X 100)

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

̇
ξ
y
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underwater control.
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Computational Control exploiting structural properties
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Cable-based position control with a
small tip load, 0.2N.
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Exploiting Mechanical Nonlinearity for Feedback!

This page is left blank intentionally.
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Hierarchical Dynamics and Control

Reaching steps towards the real-time strain control of
multiphysics, multiscale continuum soft robots.

Separate subdynamics — aided by a perturbing time-scale
separation parameter.

Respective stabilizing nonlinear backstepping controllers.

Stability of the interconnected singularly perturbed. system.

Fast numerical results on a single arm of the Octopus robot
arm.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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A case for layered control

©C. Draper, ”Guidance and Navigation, MIT, 1965.
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Layered control architecture: Singularly Perturbed
Dynamics

Essentially a layered multirate control scheme (Matni et al.
(2024)) of the various interconnected physics components of a
soft robot prototype.

Informed by a standard two-time-scale singularly perturbed
system.

ż1 = f (z1, z2, ϵ,us , t), z1(t0) = z1(0), z1 ∈ R6N , (10a)

ϵż2 = g(z1, z2, ϵ,uf , t), z2(t0) = z2(0), z2 ∈ R6N (10b)

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Framework: Singularly Perturbed Dynamics

f and g are Cn(n ≫ 0) differentiable functions of their
arguments;

ϵ > 0 denotes all small parameters to be ignored.

us is the slow sub-dynamics’ control law, and

uf is the fast sub-dynamics’ controller.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Isolated Equilibrium Manifold Justification

Assumption 1 (Real and distinct root)

Equation (10) has the unique and distinct root z2 = ϕ(z1, t) (for a
sufficiently smooth ϕ) so that

0 = g(z1,ϕ(z1, t), 0, 0, t) ≜ ḡ(z1, 0, t), z1(t0) = z1(0). (11)

The slow subsystem therefore becomes

ż1 = f (z1,ϕ(z1, t), 0,us , t) ≜ fs(z1,us , t). (12)

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Framework: Slow Dynamics Extraction

Assumption: the fast feedback law is asymptotically stable;

It does not modify the open-loop equilibrium manifold of the
fast dynamics.

With ϵ = 0 we have,

ż1 = f (z1, z2, 0,us , t), z1(t0) = z1(0), (13a)

0 = g(z1, z2, 0, 0, t). (13b)

Lekan Molu Embodied Intelligence for Soft Robots’ Control



36/64

Outline
Morphological Computation

Finite Models for Infinite-DoF Morphology
Singular Perturbation Theory: Overview
Hierarchical Decomposition of Dynamics

References

Framework: Fast Dynamics Extraction

Introduce the time scale T = t/ϵ, and write the deviation of z2
from its isolated equilibrium manifold, ϕ(z1, t) as
z̃2 = z2 − ϕ(z1, t). Then, (10) becomes

dz1
dT

= ϵf (z1, z̃2 + ϕ(z1, t), ϵ,us , t), (14a)

d z̃2
dT

= ϵ
dz2
dt

− ϵ
∂ϕ

∂z1
ż1, (14b)

= g(z1, z̃2 + ϕ(z1, t), ϵ,uf , t)− ϵ
∂ϕ(z1, t)

∂z1
ż1. (14c)

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Framework for singularly perturbed dynamics

Setting ϵ = 0, we obtain the algebraic equation

d z̃2
dT

= g(z1, z̃2 + ϕ(z1, t), 0,uf , t) (15)

with z1 frozen to its initial values.

Lekan Molu Embodied Intelligence for Soft Robots’ Control
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Hierarchical Control
Fast Strain Subdynamics
Fast Strain Velocity (Twist) Subdynamics
Slow subdynamics
Interconnected System

Decomposition of SoRo Rod Dynamics

This page is left blank intentionally
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Decomposition of SoRo Rod Dynamics

Mcore
i : composite mass distribution as a result of microsolid

i ′s barycenter motion;

Mpert: motions relative to Mcore
i , considered as a

perturbation;

M = Mpert ∪Mcore.

Introduce the transformation: [q, q̇] = [q, z ], rewrite (2):

M(q)ż + [C1(q, z) + C2(q, z) +D(q, z)] z − F (q)−N(q)Ad−1
gr G = τ(q)
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Dynamics separation

Suppose that Mp =
∫ Lpmax

L
p
min

J⊤MpertJdX , and Mc =
∫ Lcmax
Lcmin

J⊤McoreJdX , then,

M(q) = (Mc +M
p)(q), N = (Nc +N

p)(q), (16a)

F (q) = (F c + F
p)(q), D(q) = (Dc +D

p)(q) (16b)

C1(q, q̇) = (C c
1 + C

p
1 )(q, q̇), (16c)

C2(q, q̇) = (C c
2 + C

p
2 )(q, q̇). (16d)
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Dynamics Separation

Furthermore, let

M =

[
H 0
0 0

]
︸ ︷︷ ︸
Mc (q)

+

[
0 Hfast

slow

Hfast
slow

⊤ Hslow

]
︸ ︷︷ ︸

Mp(q)

, (17)

where Hfast
slow denotes the decomposed mass of the perturbed sections of the

robot relative to the core sections.

Let robot’s state, x = [q⊤, z⊤]⊤ decompose as q = [q⊤
fast, q

⊤
slow]

⊤ and
z = [z⊤fast, z

⊤
slow]

⊤,

Define M̄p = Mp/ϵ, and let u = [u⊤
fast, u

⊤
slow]

⊤ be the applied torque.
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SoRo Dynamics Separation

(Mc + ϵM̄p)ż = s + u, (18)

where

s =

[
sfast
sslow

]
=

[
F c +NcAd−1

gr G − [C c
1 + C c

2 +Dc ]zfast
F p +NpAd−1

gr G − [C p
1 + C p

2 +Dp]zslow

]
. (19)

Since Hfast is invertible, let

M̄
p =

[
M̄p

11 M̄p
12

M̄p
21 M̄p

22

]
and ∆ =

[
0 0

M̄p
21H

−1
fast 0

]
. (20)

Lekan Molu Embodied Intelligence for Soft Robots’ Control



43/64

Outline
Morphological Computation

Finite Models for Infinite-DoF Morphology
Singular Perturbation Theory: Overview
Hierarchical Decomposition of Dynamics

References

Hierarchical Control
Fast Strain Subdynamics
Fast Strain Velocity (Twist) Subdynamics
Slow subdynamics
Interconnected System

SoRo Dynamics Separation

Premultiplying both sides by I − ϵ∆, it can be verified that[
Hfast M̄p

12

0 M̄p
22

] [
żfast
ϵżslow

]
=

[
sfast

sslow − ϵM̄p
21H

−1
fastsfast

]
+

[
ufast

uslow − ϵM̄p
21H

−1
fastufast

]
(21)

which is in the standard singularly perturbed form (10):

ż1 = f (z1, z2, ϵ, us , t), z1(t0) = z1(0), z1 ∈ R6N , (22a)

ϵż2 = g(z1, z2, ϵ, uf , t), z2(t0) = z2(0), z2 ∈ R6N (22b)
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SoRo Fast Subsystem Extraction

On the fast time scale T = t/ϵ, with dT/dt = 1/ϵ so that,

żfast =
dzfast
dt

≡ 1

ϵ

dzfast
dT

≜
1

ϵ
z ′fast

; and

ϵżslow = z ′slow.

Fast subdynamics:

z ′fast = ϵH−1
fast(sfast + ufast)−H−1

fastH
fast
slowz

′
slow, (23a)

z ′slow = H−1
slow(sslow − uslow)−H−1

fast(sfast − ufast) (23b)

where the slow variables are frozen on this fast time scale.
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SoRo Slow Subsystem Extraction

We let ϵ → 0 in (21), so that what is left, i.e.,

żslow = H−1
slow(sslow + uslow) (24)

constitutes the system’s slow dynamics; where the fast
components are frozen on this slow time scale.
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Control of the Fast Strain Subdynamics

Consider the transformation:

[
θ
ϕ

]
=

[
qfast
zfast

]
so that

θ′ = ϵzfast ≜ ν := A virtual input.

Let {qd
fast, q̇

d
fast} = {ξd1 , . . . , ξdnξ ,η

d
1 , . . . ,η

d
nξ
}fast be the

desired joint space configuration for the fast subsystem.

Theorem 3 (Molu (2024))

The control law

ufpos = qd
fast(tf )− qfast(tf ) + q ′d

fast(tf )

is sufficient to guarantee an exponential stability of the origin of
θ′ = ν such that for all tf ≥ 0, qfast(tf ) ∈ S for a compact set
S ⊂ R6N . That is, qfast(tf ) remains bounded as tf → ∞.
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Control of the Fast Strain Subdynamics

Proof Sketch 1 (Proof of Theorem 3)

e1 = θ − qd
fast, =⇒ e ′1 = θ′ − q ′d

fast ≜ ν − q ′d
fast. (25)

Choose V1(e1) =
1

2
e⊤1 Kpe1 (26)

Then, V ′
1 = e⊤1 Kpe

′
1 = e⊤1 Kp(ν − q ′d

fast). (27)

For ν = q ′d
fast − e1, V

′
1 = −e1Kpe1 ≤ 2V1.
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Stability Analysis of the Fast Velocity Subdynamics

Theorem 4 (Molu (2024))

Under the tracking error e2 = ϕ− ν and matrices
(Kp,Kq) = (K⊤

p ,K⊤
q ) > 0, the control input

ufvel =
1

ϵ
Hfast[q

′′d
fast + e1 − 2e2 −K⊤

q (KqK
⊤
q )−1Kpe1]

+
1

ϵ
Hfast

slowz
′
slow − sfast (28)

exponentially stabilizes the fast subdynamics (23).
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Stability Analysis of Fast Velocity Subdynamics

Proof Sketch 2 (Sketch Proof of Theorem 4)

Recall from the position dynamics controller:

e ′1 = θ′ − q ′d
fast ≜ zfast − q ′d

fast + (ν − ν) (29a)

= (ϕ− ν) + (ν − q ′d
fast) ≜ e2 − e1. (29b)

It follows that

e ′2 = ϕ′ − ν ′ = z ′fast + e ′1 − q ′′d
fast (30)

= H−1
fast

[
ϵufast + ϵsfast −Hfast

slowz
′
slow

]
+ (e2 − e1)− q ′′d

fast.
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Stability Analysis of the Fast Velocity Subdynamics

Proof Sketch 3 (Sketch Proof of Theorem 4)

For diagonal matrices Kp,Kq with positive damping, let us choose the
Lyapunov candidate function

V2(e1, e2) = V1 +
1

2
e
⊤
2 Kqe2 =

1

2
[e1 e2]

[
Kp 0
0 Kq

] [
e1
e2

]
.

If q̃fast = qfast − qd
fast and q̃′

fast = q′
fast − q′d

fast, then the controller

ufvel =
1

ϵ
Hfast[q

′′d
fast − q̃fast − 2q̃′

fast − K
⊤
q (KqK

⊤
q )−1

Kp q̃fast]

+
1

ϵ
Hfast

slowz
′
slow − sfast,

exponentially stabilizes the system;
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Stability Analysis of the Fast Velocity Subdynamics

Proof Sketch 4 (Sketch Proof of Theorem 4)

since it can be verified that

V ′
2 = e⊤1 Kp(e2 − e1)

− e⊤2 Kq

(
e2 −K⊤

q (KqK
⊤
q )−1Kpe1

)
(31a)

= −e⊤1 Kpe1 − e⊤2 Kqe2 (31b)

≜ −2V2 ≤ 0. (31c)
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Stability analysis of the slow subdynamics

Set e3 = zslow − ν so that ė3 = żslow − ν̇. Then,

ė3 = żslow − q̈d
fast + (e2 − e1), (32a)

= H−1
slow(sslow + uslow)− q̈d

fast + (e2 − e1). (32b)

Theorem 5

The control law

uslow = Hslow(e1 − e2 − e3 + q̈d
fast)− sslow (33)

exponentially stabilizes the slow subdynamics.
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Stability analysis of the slow subdynamics

Proof.

Consider the Lyapunov function candidate

V3(e3) =
1

2
e
⊤
3 Kre3 where Kr = K

⊤
r > 0. (34)

It follows that

V̇3(e3) = e
⊤
3 Kr ė3 (35a)

= e
⊤
3 Kr

[
H−1

slow(sslow + uslow)− q̈
d
fast + e2 − e1

]
. (35b)

Substituting uslow in (33), it can be verified that

V̇3(e3) = e
⊤
3 Kre3 ≜ −2V3(e3) ≤ 0. (36)

Hence, the controller (33) stabilizes the slow subsystem.
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Stability of the singularly perturbed interconnected system

Let ε = (0, 1) and consider the composite Lyapunov function candidate
Σ(zfast, zslow) as a weighted combination of V2 and V3 i.e. ,

Σ(zfast, zslow) = (1− ε)V2(zfast) + εV3(zslow), 0 < ε < 1. (37)

It follows that,

Σ̇(zfast, zslow) = (1− ε)[e⊤
1 Kp ė1 + e

⊤
2 Kq ė2] + εe⊤

3 Kr ė3,

= −2(V2 + V3) + 2εV2 ≤ 0 (38)

which is clearly negative definite for any ε ∈ (0, 1). Therefore, we conclude that
the origin of the singularly perturbed system is asymptotically stable under the
control laws.

u(zfast, zslow) = (1− ε)ufast + εuslow. (39)
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Asynchronous, time-separated control
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Runtime: 18.0 mins

Ten discretized PCS sections: 6 fast, 4 slow subsections. F y
p = 10N,

with Kp = 10, Kd = 2.0 for ηd = [0, 0, 0, 1, 0.5, 0]⊤ and ξd = 06×1.
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Five-axes control
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Time Response Comparison with Non-hierarchical
Controller

Pieces Runtime (mins)

Total Fast Slow Hierarchical
SPT
(mins)

Single-layer PD control (hours)

6 4 2 18.01 51.46

8 5 3 30.87 68.29

10 7 3 32.39 107.43

Table: Time to Reach Steady State.
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Contributions

Layered singularly perturbed techniques for decomposing
system dynamics to multiple timescales.

Stabilizing nonlinear backstepping controllers were introduced
to the respective subdynamics for fast strain regulation.
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Discussions

Leverage the multiphysics of (often) heterogeneous soft
material components;

Neat manipulation strategies for motion is a multiscale
problem that requires imbuing geometric mathematical
reasoning into the control strategies for desired movements.

Challenge: Merging the long-term planning horizon of spatial
perception tasks with the fast time-constant (typically
milliseconds or microseconds) requirements of the precise
control of soft, compliant pneumatic/mechanical systems
across multiple time-scales;
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Discussions

Process spatial information (Lagrangian) often within a
long-time horizon context (Eulerian) for the real-time control
or planning across multiple time-scales.
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Conclusion

Email: lekanmolu@microsoft.com

Thank you!
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