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Abstract

We consider continuous-time, nonlinear multi-agent trajectory optimization under state and input constraints. With our
eyes toward optimality, robustness, and safety of the ensuing policy we combine game-theoretic, control-theoretic and
learning-based approaches in a generalized Nash Equilibrium framework. Here, global trajectories are a consequence
of the collective emergent behavior from individual agents. All agents possess local sensory information only; this
informs self-organization into disjoint subgroups — the union of these separate disjoint structures constitute the whole
group behavior. Control laws for topological subgroup formation and group geometric kinematics are computed from
Hamilton-dacobi equations via parallel optimization on graphic processing units. We formulate the global group heading
and geometric cohesion behavior problem as separable reachability and distributed trajectory optimization problems
within a generalized Nash Equilibrium convergence objective. One has the intuitive feeling that this safe multiagent
trajectory optimization with Nash equilibrium seeking global objective may inspire safe robust autonomy among a complex

network of aerial, ground, or underwater multiagent systems in the real-world in the future.
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Introduction

This paper is devoted to several themes, mostly concerning
numerical algorithms for determining globally safe and
optimal trajectories that are Nash-equilibrium seeking in
networks of complex multiagent systems characterized by
state and input constraints. We take inspiration from natural
swarms, particularly the murmuration of European starlings
(sturnus vulgaris). In these settings, local flocks within large
murmurations maintain an anisotropic formation based on a
topological interaction, regardless of sparsity of birds on a
phase space (Cavagna et al. 2010). Thus, intra- and inter-flock
collisions are avoided and attacks are fended off (Ballerini
et al. 2008). Approximating the viscosity solutions of
nonconvex Hamilton-Jacobi partial differential equations (that
we use to characterize these vector fields) with proximal
operators and importance sampling, the Hamiltonian, control
laws, and strategies that govern the transient behaviors of
many systems that possess structural subsystems with unique
nearest neighbor properties are computed.

Through empirical (Ballerini et al. 2008; Cavagna et al.
2010; Helbing et al. 2000; Vicsek et al. 1995; Bialek
et al. 2012) and theoretical findings (Jadbabaie et al. 2003),
evidence now abounds that in certain natural species that
exhibit collective behavior, convergence and group cohesion
is based on simple topological interaction rules that they
employ to keep a tab on one another in local flocks for
collision avoidance, preserving density and structure in
an anisotropic formation, and exhibiting flock splitting,
vacuole, cordon, and flash expansion isotropically (Haiken
2021). This aids these animals in emerging an eye-pleasing
local anisotropic synchrony, which taken together among
possibly hundreds of thousands of local interactions™ (Haiken
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2021), keep these animals whirling, swooping, and flying in
isotropic formations (Ballerini et al. 2008). Thus, individual
agents aggregate into substructures within the overall
system, and overall group motion is synergized via local
topological interactions so that a stable global heading and
cohesion (Jadbabaie et al. 2003) is preserved.

There exists evidence that when an individual within a
subgroup of starlings senses danger (e.g. an attack from a
Peregrine Falcon), it changes its course immediately. Owing
to the lateral vision in such animals, immediate nearest
neighbors change course in response. This information
is propagated across the entire group within the fraction
of a second (Ballerini et al. 2008), resulting in elegant
formations (Haiken 2021).

In this paper, borrowing inspiration from these natural
behaviors, we will introduce a reachable safety framework
for distributed trajectory optimization with optimality
guarantees. Our lead stems from the fact that the interaction
among various subgroups into which individual agents
self-organize (Ballerini et al. 2008; Cavagna et al. 2010)
and overall motion can be characterized by dynamically
evolving interfaces that separate the respective multiple
regions or phases (Kim et al. 2010; Zaitzeff et al. 2019;
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Karnakov et al. 2021). These systems exhibit separable
structural dynamics that altogether dynamically evolve in
a manner akin to the murmuration of European starlings, fish
schools in the ocean, multiphase flows, or crashing ocean
waves at mesoscale. For large-scale multiagent (robotic)
autonomous systems with characteristic topological changes
among subgroup boundaries and possessing structural intra-
group cohesion e.g. (Saravanos et al. 2022), we set out
to replicate some of these natural behavior and improve
state of-the-art optimization algorithms in the autonomous
systems that we design and build by managing state and input
constraints in the nonlinear regime with notions of guaranteed
safety during design and synthesis of controllers. We leverage
levelset theory (Sethian 2000) on natural collective behaviors,
and extend the reachability analysis of (Mitchell et al. 2005)
for safe, distributed, and large-scale multiagent systems with
separable structural kinematics and dynamics.

The body of this paper is structured as follows: we present
background and motivation for our work in § and formally
introduce our safe trajectory optimization schemes in § .

Preliminaries

In this section, we review related works on large-scale
optimization of a team of multi-agent systems, provide a
motivation for our approach, and then introduce a list of
common notations used throughout the rest of the article.

Motivation

Throughout this article, safe trajectories or safety shall
mean computed trajectories, particularly from Hamilton-
Jacobi representations, that satisfy all input and state
constraints within a time interval. Formally by safety, we
mean thre freedom of a system from harm (Hobbs et al.
2023). We loosely use the terms decision to mean control
law or controller. The utility function that quantifies the
state in which an agent exists may be referred to as a
cost, objective, or reward function. At issue is the safe
trajectory optimization for large-scale multiagent systems
with aggressive paths-following requirement towards eventual
collective equilibrium of global state. This requirement
necessitates a principled management of constraints so as
to avoid hazard during real-world deployment.

This may be considered a constrained optimization problem
involving minimizing the stage and terminal costs in a
Hamilton-Jacobi function setting subject to safety constraints
e.g. in augmented Lagrangian settings where inter-agents
separation, optimality of local control laws, preservation of
global formation are a requirement. A simplistic distributed
optimization modeling concept, does not lend itself effectively
to global equilibrium of collective states in a principled
variational, operator-theoretic, or control-theoretic methods.
A principled way to consider the solution concept would
be to model the decision-making problem as games played
between interacting agents where strategic interactions occur
over networks and where collective states must arrive at
a (generalized) Nash Equilibrium (GNE)- essentially an
equilibrium state for the whole system where each agent’s
control law is optimal with respect to other agent’s controllers
and no single agent gains an advantage by unilaterally
amending its own decision.
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Here, centralization and decentralization of communication
must be carefully managed. For centralized communication,
the information structure implies that all agents update their
state simultaneously. Over wireless sensor networks, however,
challenges such as limited communication bandwidths in
occluded operational environments imposes a hard constraint.
A semi- or wholly-decentralized communication strategy
with, for example, local neighbor rules, makes principled
multiagent control and optimization feasible in large-scale
systems that requires no global information over the
entire network. Ideally, the goal is to plan with collective
cooperation; however, this imposes stringent communication
throughput requirements. We thus drop the requirement that
an external agent enforce cooperation so that a noncooperative
game ensues. The challenge, as opposed to distributed large-
scale trajectory optimization e.g. (Saravanos et al. 2022), is
that the separability of collective objective function is not
assumed as such formulations at best only enforce constraints
softly via the Karush-Kuhn-Tucker (KKT) conditions. These
do not necessarily provide guaranteed safety constraints
satisfaction in the large.

In our formulation, each agent has independent control
over its own objective, subject to the the control law of its
neighboring agents. Hence, the notion of best response in
coupled multi-agent decision settings where partial authority
applies. And we adopt a dynamic game model so that the game
evolves in time as players implement their policies during play
— as this is well-known to cover decision-making problems
that are the bane of emerging inter- and multi-disciplinary
problems (Li et al. 2022).

The applications of the formalisms we introduce herein
extend beyond murmurations. This can be used to model
the interactive behavior of independent decision-making
agents on social network services, network of distributed
autonomous vehicles, search-and-rescue aerial robots,
consensus formation of connected systems, bioinspired
complex systems that model the complex movement
of muscular hydrostats, smart grids’ independent station
generators, and the internet of things among others.

Notations

Throughout, capital and lower-case Roman letters respectively
denote matrices and vectors while calligraphic letters denote
sets. Exceptions: time variables e.g. t,%0,%, T will always
be real numbers. Unless otherwise stated, vectors w(t) and
v(t) are reserved for admissible control (resp. disturbance) at
time ¢. We say u(t) (resp. v(t)) is piecewise continuous in ¢,
if for each ¢, w € U (resp. v € V), U( resp. V) is a Lebesgue
measurable and compact set. At all times, any of w or v will
be under the influence of a player such that the motion of a
state  will be influenced by the coercion of that player. Our
theater of operations is that of conflicting objectives between
players — so that the problem at hand assumes that of a game.
And by a game, we do not necessarily refer to a single game,
but rather a collection of games. Each player in a game will
constitute either a pursuer (P) or an evader (E).

We let {)\;(X)}"; denote the n-eigenvalues of X €
R™ "™ with Ay < Ao < --- < A,. When an optimized
variable, u, is optimal with respect to an index of performance,
it shall be denoted u*. All vectors are column-stacked. The
norm || X of a matrix X is sup || X|| over | X| =1. We
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define (2 as the open set in R™. To avoid the cumbersome
phrase “the state x at time ¢”, we associate the pair (x,t)
with the system’s phase. The Cartesian product of €2 and the
space T = R! of all time values is called the phase space.
The interior of €2 is denoted by int 2; whilst the closure of {2
is Q. Let 6Q (:= Q\int ) be the boundary of 2.

Definitions

The set of players in a game is denoted N = {i, j,...} with
subscript indexing indicating players e.g. \V; for player ¢. The
set of neighbors of player 4 is A'(i) C N. Player ¢ moves
dynamically with a control u; € ; (i.e. u; belongs to a policy
class ;) that is both (a) optimal with respect to its own
objective J;; and (b) optimal with respect to its neighboring
players’ current policy m_; € Il jen jz:.

Trajectory Optimization

To mimic these on real-world systems, autonomous agents
must operate near actuator and sensing limits under
demanding control computations. A common direction is
to train a neural perceptive controller offline to follow a set of
predetermined waypoints which is then deployed online (Song
etal. 2021; Torrente et al. 2021). Other approaches generate
optimal trajectories offline under different initial conditions
for the nonlinear problem from which a feedback controller
in a Gaussian process regression setting is recovered (Gerdts
et al. 2009). Simulation of optimal policies with deep
reinforcement learning (see for example, (Vinitsky et al.
2022)) for motion-planning, or trajectory optimization is
another popular approach.

Static optimization is a popular approach for solving
these problems. Here, the choice of a sampling distribution
for the decision variables must be chosen by a user
ahead of the optimization process. Typical choices
include thermodynamics-inspired methods such as simulated
annealing (Kirkpatrick et al. 1983), evolutionary-based
genetic algorithms (Holland 1975), or cross-entropy
probabilistic sampling-based planning methods (Kobilarov
2012) inter alia. However, for nonlinear problems with
often non-convex costs, maintaining the consistent decrement
in value function at every iterate (often) subject to input
and state constraints becomes challenging as problem
size grows. When there are non-smooth constraints in
the state space, the problem is NP-complete (L.aValle
2006). The sampling distribution associated with these
methods is critical for regions’ exploration, coverage, and
the importance of each sample to the problem solution
is often chosen on either heuristics or meta-heuristics.
However, these sampling-based methods are computationally
intractable for real-time high-dimensional systems applicable
to modern distributed agent optimization and control. Given
the nonlinearity associated with most multi-agent robotic
problems, gradient-based optimization introduces multiple
local minima; and the presence of obstacles in the state
space may hinder convergence guarantees since special
differentiation techniques may have to be adopted in such
instances (Clarke et al. 2008).

Adjacent to dynamic optimization schemes are sampling-
based algorithms. Here, the problem is repeatedly solved
for gathered samples from rolled-out trajectories over a
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time period. Path integral control (Kappen 2005) and its
variants (Theodorou et al. 2010; Williams et al. 2016) play
a notable role in stochastic sampling-based optimization
algorithms. Employing the stochastic version of the Hamilton-
Jacobi-Bellman (HJB) partial differential equation (PDE) for
affine control systems with an additive Brownian motion, the
PDE is linearized into a form of the backward Chapman-
Kolmogorov equation (Pavliotis 2014) after an exponential
transformation of the value function. An application of
the Feynman-Kac Lemma (Pavliotis 2014; Leonid Koralov
2007) naturally then follows, so that the linearized PDE
admits path-integral representations of the value function
whose derivatives yield the optimal controller. These schemes
possess more robustness whilst being less prone to local
minima compared to gradient-based algorithms. These
methods are attractive because they are derivative-free when
optimizing the cost with respect to the dynamics (Williams
et al. 2017). A key drawback of sampling-based optimization
techniques, however, is their lack of scalability to large
multiagent systems — with the increase in number of agents
comes the difficulty of sufficient exploration in the state space
based on sampled trajectories.

The foregoing methods, while yielding impressive
empirical results, lack safety guarantees. For example,
deep RL methods are unable to combine the long-
term spatial reasoning of neural network approximators
with the precision requirement of fine motor control,
the dynamic manipulation, and the sturdy dexterity
requirement of real-world systems. Sampling-based planners
often employ centralized optimization methods where a
centralized controller carries out all computation needed
for actuation. In both cases, needed controllers typically
exist at multiple timescales that these controllers do not
account for at execution time. This lack of multiscale,
hierarchical information processing, extraction, and alignment
of temporally-structured reasoning for life-long control,
adaptation, and memory shuffling has necessitated the timely
study of safe optimal trajectories for large-scale systems.

Closest in spirit to the algorithms we present here are
the nested-distributed (ND-DDP) and merge-distributed
(MD-DDP) differential dynamic programming algorithms
of (Saravanos et al. 2022), whereupon utilizing augmented
Lagrangian forms in managing state and input constraints
among multiple agents with neighborhood rules, the
decentralization — informed by local communication among
agents (provided by the introduced parallelization scheme
with the alternating direction method of multipliers algorithm)
— enabled control optimization of up to 4,096 cars with
16, 384 states with the MD-DDP version of the algorithm.
It should be noted, however, that these algorithms merely
utilize primal feasibility (for constraint satisfaction) and
dual feasibility (for optimality guarantees). At best, these
constraints are soft in nature (owing to ADMM distribution
scheme) so that a safe solution for the overall system is
not guaranteed even if local controllers enforce local safety
constraints (this is the case even for controllers that enforce
strict constraints such as sequential quadratic programming
methods). While empirical checks can be made for the primal
and dual residuals of the ADMM solver to test for safety,
this is not inculcated into the algorithm to demonstrate safe
controller optimization throughout the optimization lifecycle.
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In addition, this algorithm offers significant computational
complexities beyond the vanilla quadratic computation
requirements of traditional DDP algorithms — arising out of
the matrix inversion requirements of DDP and its scaling to
the overall number of agents (Saravanos et al. 2022).

Representation of Hamilton-Jacobi Equations

A principled way for finding globally optimal controllers for
a trajectory optimization problem is to consider Cauchy-type
Hamilton-Jacobi equations of the evolution form

¢t+H(x7ta¢aD¢):Oa (1)

where D¢ is the spatial gradient of the vector field ¢.

As the solution to these equations generally lack suitable
existence and uniqueness properties, a numerically means
of finding feasible solutions is to adopt the numerical
levelset representation of the solution (Crandall and Lions
1984a; Adalsteinsson and Sethian 1999; Sethian 2000) which
provide numerically consistent and monotone solutions to HJ
problems (Osher and Shu 1987). Suppose that we are given
multiple regions S;,...,S,, each separated by interfaces
I'; (i.e. T'; separates region S; from S, 1), and where each
interface I'; moves with a given speed V; in its normal
direction. For n regions, the collective interface is an n — 1
dimensional hypersurface in R". Embedding this interface as
the zero-level set of an unsigned distance function ¢(x) to the
interface I';, where ¢(x) is zero on the interface and positive
everywhere else to the boundary. We are concerned with a
numerical algorithm for evolving ¢(z).

While these methods have attractive numerical robustness,
convergence, and accuracy characteristics (Mitchell et al.
2005; Fisac et al. 2019a,b; Herbert et al. 2017), they do not
scale to higher dimensions owing to the intrinsic space-time
discretization that grows exponentially in size as problem
dimensions increase. What if the problem admits special
structure (such as nearest-neighbor behaviors) that we are
able to leverage ideas from computing flows of multiphase
regions separated by interfaces (Karnakov et al. 2021) or the
evolution of mean curvatures (Osher and Fedkiw 2004), fronts
of multiphase fluids (Osher and Sethian 1988), or advection
of substrates in multiple region fluids (Saye and Sethian 2011;
Sethian 1996; Zaitzeff et al. 2019) in computing optimal
trajectories? This is the central theme of this paper.

The key idea is that when the multi-agent problem
has separable structure, one can resolve the associated HJ
equations in a numerically consistent manner by considering
the interface of these separable structures, ¢, as evolving
dynamic interfaces, I';, via the modified levelset equation

(1)

At each time step, we advance each interface ¢, for agents in a
region ¢ by solving the levelset equation for a small time step
At; afterwards, we reconstruct the unsigned distance function
that captures the safe set, which informs the controller
optimization for the agents S; € C. Note that contrary to
distributed consensus-type algorithms such as (Saravanos et al.
2022), this framework guarantees safe exploration by directly
incubating safety into the trajectory optimization problem.
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Using the terminal function in Hamilton-Jacobi-Isaacs
functionals and backward reachability theory, we construct a
theorem for computing “safety-preserving” BRATs (Mitchell
2001; Mitchell et al. 2005; Mitchell 2020) across local
regions. BRATSs are those zero-level sets (Sethian 2000) of
implicitly-defined value functions on a state space that return
a “safety-satisfying” certificate after solving a time-dependent
Hamilton-Jacobi Isaacs equation (Evans and Souganidis 1984;
Crandall and Lions 1983). TO-DO: We then aggregate the
over-approximated BRATS of the respective subsystems.

Differential optimal control theory and games provide
a useful paradigm for the verification of multiple agents
interacting over a vectograme.g. R™ (Isaacs 1965)’s
verification theorem. Both rely on the resolution of the
Hamilton-Jacobi-Bellman (HJB) equation or its Isaacs
counterpart (HJI). As HJ-type equations are seldom regular
enough to admit a classical solution for almost all practical
problems, “weaker” or “viscosity” solutions (Lions 1982;
Evans and Souganidis 1984; Crandall et al. 1984) provide
generalized solutions to HJ partial differential equations
(P.D.E.s) under relaxed regularity conditions; these viscosity
solutions are not necessarily differentiable anywhere in
the state space, and the only regularity prerequisite in the
definition is continuity (Crandall and Lions 1983). However,
wherever they are differentiable, they satisfy the values of HJ
PD.E.sin a classical sense. Thus, they lend themselves well to
many real-world problems existing at the interface of discrete,
continuous, and hybrid systems (Evans and Souganidis 1984;
Lygeros 2004; Mitchell et al. 2005; Mitchell 2020).

With the elegant theoretical results of (Crandall and Lions
1984b,a; Evans and Souganidis 1984; Osher and Shu 1991;
Crandall et al. 1984), stable essentially non-oscillatory Lax-
Friedrichs numerical integration schemes provide consistent
and monotone viscosity solutions with high accuracy and
precision on a mesh to multi-dimensional HJ-type equations
(Consistent solutions to HJ equations are those whose explicit
marching schemes via discrete approximations to the HJ
IVP agree with the nonlinear HJ solution (Crandall and
Lions 1984a). Such schemes are said to be monotone e.g.
on [—R, R] if the numerical approximation to the vector field
of interest is a non-decreasing function of each argument of
the discrete approximation to the vector field.) By consistency,
we mean that the numerical approximation to the HJ equation
agrees with a defined HJ initial value problem; and by
monotonicity, we mean the explicit marching schemes an
Hamiltonian’s flux are a non-decreasing function (for a 1-
D case) of each argument of the vector field upon which
the system is defined. For more details, see (Crandall and
Lions 1984a; Osher and Shu 1991). However, by discretizing
the Hamiltonian on a dimension-by-dimension basis, the
scheme suffers from scalability as a result of the exponential
computational complexity associated with grid resolutions of
value functions (Herbert et al. 2021; Bajcsy et al. 2019; Bansal
and Tomlin). Given the limits of computational resources
and memory when resolving practical problems for multi-
agent systems, what if we exploit local structures within a
complex system and resolve the overall Hamiltonian by an
aggregation of the computation of the numerical fluxes of
local Hamiltonians? This is the central question that this paper
seeks to address.
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The motion of interfaces between subgroups are cast as
zero level set of implicitly defined unsigned distance functions
UDFs. Interfaces evolve by solving time-dependent Eulerian
initial value partial differential equations of these SDFs in
the form of viscosity solutions (Crandall and Lions 1983)
to hyperbolic conservation laws (Crandall and Majda 1980),
which are essentially the original HJ equations (Evans and
Souganidis 1984). Hence, the front’s position gets updated by
this means and the interface velocity is derived from physics
on and off the interface.

Popular numerical tools for simulating the evolution
of interfaces in applied physics, mathematics, and
computational sciences include fast marching front tracking
methods (Sethian 1987, 1996), Voronoi implicit interface
methods (or VIIMs) (Saye and Sethian 2011; Zaitzeff
et al. 2019), discretization schemes for Hamilton-Jacobi
equations (Tsitsiklis 1995), or multilayer volume-of-fluid
methods (Karnakov et al. 2021) for foaming across scales.
While each of these schemes has its own advantages, we
will resort to levelset methods (Sethian 2000) in developing
algorithmic efficiency for the trajectory optimization among
a collection (C) of disjoint multiple agents sets, S C C. The
entire collection of agents moves over an open set {2 C R".
When subgroups {S;}i=% C C, k < n of aerial agents must
traverse a narrow opening, or temporarily break apart to avoid
collisions, for example, we expect topological changes to
occur without explicit surgery. Furthermore, group geometric
formation and cohesion are achieved by local changes to
subgroups’ collective heading and speed. This is a challenging
problem numerically and we look to natural behaviors
in animals and multiphase simulations for inspiration. In
our problem construction, a finite set of individual agents
self-organize into local structural groups (which we refer
to as subgroups, S); subgroups interact based on nearest
neighbor rules so that effective group consensus is dictated
by interactions among separate subgroups.

Throughout, our theater of operations involve multiple
aerial Dubins vehicles (Dubins 1957), treated as kinematic
models that possess linear and angular speeds as state
variables. The trajectory optimization problem is played as a
game of multiple vehicles in a three-dimensional space. As we
are dealing with multiple agents, objectives such as collision
avoidance, agents’ spatial separation, overall group coherence
become paramount. At issue is continually computing the
points set that belong on the reachable set boundary as the
game advances forward in time. These reachable sets are
those state space subsets where agents may collide into one
another, hit obstacles, lose topological integrity or miss group
coherence behavior. We

As all agents move in 2 C R™, we want a stable and safe
numerical algorithm that correctly represents dynamic inter-
face boundary conditions, accurately represents kinemat-
ics, whilst sensitive enough to rapidly interpret subgroup
topological and structural changes. This safe trajectory
optimization problem has been considered previously in
several communities. In the control community, (Tsitsiklis
1995) worked under the restrictive assumption that HJ’s
running cost is independent of the control laws’ update —
providing an O(n/p) parallel algorithm that resolved the
discretized HJ-Hamiltonian for p processors on n grid points
provided that p = O(y/n/ log n). In front tracking methods,
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a Lagrangian geometric representation techniques track the
surfaces between separate structures with mechanisms such as
triple point junctions which are endowed with shared nodes so
that members of the front set are updated as time evolves (Kim
et al. 2010). In applied mechanics and microfluidics, methods
such as volume-of-fluid (Balcazar et al. 2015) resolve the
interaction among multiple phases that are separated by thin
boundaries with volume fraction fields for each region or
unique functions in levelset methods — leading to coalescence
prevention among multiple regions. However, they come
at a computational cost of O(NyegionsNeelis). To improve
its scalability, (Karnakov et al. 2021) compactly stored
many fields thereby keeping needed scalar fields constant
and independent of regions to simulate.

A few mathematical notations, conventions, and taxonomy
used throughout the paper are in order at this juncture.
Capital and lower-case Roman letters are matrices and vectors
respectively. Exceptions: time variables such as ¢,%g,%¢,T
are real numbers throughout. Calligraphic letters are sets.
Exception: the HJ equation’s solution (shortly introduced) is
the set {2 € R™ in which agents move. We work in a multi-
agent system context where individual agents self-organize
into phases or regions S which are in turn members of a union
of multiple regions C. Note that every S C C and all members
of C are disjoint from one another i.e. S; US; = 0 for any
i # j. The total number of elements in S is denoted [S], and
we denote by int € the interior of 2. The closure of € is ).
We let 5Q (:= Q\int ) be the boundary of (2.

Structural homogeneity of agents’ motion in every region
S;eC for i=1,---,[C] applies; this is enforced by
introducing an external disturbance on the zeroth-index agent
(this aids compactness of the zero levelset of an S; as we
will introduce shortly). Hence, each trajectory optimization
episode can be characterized as a pursuit game, I'. And by
a game, we do not necessarily refer to a single game, but
rather a collection of games, ¥ = {I'1,--- ,T'y}. Such a game
terminates when capture occurs, that is the distance between
players falls below a predetermined threshold. Each player in
a game shall constitute either a pursuer (P) or an evader (F).
Let the cursory reader not interpret P or E as controlling a
single agent. In our setup, we are poised with several pursuers
(enemies) or evaders (peaceful citizens). However, when P or
E governs the behavior of but one agent, these symbols will
denote the agent itself. An evading agent in a region S; has
a state notation x?, (read: the state of agent a in region 7). A
state x;, has linear velocity components, z, , 77, , and heading
Ty, = w,. When we must distinguish an agent z;, € C; from
some other agent e.g. in another multiphase C,, we shall write
Tzt and Yl respectively. Given the various possibilities of
outcomes, the “best” outcome is resolved by a payoff, ®,
whose extremal over a time interval will constitute a value,
V. We adopt (Isaacs 1965)’s language so that if the payoff
for a game is finite we shall have a game of kind (a qualitative
game); and for a game with a continuum of payoffs we shall
have a game of degree (quantitative games). The strategy
executed by P or F during a game shall be denoted by o € A

(resp. 8 € B).

TThe functional & may be considered a functional mapping from an infinite-
dimensional space to the space of real numbers.
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The many interacting subsystems under consideration
employ (i) natural units of measurements that are the same for
all agents; (ii) kinematics with same linear speeds but with a
capacity for orientation changes; (iii) inter-region interaction
occurs within unique and distinct state space manifolds;
and by agents maneuvering their direction, a kinematic
alignment is obtained with other regions; (iv) region-to-region
interaction occurs when a pursuer is within a threshold of
capturing any agent in a region; (v) the interaction among
respective regions is described by the time-evolution of an
interface, which is the zero-level set of the objective functional
of the respective local subgroups.

Backward Reachability from Differential Games
Optimal Control

We briefly review reachability theory and make a connection
to the scope of this article. A basic characteristic of a
control system is to determine the point sets within the
state space that are reachable with a control input choice.
An example objective in reachability analysis could be a
target (L) protection objective by an evading player E from
a pursuing player P. Our treatment here is a special case of
Isaac’s homicidal chauffeur’s game (Isaacs 1965), whereupon
P and E travel at constant linear speeds but have different
headings.

Backward reachability consists in avoiding an unsafe
set of states under the worst-possible disturbance and at all
times. In light of our multiple trajectory optimization goal,
we want to find the set of reachable states that lie along
the trajectories of the solution to a first order nonlinear HJI
P.D.E. that originates from some initial state zo = x(0) up
to a specified time bound, ¢ = t;: from a set of initial and
unsafe state sets, determine if there is an initial phase that the
HII PDE’s solution enters an unsafe set. In general, we seek a
terminal payoff ¢g(-) : R™ — R such that

lg(z@) <k, g(x(t)) —g(x(t)) [< klz(t) — &) [ (3)

for constant k and all T <t <0, Z, z € R", u € Y and
veV.

Suppose that a pursuer’s mapping strategy (starting
at t) is B:U(t) — V(t) provided for each t <7 <T
and u(t),w(t) € U(t); then u(f) =a(f) ae.ont <t<
7 implies Slul(t) = f[a](t) a.e.ont <t < 7. Suppose
further that the player P is controlling the strategy /3 and
minimizing, while the player E is controlling its strategy, o,
and maximizing. For any admissible control-disturbance pair
(u(-),v(+)) and initial phase (xq, to), Crandall (Crandall and
Lions 1983) and Evan’s (Evans and Souganidis 1984) claim
is that there exists a unique trajectory, £(t), the motion of the
dynamical system, (5), passing through phase (xq, ty) under
the action of control u, and a worst-possible disturbance v,
and observed at a time ¢ afterwards i.e.

£(t) = &(t; to, mo, u(-), v(+)). 4)

Equation (4) is a solution of the following dynamical system,
represented as a first-order p.d.e.

(1) = f(r,z(r),u(r),v(r)) T <7<t z(t)=ux
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almost everywhere (a.e.); where f(7,-,-,-) and z(:) are
bounded and Lipschitz continuous. This bounded Lipschitz
continuity property assures uniqueness of the system response
x(+) to controls u(-) and v(-) (?). a.e. with the property that

&(to) = &(tos to, o, u(-),v(+)) = 0. (6)

In backward reachability analysis, the lower value of the
differential game (?) is used in constructing an analysis of
the backward reachable set (or tube). The differential game’s
lower value for a solution z(t) that solves (5) for u(t) and
v(t) = Blu](-) is used in backward reachability analysis,
given as

V7 (z,t) = inf sup ®(u,pu))

BEB(t) weud(t)

T

— intsup [ (e (), u(r), Blul(r)dr + 9 (D).
BEB() weud(t) Jt

@)

Lemma 1. Theorem 1, (Mitchell et al. 2005).  The backward

reachability problem resolves the infimum-supremum of the
non-anticipative strategies of P and the controls of E/ as an
extremum of the cost functional over a time interval (time of
capture), t € [—T,0] is given by

5’%(a:,t) + min{0, H~ (t; z,u,v,V, )} =0, x € R",
(8a)
V7 (z,0) =g(x), (8b)
where H™ (t; z,u,v,p) = max min (f(t; z,u,v),p),
(8c)

and p, the co-state, is the spatial derivative of V~ w.r.t x.
where the vector field V[ is known in terms of the game’s
terminal conditions so that the overall game is akin to a two-
point boundary-value problem.

Henceforward, we will remove the negative superscript on
the lower value and Hamiltonian ().

Flock F; and F}, within a murmuration, F; U Fj, U Fj - - -
are separated by partitions, or interfaces, I, Iy, - - - . This
interface may be implicitly represented as a signed distance
function ®(z) which is negative on the interior of each flock,
and zero on the edges. The zero-level set (i.e. ®(x) = 0)
corresponds to the interface V' (Sethian 1987). As the system
evolves over time, F}’s interface Etiosa: why doesn’t F}
have numerous interfaces? Interfaces are defined as the zero-
level set of a signed distance function between two flocks,
so I’d imagine that every flock has an interface with every
other flock with a murmuration. (zero-level set) motion can
be parameterized by time, so that the flow field V (x,t) is
equivalent to the solution of the Cauchy-type Hamilton Jacobi
partial differential equation (Evans and Souganidis 1984;
Crandall and Lions 1983):

Vi+0;|VV;| =0, j=1,---,ny, ©)
where v; is the flow speed for F};. Equation (29) is the level
set equation (Sethian 2000).

In the sentiment of (Mitchell et al. 2005), we say the

zero sublevel set of g(-) in (8) i.e. Lo = {z € Q| g(z) < 0},
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is the rarget set in the phase space  x R for a backward () (t), evolves as
reachability problem (Mitchell 2001). This target set* can () @
represent the failure set, regions of danger, or obstacles to be Ty (t) v(t) cos 953% (t)
avoided e.t.c. in the vectogram. And the robustly controlled # @) = [v@t)sinz? (@) | - 12)
backward reachable tube for T € [—T,0]® is the closure of jggi) (t) (w® (),
the open set
- 1
] where (w®(0); = s WO+ D wi()

L[ 0], o) = {z € Q|38 € V(1) Vu € U(t), 3L € [T, 0], +nit) N

E@) € Lo}, te[-T,0]. (10) (13)

Read: the set of states from which the strategies 3 of P, and
for all controls /(t) of E imply that we reach the target
set within the interval [—T, 0]. More specifically, following
Lemma 2 of (Mitchell et al. 2005), the states in the reachable
set admit the following properties w.r.t the value function V'

€Ly = V (2,t) <0and V~ (z,t) <0 = z €L

(1)

Methods.

For the reader unfamiliar with reachability theory, a
background necessary for processing the formulations in
this section is presented in Appendix ??. An abridgment of
this section goes thus. The precept of the kinematics for a
many-bodied system is introduced; we press definitions, and
introduce the state partitioning scheme (); we then renew and
formalize the precept of flocks’ (an)isotropy (). Flock motion
verification is constructed via HJI analysis () and a means for
synthesizing multiple flock verification is presented ().

We locally synthesize the kinematics of agents in a manner
amenable to state representation by resolving local payoff
extremals, {®y,---,®,,}. This is a state space partition
induced by an aggregation of desired collective behavior
from local flocks’ values {Vi,- -+, V,, }1. Suppose that the
local control laws are properly coordinated, the region of the
state space across which their coordinated influence might be
exerted constitute a larger e.g. manipulability volume for a
dexterous kinematic task. We now formalize definitions that
will aid the modularization of the problem into manageable
forms.

Definition 1. Neighbors of an Agent. We define the
neighbors N;(t) of agent i at time t as the set of all agents
that lie within a predefined radius, r;.

Definition 2. We define a flock, F, consisting of agents
labeled {1,2,--- ,ng,} as a collection of agents within a
phase space (X,T) such that all agents within the flock
interact with their nearest neighbors in a topological sense.

Remark 1. Every agent within a flock has similar dynamics
to that of its neighbor(s). Furthermore, agents travel at the
same linear speed, v; the angular headings, w, however, may
be different between agents, seeing we are dealing with a
many-bodied system. Each agent’s continuous-time dynamics,
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foragents i ={1,2,3,...,n,}, where t is the continuous-
time index, n;(t) is the number of agent i’s neighbors at time
t, N;(t) denotes the sets of labels of agent i’s neighbors at
time t, and (w ™ (t)), is the average orientation of agent i
and its neighbors at time t. Note that for a game where all
agents share the same constant linear speed and heading,
(13) reduces to the dynamics of a Dubins’ vehicle in absolute
coordinates with —m < w® (t) < . The averaging over the
degrees of freedom of other agents in (13) is consistent with
the mean field theory, whereby the effect of all other agents
on any one agent is an approximation of a single averaged
influence.

Definition 3. Payoff of a Flock. To every flock F; (with
a finite number of agents n,) within a murmuration, j =
{1,2,--- ,n¢}, we associate a payoff, ®;, that is the union
of all respective agent’s payoffs for expressing the outcome of
a desired kinematic behavior.

Given the recent results in robust numerical optimization
of level sets of late, the last point is more of an axiom,
than an assumption (see (Adalsteinsson and Sethian 1999;
Saye and Sethian 201 1; Zaitzeff et al. 2019; Karnakov et al.
2021)). Viscosity solutions provide a particular means of
finding a unique solution with a clear interpretation in terms
of the generalized optimal control problem, even in the
presence of stochastic perturbations. Each agent within a flock
interacts with a fixed number of neighbors, n., within a fixed
topological range, .. This topological range is consistent with
findings in collective swarm behaviors and it reinforces group
cohesion (Ballerini et al. 2008). However, we are interested
in robust group cohesion in reachability analysis. Therefore,
we let a pursuer, P, with a worst-possible disturbance attack
the flock, and we take it that flocks of agents constitute an
evading player, E. Returning to (13), for a single flock, we
now provide a sketch for the HJI formulation for a heading
consensus problem.

Framework for Separated Payoffs.

Suppose that a murmuration’s global heading is prede-
termined and each agent ¢ within each flock, F}, (j =

#Note that the target set, Lo, is a closed subset of R™ and is in the closure of
Q.

§The (backward) horizon, —T is negative for T' > 0.

9Let the cursory reader understand that we use the concept of a flock
loosely. The value function could represent a palette of composed value
functions whose extremals resolve local behaviors we would like to
emerge over separated local regions of the state space of dexterous drone
acrobatics (Kaufmann et al. 2020), a robot balls juggling task (Burridge, R
R and Rizzi, A A and Koditschek, D E 1999) or any parallel task domain
verification problem.
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{1,---,ns}) in the murmuration has a constant linear
velocity, v*. An agent’s orientation is its control input, given

by the average of its own orientation and that of its neighbors.

Instead of metric distance interaction rules that make agents
very vulnerable to predators (Ballerini et al. 2008), we resort
to a topological interaction rule. With metric distance rules,
we will have to formulate the breaking apart of value functions
that encode a consensus heading problem in order to resolve
the extrema of multiple payoffs; which is typically what we
want to prevent in real-world autonomous tasks.

What constitutes an agent’s neighbors are computed based
on empirical findings and studies from the lateral vision of
birds and fishes (Ballerini et al. 2008; Jadbabaie et al. 2003;
Helbing et al. 2000) that provide insights into their anisotropic
kinematic density and structure. Importantly, starlings’ lateral
visual axes and their lack of a rear sector reinforces their lack
of nearest neighbors in the front-rear direction. As such, this
enables them to maintain a tight density and robust heading
during formation and flight. The delineation of an agent’s
nearest neighbors is given in Algorithm ??. On lines ?? and
?? of Algorithm ??, cohesion is reinforced by leveraging the
observations above. While the neighbor updates for an agent
involve an O(n?) algorithm in Algorithm ??, we are merely
dealing with 6 — 7 agents at a time in a local flock — making
the computational cost measly.

Each agent within a flock F; interacts with a fixed number
of neighbors, n., within a fixed topological range, r.. The
topological range can be set as the distance between the labels
of agents in a flock. This topological range is consistent with
findings in collective swarm behaviors and it reinforces group
cohesion (Ballerini et al. 2008). However, we are interested
in robust group cohesion in reachability analysis. Therefore,
we let a pursuer, P, with a worst-possible disturbance attack
the flock, and we take it that flocks of agents constitute an
evading player, E.

Global Isotropy via Local Anisotropy.

Structural anisotropy is not merely an effect of a preferential
velocity in animal flocking kinematics but rather an explicit
effect of the anisotropic interaction character itself: agents
choose a mutual position on the state space in order to
maximize the sensitivity to changes in heading and speed
of neighbors as the neighbors’ anisotropy is optimized via
vision-based collision avoidance characteristically unrelated
to the eye’s structure (Ballerini et al. 2008).

To reinforce robust group cohesion in local flocks, we
randomly simulate a pursuer F; against an evading agent in
every flock F); so that one agent is always relative coordinates
with P7. In this specialized case, the E and P’s speeds and
maximum turn radii are equal: if both players start the game
with the same initial velocity and orientation, the relative
equations of motion show that E can mimic P’s strategy by
forever keeping the starting radial separation. As such, the
barrier is closed and the central theme in this game of kind is
to determine the surface (Merz 1972). We defer a thorough
analysis of the nature of the surface to a future work.

Owing to the high-dimensionality of the state space, we
cannot resolve this barrier analytically, hence we resort to
numerical approximation methods — in particular, we leverage
a parallel Lax-Friedrichs integration scheme (Crandall et al.
1984) which we implement in Cupy (Nishino et al. 2017)
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in order to provide a consistent and monotone solution to
the Hamiltonians of the flocks. The assembly in the large of
these respective Hamiltonians, and hence numerically robust
solutions to the variational backward reeachability problem is
resolved with a Voronoi tesselation of the zero-level sets of
the boundaries of the flocks.

Therefore, for an agent ¢ within a flock with index j in a
murmuration, the equations of motion under attack from a
predator p (see ??) in relative coordinates is

iy)j (t) —vgi)j (t) + Uz()j) cos xéi)j (t) + (wgi)j>r:vg)j
8 O |=] w0 sir(m)cé”f (t) —(<,gé”j>ro:§”f (t)
a3 (t) wy” () — (we™ (t))r
(14)
for:=1,---,n, where n, is the number of agents within

a flock, <x(1i)j (t),xéi)j (t)) € R?, and we have xéi)j (t) €
[, +7)". Read 277 (¢): the first component of the state
of an agent ¢ at time ¢ which belongs to the flock j in the
murmuration at time ¢. In absolute coordinates, the equation

of motion for free agents is

w0 ] [o @) cosa (1)
j:;z)j (t) _ Uiz)j (t) sin .,L,z())z)j (t) (15)
i.:(;)j (t) (wg)j ()

Flock Motion from Aggregated Value Functions.

We introduce the union operator i.e. U below as an aggregation
symbol since the respective payoffs of each agent in a flock
may be implicitly or explicitly constructed™ — when it is
implicitly represented, say from a signed distance function,
we shall aggregate the payoff of agents 1 and 2 as

U{P®(x,t), Pa(x,t)} = Py (x,t) U Po(x, t) (16)
=min(P;(x,t), Pa(z, 1)) (17
otherwise, other appropriate arithmetic or logical operation

shall apply.

We assume that the value of a flock heading control
(differential game) exists. And by an extension of Hamilton’s
principle of least action, the terminal motion of a flock
coincide with the extremal of the payoff functional

V(z,t) = inf sup g(l)(x(T)) U---

BLeBMD 4, 1) eyy(1)

sup g (@(T))  (18)

inf
B eB™) np) gpng)
where ny is the total number of distinct flocks in a
murmuration. The resolution of this equation admits a
viscosity solution to the following variational terminal HJI
PDE (Mitchell et al. 2005)

[U?_ﬂl (?f(x t) + min |0, H(i)(:p(i)’ Ve (z, t))} )}

19)

nf

Uyl

=0.

lWe have multiplied the dynamics by —1 so that the extremal’s resolution
evolves backwards in time.

**In resolving the zero-level sets of HJ value functions, it is typical to
represent the payoff’s surface as the isocontour of some function (usually a
signed distance function).

(t)
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with Hamiltonian,

HO (120, u®, o p)) —

max  min (f(i)(t; z,u?, v(i)),p(i)>. (20)

w(D e @)y eP)

In swarms’ collective motion, when e.g. a Peregrine Falcon
attacks, immediate nearest agents change direction almost
instantaneously. And because of the interdependence of the
orientations of individual agents with respect to one another,
all other agents respond instantaneously. Thus, we only
simulate a single attack against a flock within the murmuration
to realize robust cohesion.

A pursuer can attack any flock within the murmuration
from a distinct surface: a P direction: this side of the surface
reached after penetration in the P — [E—] direction is the
P — [E] side(Isaacs 1965). We attribute the term in the small
to determine the smooth parts of the singular surface solution
when a pursuer attacks, and when they are stitched together
into the total solution, we shall describe them as in the large.
There exists at least one value & of « such that if o = @,
no vector in the 3-vectogram'’ penetrates the surface in the
E-direction. Similar arguments can be made for 3 which
prevents penetration in the P-direction. We adopt (Isaacs
1965)’s terminology and call these surfaces semi-permeable
surfaces (SPS).

Throughout the game, we assume that the roles of P and
FE do not change, so that when capture can occur, a necessary
condition to be satisfied by the saddle-point controls of the
players is the Hamiltonian, H'(x, p).

Theorem 1. For a flock, F;, the Hamiltonian is the total
energy given by a summation of the exerted energy by each
agent 1 so that we can write the main equation or total
Hamiltonian of a murmuration as

H(z,p) = max min Uit
wi™ efwl @) w efw), @)
[H(Ic) (z,p) U (U:lz“l_lH](c )j(x,p))}
=Uyl, (uf‘_a; !
+pg)j v sinxg + péi)j (wg)’%}
U {pgkn (vum — o™i cog ng)j) _

p;k)j i gin xék)j

2y

[pgi)j v i cos x5

- w{glpé )

(0 05 (0 D 22)

k)i, .(k);
(k) xg )i _ Pt
where H)7 (x,p) is the Hamiltonian of the individual under

+w! |ps 7+ py

attack by a pursuing agent, P, and H}Z)j (z,p) are the
respective Hamiltonians of the free agents, i = {1,--- ,ns},
within an evading flock in a murmuration, and not under

the direct influence of capture or attack by P; we denote by

( i the heading of an evader © within a flock j and w(J) the

heading of a pursuer aimed at flock j; wé )i is the orientation

that corresponds to the orientation of the agent with minimum
turn radius among all the neighbors of agent k, inclusive of
agent k at time t; similarly, w ( )3 is the maximum orientation
among all of the orientation of agent k’s neighbors.
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Corollary 1. For the special case where the linear speeds

of the evading agents and pursuer are equal i.e. v( i (t) =
vp(t) = +1m/s, we have the Hamiltonian as

H(x,p) =U}L (UZ‘;II

+pgi)j <w£i)_7~>r} U [pgk)j

(0); sin z3

(k)y (k);

&n$3

)

We adopt the essentially non-oscillatory Lax-Friedrichs
scheme of (Osher and Shu 1991; Crandall and Lions
1984a) in resolving (23). Denote by (z,y,z) a generic
point in R3 so that given mesh sizes Az, Ay, Az, At > 0,
letters u, v, w will represent functions on the z,y, z lattice
A = {(xi,yj,21) 1 i,J,k € Z}. We define the numerical

monotone flux, H @ (-), of HJ(Z)() as

[p(li)J cos T3 + Py

(1 — cos xék)j)

(0 ()5 _ (k) o

i (k); _ k
Mﬂpg )J|+wé S (k);

(k); +pd

(23)

H®; it u ot T wt wT) =
) ut+u” v 407 wh+w™
2 ’ 2 ’ 2

[ ) e (o -

v_) + agi)" (w"' — w‘)}

(24)
where
a7 = max [HD ()], ald = max [HD ()],
a<u<b a<u<b
c<v<d c<u<d
e<w<f e<w<f
(1); — (4);
e @9
(‘<U<d
e<w<f

are the dissipation coefficients, controlling the level of
numerical viscosity in order to realize a stable solution that
is physically realistic (Crandall and Lions 1984a). Here, the
subscripts of H are the partial derivatives w.r.t the subscript
variable, and the flux, H (-) is monotone for a < ut <
b,c < vE < d,e < wE < f- We adopt the total variation
diminishing Runge-Kutta scheme of (Osher and Shu 1987) in
efficiently calculating essentially non-oscillating upwinding
finite difference gradients of H(-).

ComplexBRAT by Voronoi Tesselaton of Local
e-BRAT Interfaces.

The method we propose here is inspired by the algorithmic
notions of robust, self-organizing emergent “behaviors” where
efficiency and consistency is important when considering the
interconnection between moving interfaces (Saye and Sethian
2011). In our case, the physics of the local interface of the
flocks that constitute a murmuration possesses topological
complexity arising from local value function boundaries
that evolve temporally e.g. via intersection or destruction
of interfaces as a result of physical phenomena changes such
as vacuole, splitting, or flash expansion inherent in starlings
murmurations (cf. ??).

TTA B—vectogram is the resulting state space when a the strategy /3 is applied
in computing the optimal control law for an agent.
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Suppose that the boundaries between two flocks F, F}, is a
closed hypersurface, moving through time i.e. I';;(t = 0) €
RY with speed v; as given in (29). We can solve the internally
generated level set equation (29) to obtain the capture surface
of respective flocks (see subsection ). Given the value function
aggregation scheme (cf. 19), we are interested in solving for
the externally generated velocity field, v.,:, induced by a
flock’s kinematics in light of (14) so that v; in (14) is now a
parameter for every level set, instead of just the level set of
the interface alone. We call v.,; the external velocity, so that
at the zero level set, we have

vgmt =v; when V; = 0. (26)

The key idea here is that we stitch the interfaces I'jz, I'rg, i,
by leveraging motion involving mean curvature (Osher and
Fedkiw 2004, §4.1) in systems characterized by multi-phase
kinetics. Therefore, a gradient descent on the energies of the
respective flocks at the zero level set can be computed from

U;L:fl‘/z = Z’Y]kT(ij% for (]7 k) € {Z | i = 1a T 7nf}
Jj#k

where V; € Q, 27

T is the area covered by the multi-flock interface, V; N V; =
(Vi) N (9V;) for i # 4, ViNV; = (8Vi) N (8V:) = 0. In
addition, we require the surface tension, 7, to be positive so
that the interfaces shrink as the level set equation evolves over
time; we do this by imposing the following triangle inequality
Yik + Ykt = vy for distinct j,k,1 in order to assure that
(27) is well-posed (Zaitzeff et al. 2019). Where interacting
flocks share a boundary, we characterize such higher order
junctions by triple hypersurfaces, by tracking the e-BRAT's for
an € > 0. The kinematics of these e-BRATSs under attack by
predators constitute the evolution of the event-driven behavior
of murmurations that swoop, swirl, or whirl in order to evade
capture.

The speed of the interface, at a point x € I';;, a distance
from a triple junction, is given by

un(z) = Yrjr() (28)

for a curvature /Cji(z) = Ky, (), and a normal speed vy ().

We implicitly initialize the payoff, <I>§ of each agent labeled
p € {1,---n,} within every flock, Fj, Vj=1,--- ,nyasa
signed distance function dq);'_ (z) to a phase (set) in <I>§ e
so that it yields an Euclidean distance to the boundary 8<I>§
whose sign bit is an indicator function, signifying that if a
point 2 € R™ is inside or outside ", i.e.

inf (i) i
d<1>§(x) Z{ = eon

—inf o) coai

x—2z® |,

xe@é,

i, (29)

x—2z® |,

so that each agent’s initial position is uniquely represented on
the overall vectogram based on the value of z2(). In order
to maintain a consistent level set representation for each
payoff, (e.g. when flocks split, expand, or spread out), the
structure of interface must be maintained as time evolves. We
follow (Adalsteinsson and Sethian 1999)’s construction and
write the level set equation as

Vo

vgzt -VV; =0, where vgzt = W,

(30)
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so that the level set function V; remains the signed distance
function as time evolves. When the level set functions must be
evolved concurrently, we reparameterize the level set equation
with an unsigned distance function as a union of an € > 0
super-level sets of the respective flocks

0P

E(w,t) — Vvl |V®(x, 1) =€

(€29)
That is the level set corresponding to the interface is now
a neighbor of nearby level sets; this makes the motion of
the zero level set that corresponds to the interface (29) is
surrounded by the motion of nearby level sets. Similar to
(Saye and Sethian 2011), we define Voronoi interface I'y, as
the set of of all points x that are equidistant to at least two
different e-level sets belonging to different flocks, and no
closer to any other e-level set i.e.

FV:{xGQ:EIi#j}
such that d(x, ;) = d(z, T ;) < d(x,Tep)VEk # 1,7,
(32)

where I' ; is the e-level set corresponding to a flock i.

Safe Trajectory Optimization: Generalized
Nash Equilibria

Experiments.

At issue is a family of games with different target sets for
local flocks that on the whole constitute a murmuration. Every
agent’s target position is initialized as
pj [ recos(E), resin(E), h+idh ]T
Vie{l,---n.},Vjie{l,---ns} (33)
Here, p; is a scaling factor that ensures adequate inter-
flock separation on a grid, h, dh are appropriately problem-
dependent parameters, and r. is a collision avoidance radius.
The set of grid points for which the states of (33) is defined
are those point set for which dgi(z) is fixed and Q =

{all grid points}. We set do (z) = sgn(V} (x)) forall z € Q.
Fig. 1 denote the representation of the payoffs of certain
agents that constitute a flock. They are constructed from the
signed distance function from all points on the grid to an
interface in the spirit of the foregoing.

An adaptive allocation rule for robust cohesion lets P
randomly aim against an agent within an evading flock in
every iteration of the game (see ??) — since when hunting for
a prey, an originally targeted prey may evade P. The domain
in which we calculate the BRT of the agent under attack in
relative coordinates w.r.t a pursuer, and that of the other agents
(within a flock) in absolute coordinates are respectively
Qs =R*x 8", Qups = {Up2 100, 1OF

abs " “abs

e R? x S'}.
(34)

It follows that the domain that constitutes the BRAT for a
flock F} is

Q;lk = {Qf;el U Qibs}’ (35)
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Flock 7: Agent 0's zero-level set (®y(x,t=0) ).

Flock 7: Agent 5's zero-level set (®s(x,t=0) ).

W (deg)

Figure 1. Implicit representation of the payoffs for agents 2 and 5 within flock 7.

and the domain that constitutes the BRAT of a murmuration
Fj, - Fp, is
0 — (0 Qitt
Qmurmur - {Qflk U Qfll~c

u---uQihY (36)

Since the orientations of neighboring agents are averaged
throughout a flock, the information is inevitably propagated
across the entire flock. Note that the above equations imply
that the cardinality of all agents within a flock is [n,] and
the cardinality of all agents within a murmuration is [n¢]. We
define the payoff for a flock F; as the union of the payoff of
every individual agent that constitute it (that is, it is the union
of the respective payoffs as shown in Fig. 1) i.e.

P; =P UPU---UD,, 1 UD,,, @37

where a ® solves the level set PDE (Sethian 2000) in the
form of the unsigned distance function of (31). The backward
reach-avoid tubes we aim to compute constitute the states’ set
from which the pursuer can drive the evader into the target set

Lo = {x € Q| ( :vgl)z + mélﬁ — r£1)> U ( x§2)2 + ng)Q
oY o)) aw

where superscripts in parentheses denote the label of an agent,
so that in a 3-D, L is akin to an uneven cylinder (see left
inset of Fig. 2). The interface is the union of the zero-level set
of the payoffs of the individual agents that constitute the flock
(see Fig. 1). Each flock’s zero-level set is distinct because the
target set of its agents belong to unique positions in the state
space.

Results from the numerical integration of the level set
equation for different flocks is depicted in Fig. 2, and more
results for other flocks are included in the Appendix . Let
us enquire. Observe: (a) Each flock’s RCBRAT” surface is
nonconvex; (b) The Lax-Friedrich’s numerical integration
scheme of the respective Hamilton-Jacobi value functions
has discontinuities in the solution despite the value function
being initially smooth; (c) Owing to the possibility of non-
unique solutions to each initial value problem, the weighted
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essentially nonoscillatory entropy scheme we adopted helps
in picking out “physically” relevant solutions to (22).

Conclusion.

We have proposed an Hamilton-Jacobi-Isaacs systems
verification scheme, based on Hamilton-Jacobi’s reachability
theory for constructing backward reachable tubes for a
complex system with structural local behaviors that is
characterized by topological nearest neighbor rules. These
local spatio-temporal dynamics whose local interactions
constitute a collective behavior. Using the key idea that
the total energy within every subsystem is an aggregate of
the respective energies of its individual agents, we have
formulated a theorem for constructing the local Hamiltonians
as well as value functionals.

Under the assumptions that we have (i) constant linear
velocity among agents; (ii) each agent’s orientation serves as
the control input; (iii) intra-flock agent interaction occurs
within\ unique and distinct state space manifolds; and by
-agents|ikhineuvering their direction, a kinematic alignment
is obtained with other flocks; and (iv) inter-flock interaction
occurs when a pursuer is within a threshold of capturing
any agent within the murmuration, we have presented a
numerical input/state-constraint preserving scheme utilizing a
time-constrained HJI formulation in a backward reachability
setting.
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Hamiltonian of a Murmuration.

In this appendix, we provide a derivation for the Hamiltonian
of a flock, and by extension, that of a murmuration. In our
implementations, the zero-level set is constructed implicitly
from the isocontour of a signed distance function as described
in (Osher and Fedkiw 2004, Chapter II). We introduce the
union operator, U, below in lieu of the arithmetic summation
symbol since the respective payoffs of each agent in a flock are
implicitly initialized as signed distance functions on the state
space. It is trivial to extend these results to other arithmetic or
Boolean operators depending on different task domains.

Recall from (22) that the total Hamiltonian of a flock is a
union of the mechanical energy of the free agents in a flock
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and the individual under attack i.e.

H(l‘,p) =

max
w( i elwl,

HP (@,p) U (Ui HYY (2,0)| - G9)

(k) P
we] wy Je[w:{,,w{,]

Proof of Theorem 1. We write the Hamiltonian of the free
agents in absolute coordinates and the Hamiltonian of the
agent under attack in relative coordinates with respect to the
pursuer. A flock’s Hamiltonian is Hamiltonian of the free
agents is the aggregation of all the mechanical energy in the
system in absolute coordinates i.e.

(@)

a—1 i) a—
Uiy Hffl)J (z,p) = Uy ! 2

| pii pg)]}
i cos T3
05 sin 3

(we),

where we have again dropped the time arguments for
convenience. It follows that

(40)

et B (2,p) =
w1
Uiy

(41)

Equation (22) can be re-written as

HMi (z,p) =
- ( jmax - omin @ ) B )]
we 7 €[wl,wl] wy, JG[wp wp]
—0l () + ’(i?sx““)% )+ (W) (02 (1)
vl (t)sinz {7 (1) — (w ut 9y, (02 (1)
wi(t) — (w7 (t)),

(42)

where pl( 7(t) |i=1,2,3 are the adjoint vectors (Merz 1972).

For the pursuer, its minimum and maximum turn rates are
fixed so that we have Q{, as the minimum turn bound of the
pursuing vehicle, and u*)g; is the maximum turn bound of the
pursuing vehicle. Henceforth, we drop the templated time

arguments for ease of readability. Rewriting (42), we find that

H(gk)j (‘T>p> = (

[Pgi)J D1 cos g + py " v sin g + plf’” <wgi)j>r} '

k) (k) Ry,
—piF®s 4 p

and that
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45)
A fortiori the main equation (22) becomes
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+w!|p Mi 4 pl

For the special case where the linear speeds of the evading

agents and pursuer are equal i.e. o (t) = vp(t) = +1m/s,

we have a murmuration’s Hamiltonian as

{pgl)j

H(z,p) = U?Ll (U?:“fl cos T3 + p;i)J sin 3 +p( )i (Wl ”')r}

U [pgk)j (1 — cos J}ék)j) — pék)j sin a:ék)j — yf) |p§k)j|
i [0 R 9,09 (), D .
47)

Flocks’ Robustly Controllable BRATs

Note that the symmetry between non-consecutive flock labels
e.g. flock 1 and flock 3’s RCBRAT is because the we
multiplied the initial position of a flock’s state by —1.

(k);

max min cos T3
&I efwd wd] wy €fw 03]
+p§k)1 <’U.)£k)3> (k); +p(k)J sin .Tgk)] o pék)j <wgk:)J> (’)J +p(k)1 ( p <w£k)>r):|) 7
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(43)
It follows that we have from (43) that
Hék)j (z,p) = pgk)j (Uék)j _ COS x:())k)]) _ p(Qk)j Uj sin x:(,) )i —w? |p(k)] |
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