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This article is devoted to several themes surrounding the scalable numerical solutions to hyperbolic HJ PDEs
viz., their implicit representation on co-dimension one domains; dynamics evolution with levelsets; upwinding
spatial derivatives; total variation diminishing Runge-Kutta integration schemes via method of lines; and their
applications to the theory of reachable sets and safety-critical systems analyses. The HJ evolution equation
and its level set dynamics that we chiefly consider are increasingly finding interest in multiple research
domains including (a) analyzing safety-critical problems in reinforcement learning, and broadly in robotics
and automation; (b) control engineering; (c) computing flows in transport problems; (d) aerospace and defense
engineering domains; (e) geometric optics; (f) volume of fluid analysis; and (g) image processing inter alia.
We briefly review HJ theory and its viscosity approximations, describe a hierarchy of library components,
and provide rigorously-tested representative numerical examples in reachability differential games, transport
analysis, and time-optimal control problems. This GPU software package allows for easy portability to modern
libraries for the numerical analyses of the Bellman and Isaacs equations – the mainstays of modern machine
learning today. Furthermore, we provide a CPU implementation in python that is significantly faster than existing
alternatives. Let us enquire.
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1 OVERVIEW
The reliability1 of the complex algorithms (in AI, modern cyberphysical systems etc) that we
design has become paramount given the dangers that may evolve if nominally envisioned system
performance falter. Even so, the need for scalable and faster numerical algorithms in software for
verification [14] and validation [13] has become timely given the emerging growth of complexity in
the systems that we design and build. That which entails generating evidence that a system, or any
its components satisfy all specified requirements and functional and allocated baselines is termed
verification [14]. Validation entails providing unreprovable evidence that system capabilities comply
with an end-user’s performance requirements and satisfy its intended operational environment’s
specifications [13]. We focus on the numerical tools for safety assurance (ascertaining the freedom
of a system from harm) in a verification sense in this article.

1Reliability is taken to mean guaranteed consistency in system performance over time.
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The foremost open-source verification software for engineering applications based on Hamilton-
Jacobi equations [19, 30] and level set methods [39, 44] is the CPU-based MATLAB® [35] level sets
toolbox, before computing via graphical processing units (GPU) became pervasive. Since then, there
has been a lot of improvement in computer hardware design, architecture, and code-acceleration.
This paper principally describes a GPU-accelerated software package – written entirely in python
and accelerated on graphical processing units (GPUs) – for numerically resolving generalized dis-
continuous solutions to Cauchy-type (or time-dependent) Hamilton-Jacobi (HJ) hyperbolic partial
differential equations (PDE ’s) that arise in many problem contexts including (multi-agent) reinforce-
ment learning, robotics, control theory, differential games, as well as flow and transport phenomena
inter alia.

Accompanying the package are implicit calculus operations on dynamic codimension-one inter-
faces embedded on surfaces in R𝑛 , and numerical (spatial and temporal) discretization schemes for
hyperbolic partial differential equations. Furthermore, we describe explicit integration schemes in-
cluding Lax-Friedrichs, Courant-Friedrichs-Lewy (CFL) integration TVD-RK conditioning schemes
for HJ Hamiltonians of the form 𝑯 (𝒙,𝒑), where 𝒙 is the state and 𝒑 is the co-state. Finally, extensions
to reachability analyses for continuous and hybrid systems, formulated as optimal control or game
theory problems using viscosity solutions to HJ PDE ’s is described. While our emphasis is on
the resolution of safe sets in a reachability context for verification settings, the applications of the
software package herewith presented extend beyond control engineering applications.

The GPU package, implemented in CuPy [38], is available on the author’s github repository:
LevelSetPy. Extensions to other python GPU programming language is straightforward (as
detailed in the CuPy interoperability document). The CPU implementation (in Python)
can be found at on the cpu-numpy tree of LevelSetPy. In addition, installation in-
structions are available on the github repository. In all, we try to follow the Python Enhancement
Proposals (PEP) 8 style guide2 as much as possible but in order not to break readability with respect
to the original MATLAB®code, we have tried to edge on the side of consistency within the previous
project.

2 BACKGROUND AND MOTIVATION
Our chief interest is the evolution form of the HJ equation

𝒗𝑡 (𝑥, 𝑡) + 𝑯 (𝑡 ;𝑥,∇𝑥𝒗) = 0 in Ω × (0,𝑇 ] (1)

𝒗 (𝑥, 𝑡) = 𝒈, on 𝜕Ω × {𝑡 = 𝑇 }, 𝒗 (𝑥, 0) = 𝒗0 (𝑥) in Ω

or the convection equation

𝒗𝑡 +
𝑁∑︁
𝑖=0

𝑓𝑖 (𝑢)𝑥𝑖 = 0, for 𝑡 > 0, 𝒙 ∈ R𝑛,

𝒗 (𝒙,0) = 𝒗0 (𝒙), 𝒙 ∈ R𝑛 (2)

where Ω is an open set in R𝑛; 𝒙 is the state; 𝒗𝑡 denotes the partial derivative(s) of the solution 𝒗 with
respect to time 𝑡 ; the Hamiltonian 𝑯 : (0,𝑇 ] × R𝑛 × R𝑛 → R and 𝑓 are continuous; 𝒈, and 𝒗0 are
bounded and uniformly continuous (BUC) functions in R𝑛; and ∇𝑥𝒗 is the spatial gradient of 𝒗. It is
assumed that 𝒈 and 𝒗0 are given.

Solving problems described by (1) under appropriate boundary and/or initial conditions using the
method of characteristics is limiting as a result of crossing characteristics [10]. In the same vein,
global analysis is virtually impossible owing to the lack of existence and uniqueness of solutions
𝒗 ∈ 𝐶1 (Ω) × (0,𝑇 ] even if 𝑯 and 𝒈 are smooth [10].
2Python PEP 8 style guide: peps.python.org/pep-0008/
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The method of “vanishing viscosity", based on the idea of traversing the limit as 𝛿 → 0 in the
hyperbolic equation (1) (where a parameter 𝛿 > 0 “endows" the problem in a viscosity sense as in gas
dynamics [25]), allows generalized (discontinuous) solutions [17] whereupon if 𝒗 ∈𝑊 1,∞

𝑙𝑜𝑐
(Ω)× (0,𝑇 ]

and 𝑯 ∈𝑊 1,∞
𝑙𝑜𝑐

(Ω), one can lay claim to strong notions of general existence, stability, and uniqueness
to BUC solutions 𝒗𝛿 of the (approximate) viscous Cauchy-type HJ equation

𝒗𝛿𝑡 + 𝑯 (𝑡 ; 𝒙,∇𝑥𝒗
𝛿 ) − 𝛿Δ𝒗𝛿 = 0 in Ω × (0,𝑇 ] (3)

𝒗𝛿 (𝑥,𝑡) = 𝒈, on 𝜕Ω × {𝑡 = 𝑇 }, 𝒗𝛿 (𝒙, 0) = 𝒗0 (𝒙) in Ω

in the class BUC(Ω × [0,𝑇 ]) ∩𝐶2,1 (Ω × (0,𝑇 ]) i.e. continuous second-order spatial and first order
time derivatives for all time 𝑇 < ∞. Crandall and Lions [11] showed that |𝒗𝛿 (𝒙, 𝑡) − 𝒗 (𝒙, 𝑡) | ≤ 𝑘

√
𝛿

for 𝒙 ∈ Ω and 𝑡 > 0. For most of this article, we are concerned with generalized viscosity solutions
of the manner described by (3).

Popular means of computing the solution 𝒗𝛿 of (3) leverage hyperbolic conservation laws in
generating propagation of surfaces under curvature (PSC) [40]. These PSC algorithms implicitly
embed (𝑛 − 1) dimensional interfaces (or isocontours) between two or more separable regions
in spatial dimensions belonging in R𝑛. The interface’s speed is typically set as a function of the
dynamical system’s curvature, and the front gets passively advected by a coupled flow.

This implicit representation has found solution in a wide array of flow/motion of many physical
phenomena such as gas dynamics, global illumination problems, and problems arising in the evolution
of the trajectories of dynamical systems in a reachable control context [34, 36, 37]. These schemes
work despite these phenomena developing discontinuities, corners, or cusps as dynamics evolve
owing to the rich theory of viscosity solutions to HJ problems [9, 10, 17, 31].

Mitchell [37] connected techniques used in level set methods to reachability analysis in optimal
control, essentially showing that the zero-level set of the differential zero-sum two-person game in
an Hamilton-Jacobi-Isaacs (HJI) setting [17, 26] constitutes the safe set of a reachability problem.
Reachability concerns evaluating the decidability of a dynamical system’s trajectories’ evolution
throughout a state space. Decidable reachable systems are those where one can compute all states that
can be reached from an initial condition in a finite number of steps. For inf-sup or sup-inf optimal
control problems [32], the Hamiltonian is related to the backward reachable set of a dynamical
system. The essential fabric of this techical communique revolves around reachability problems
defined on co-dimension-one surfaces.

The well-known LevelSet Toolbox [35] is the consolidated MATLAB® package that con-
tains the gridding methods, boundary conditions, time and spatial derivatives, integrators and helper
functions. While Mitchell motivated the execution of the toolkit in MATLAB® for the expressiveness
the language provides, modern data manipulation and scripting libraries often render the original
package non-portable across distributed hardware since it lacks other programming language in-
teroperability, particularly python and its associated scientific computing libraries such as Numpy,
Scipy, PyTorch and their variants.

In this regard, we revisit the major algorithms necessary for implicit surface representation of HJ
PDEs, write the spatial, temporal, and monotone difference schemes in Python, accelerated onto
GPUs via CuPy [38] and present representative numerical examples.

2.1 Contributions
Given the prevalence of HJ PDEs in application areas encompassing robotics and learning-enabled
(control) systems, the need for easy portability and extensibility to other popular software packages
has necessitated our rewriting the toolbox in a single python package, leveraging GPU computations,
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and covering the essential algorithms of Crandall [12], Osher and Fedkiw [39], and Mitchell [35].
Our contributions are as follows:

(1) we describe the details of the LevelSetPy software, starting with the common implicit surfaces
that are used as initial conditions to represent 𝒗 (𝒙, 𝑡) leveraging signed distance functions (SDF)
and the associated boolean operations and calculus toolboxes for their dynamics endowment;

(2) we describe the upwinding spatial derivative schemes, temporal discretization via method of
lines schemes based on (approximate) total variation diminishing (TVD) Runge-Kutta (RK),
and stabilizing Lax-Friedrichs schemes for multidimensional monotone Hamiltonians of HJ
equations or scalar conservation laws;

(3) we conclude this article with three representative examples, viz., (i) the barrier surface for two
adversarial rockets traveling on a plane; (ii) the time-to-reach time-optimal control problem
for a generic double integrator system; and (iii) analyze the barrier surface for a flock of birds
traversing a phase space.

This article provides a description of the underlying theory and implementation of these hyperbolic
PDE ’s. First, in section 3, differential games in the context of dynamic programming and reachability
theory are introduced. Second, in section 4, we describe the geometry of (and Boolean operations on)
implicit function representations of continuous-time value functions described by (1) using Cartesian
grids. Third, spatial derivatives to scalar conservation laws are described in section 5, and temporal
discretization schemes for these conservation laws follow thereafter. Fourth, in section 7 we describe
real-world problems and make them amenable to HJ PDE’s and the construction of safe sets or tubes
within a verification geometrical reasoning framework: we present numerical results on the motivated
examples to demonstrate the efficacy of our software package on diverse representative problems
that cover time-to-reach optimal control, and HJI differential games in reachability settings . Sixth,
we conclude the paper in section 8. Additional examples, jupyter notebooks, and representative
problems are provided in the online package.

3 DIFFERENTIAL GAMES AND REACHABILITY
In this section, we briefly describe reachability theory within the context of the HJ-Isaacs (HJI)
equation [26]. Reachable sets in the context of two person games is introduced. We then establish the
“viscuous" PDE to the terminal HJI PDE .

For a state 𝒙 ∈ Ω, fix: 𝑇 > 𝑡 ≥ 0. Suppose that the controls for opposing players 𝑷 and 𝑬 in a
two-player differential game are given by measurable functions

𝒖 : [𝑡,𝑇 ] → U, 𝒘 : [𝑡,𝑇 ] → W (4)

where U ∈ R𝑚 and W ⊂ R𝑝 are compact sets. Let us consider the differential equation,

¤𝒙 (𝜏) = 𝑓 (𝜏, 𝒙 (𝜏), 𝒖 (𝑡),𝒘 (𝑡)), 𝑡 ≤ 𝜏 ≤ 𝑇, 𝒙 (𝑡) = 𝒙, (5)

where 𝑓 (𝜏, ·, ·, ·) is uniformly continuous and 𝒙 (·) is the unique solution of system (5). Suppose that
we associate with the dynamical system (5) the payoff functional

𝚽(𝑡 ; 𝒙, 𝒖,𝒘) =
∫ 𝑇

𝑡

𝒍 (𝜏, 𝒙 (𝜏), 𝒖 (𝜏),𝒘 (𝜏))𝑑𝜏 + 𝒈(𝒙 (𝑇 )), (6)

where 𝒈 : R𝑛 → R satisfies

|𝒈(𝒙) | ≤ 𝑘1, |𝒈(𝒙) − 𝒈(�̂�) |≤ 𝑘1 |𝒙 − �̂� | (7a)

and 𝒍 : [0,𝑇 ] × R𝑛 ×U ×W → R is the BUC stage cost. We say 𝑇 is the terminal time (it may be
infinity!) and the integral, when it does not depend on the control laws, is the performance index.
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The evader is maximizing and pursuer is minimizing the payoff (6). In reachability analysis, the
cost-to-go 𝒍 (·) is taken as zero so that the payoff functional (6) becomes

𝚽(𝑡 ; 𝒙, 𝒖,𝒘) = 𝒈(𝒙 (𝑇 )) . (8)

3.1 HJI’s Lower Value and its Viscosity Solution
Define

Ū ≡ {𝒖 : [𝑡,𝑇 ] → U} and W̄ ≡ {𝒘 : [𝑡,𝑇 ] → W} (9)

as all control sets for players 𝑷 and 𝑬 . For controls which agree almost everywhere (a.e.), we are
interested in the pursuer’s mapping strategy (starting at 𝑡) i.e.

𝛽 : Ū(𝑡) → W̄(𝑡) (10)

provided for each 𝑡 ≤ 𝜏 ≤ 𝑇 and 𝒖, �̂� ∈ Ū(𝑡); then 𝒖 (𝑡) = �̂� (𝑡) a.e. on 𝑡 ≤ 𝑡 ≤ 𝜏 implies
𝛽 [𝒖] (𝑡) = 𝛽 [�̂�] (𝑡) a.e. on 𝑡 ≤ 𝑡 ≤ 𝜏 . The differential game’s lower value for a solution 𝒙 (𝑡) of (5)
for a 𝒖 (𝑡) and𝒘 (𝑡) = 𝛽 [𝒖] (·) is [18]

𝒗 (𝒙, 𝑡) = inf
𝛽∈B(𝑡 )

sup
𝒖∈U(𝑡 )

𝚽(𝑡, 𝒙, 𝒖, 𝛽 [𝒖]) (11)

= inf
𝛽∈B(𝑡 )

sup
𝒖∈U(𝑡 )

𝒈 (𝒙 (𝑇 )) .

We say 𝒗 (𝒙, 𝑡) is the lower value function of the differential game. This value function is used in
backward reachability analysis, the chief subject of our discourse.

LEMMA 1. The lower value 𝒗 (𝒙, 𝑡) in (11) is the viscosity solution to the lower Hamilton-Jacobi
Isaac’s equation (1) and it has with it the lower Hamiltonian,

𝑯 (𝑡, 𝒙, 𝒖,𝒘, 𝑝) = max
𝒖∈U

min
𝒘∈V

⟨𝑓 (𝑡, 𝒙, 𝒖,𝒘), 𝑝⟩. (12)

where 𝑝 is the co-state, i.e. the spatial derivative of 𝒗 w.r.t 𝒙 and ⟨·, ·⟩ is the dot product operator
between two variables.

PROOF. This proof is given in [18]. □

3.2 Optimal Control, HJI PDE , and Reachability Theory
That which concerns point sets for a dynamical system’s behavioral evolution (or trajectory) through-
out a phase space3 and such that the sets satisfy input or state constraints in a least restrictive
sense and under a worst-possible disturbance [32] describes reachability. For computational and
decidability reasons4, we restrict our computation scheme over a finite time period. This is a classic
reachability theory problem.

Reachability analysis is concerned with finding the set of forward (resp. backward) states that
are reachable from a set of initial (resp. target) state sets, up to a final time under the worst possible
disturbance. This verification problem usually consists in finding a reachable states set that lie along
the trajectory of the solution to a first order nonlinear P.D.E. Typically, this solution originates from
some initial phase (𝒙0, 𝑡0) up to a state, 𝒙 (𝑇 ), at a specified final time 𝑇 . Once computed, the optimal
value function provides a safety certificate and controller defined by the spatial gradients of the value
function.
3To avoid the cumbersome phrase “the state 𝒙 at time 𝑡", we will associate the pair (𝒙, 𝑡 ) with the phase of the system for a
state 𝒙 at time 𝑡 . We associate the Cartesian product of Ω and the space𝑇 = R1 of all time values as the phase space of Ω ×𝑇 .
4We say a reachability problem is decidable if we can compute all the states that can be reached from an initial condition in a
finite number of steps.
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In addition to producing a value function, the optimality principle of dynamic programming on
the underlying HJI PDE can be used to generate a minimum time-to-reach (TTR) function. This
function maps initial conditions to the minimum time horizon required to reach the target set. This
can be computed by “stacking” the zero level sets of the value function as it propagates backwards in
time [1, 3, 36].

Backward reachable sets (within a continuous system framework) are those subsets of a phase
space whereupon trajectories initialized in some subset of the phase space can reach a so-called target
set, L(𝑥). Mitchell et. al’ [37] essential contribution was that viscosity solution of the Cauchy-type
HJI PDE (1) or (12) is tantamount to an implicit surface representation of the continuous-time
backward reachable set. This formulation is amenable to modern large-scale problems because
level set methods can be used in computing the target set as the viscosity solution is numerically
continuous everywhere and well-posed. In backward reachability analysis, the ordering of time
indices is reversed so that instead of having 𝑡 ∈ [0,𝑇 ], we shall henceforth have 𝑡 ∈ [−𝑇, 0].

3.3 The Backward Reachable (Target) Set
Suppose that the goal for an agent moving over a phase space is to reach a region at the end of a time
horizon. We could leverage the terminal cost 𝑔(·) in (12) and impose constraints

|𝑔(0; 𝒙) | ≤ 𝑘, |𝑔(0; 𝒙) − 𝑔(𝑡 ; �̂�) |≤ 𝑘 |𝒙 − �̂� | (13)

for constant 𝑘 and all −𝑇 ≤ 𝑡 ≤ 0, �̂�, 𝒙 ∈ R𝑛 . The set

L0 = {𝒙 ∈ Ω̄ | 𝑔(0; 𝒙) ≤ 0}, (14)

is called the target set (otherwise referred to as the backward reachable set) in the phase space Ω × R
(proof in [37]). This target set can represent the failure set (to avoid) or a goal set (to reach) in the
state space. Note that the target set, L0, is a closed subset of R𝑛 and is in the closure of Ω. Typically
L0 is user-defined, and in level set methods, 𝑔(𝑥) is a signed distance function – negative inside the
target set and positive elsewhere.

3.4 The Backward Reachable Tube
It is often desirable to consider all conditions under which trajectories of the system may enter a
user-defined target set. This could be desirable in goal-regions of the phase space (safe sets) or
undesirable configurations (unsafe sets).

For the safety problem setup in (11), we can define the corresponding robustly controlled backward
reachable tube [36] as the closure of the open set

L([𝜏, 0],L0) = {𝒙 ∈ Ω | ∃ 𝛽 ∈ W̄(𝑡) ∀𝒖 ∈ U(𝑡), ∃
𝜏 ∈ [−𝑇, 0], 𝝃 (𝑡) ∈ L0}. (15)

Read: The set of states from which the strategies of 𝑷 and for all controls of 𝑬 imply that we reach
and remain in the target set in the interval [−𝑇, 0]. Following Lemma 2 of [37], the states in the
reachable set admit the following properties w.r.t the value function 𝒗:

𝒙 (𝑡) ∈ L(·) =⇒ 𝒗 (𝒙, 𝑡) ≤ 0, (16a)

𝒗 (𝒙, 𝑡) ≤ 0 =⇒ 𝒙 (𝑡) ∈ L(·). (16b)

Player 𝑷 is minimizing (the game’s termination time c.f. (14)), seeking to drive system trajectories
into the unsafe set; and player 𝑬 is maximizing (the game’s termination time) i.e. is seeking to avoid
the unsafe set5.
5For the goal-satisfaction (or liveness) problem setups, the strategies are reversed and the backward reachable tube are the
states from which the evader 𝑬 can successfully reach the target set despite worst-case efforts of the pursuer 𝑷 .
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(a) Sphere
(b) Union of two
spheres (c) Rectangle

(d) Union of 2 rectan-
gles

(e) Cylinder
(f) Union of six cylin-
ders (g) 3D Ellipsoid

(h) Sphere+Cylinder in-
tersect.

Fig. 1. Examples of implicitly constructed zero levelsets of interfaces of geometric primitives along with Boolean
operations on 2D and 3D Cartesian grids. Zero level set of (a) a sphere on a 3D grid; (b) union of two 3D spheres
implicitly constructed on a 2D grid; (c) a rectangle on a 2D grid; (d) the union of rectangles on a 2D grid; (e) a
cylinder on a 3D grid; (f) the union of multiple cylinders on a 3D grid; (g) an ellipsoid on a 3D grid; (h) Intersection
of a sphere and a cylinder on a 3D grid.

4 GEOMETRY OF IMPLICIT SURFACES AND LAYOUTS
In this section, we discuss how implicit surface functions are constructed, stored on local memory and
how they are transferred to GPUs. Throughout, links to api’s, routines, and subroutines
are highlighted in blue text (with a working hyperlink) and we use code snippets in Python to
illustrate API calls when it’s convenient.

At issue are co-dimension one implicitly defined surfaces on R𝑛 which represent the interface of a
flow, or function e.g. 𝑓 (𝑥). These interfaces are more often than not the isocontours of some function.
This representation is attractive since it requires less number of points to represent a function than
explicit forms. Relating to the problems of chief interest in this article, the zero isocontour (or the
zero levelset) of a reachability optimal control problem is equivalent to the safety set or backward
reachable tube; and for a differential game, it is the boundary of the useable part of the barrier
surface between the capture and escape zones for all trajectories that emanate from a system.

By implicitly representing functions 𝑓 (𝑥) for points 𝑥 e.g. in R𝑛, we do not explicitly describe
but rather imply the existence of 𝑓 . This representation is attractive since it requires less number
of points to represent a function than explicit forms. Let us describe the representation of data we
employ in what follows.

4.1 Grids Layout
Fundamental to implicit surface representations are Cartesian grids in our library. Packages that im-
plement ‘grid’ data structures are in the folder Grids. Grid g is created by specifying minimum,
g𝑚𝑖𝑛 , and maximum axes bounds, g𝑚𝑎𝑥 , along every Cartesian coordinate axes 𝑛 (see lines 3 and 4)
of Listing 1; a desired number of discrete points 𝑁 is passed to the grid data structure – specifying the
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number of grid nodes and the grid spacing in each dimension as (line 5) listed in Listing 1. On line 5,
a grid data structure is constructed and all input parameters to the API are checked for consistency.

1 from math import pi

2 import numpy as np

3 gmin = np.array((-5, -5, -pi)) // lower corner

4 gmax = np.array((5, 5, pi)) // upper corner

5 N = 41*ones(3, 1) // number of grid nodes

6 pdim = 3; // periodic boundary condition, dim 3

7 g = createGrid(gmin, gmax, N, pdim)

Listing 1. Creating a three-dimensional grid.

A grid data structure, g, (implemented in Listing 1) has the following fields: (i) discretized
nodes of the state(s) 𝑥 in (3), denoted as 1-D vectors g.𝑣𝑠; (ii) given the 1-D vectors g.𝑣𝑠, an 𝑛-
dimensional array of coordinates over 𝑛-dimensional grids is computed with matrix-based indexing;
this generates a mesh for all state nodal points on the grid g.𝑥𝑠 as a list across all the dimensions of
the grid; (iii) grid dimension g.𝑑𝑖𝑚, denoting the number of Cartesian axes needed for representing
the state 𝑥6; (iv) boundary conditions of the relavant HJ equation to be solved are grafted in by
populating the corresponding grid dimension with ghost cells (to be introduced shortly).

4.2 Implicit Surface Representations: Levelsets
For an implicit surface representation of a geometric function, we treat the coordinates as functional
arguments instead of functional values using a fixed level set of continuous function 𝒗 : R𝑛 → R.
We use signed distance functions to represent moving fronts throughout. When the signed distance
function is not numerically possible, we describe where the implicit surface representations are
smeared out in every routines’ documentation.

The query points for moving interfaces are grid point sets of the computational domain described
by implicit geometric primitives such as spheres, cylinders, ellipsoids and even polyhedrons such as
icosahedrons. All of these are contained in the folder InitialConditions on our projects page.

Suppose that the zero levelset of an implicit surface 𝒗 (𝑥, 𝑡) is defined as Γ = {𝑥 : 𝒗 (𝑥) = 0} on a
grid 𝐺 ∈ R𝑛 , where 𝑛 denotes the number of dimensions. Our representation of Γ on 𝐺 generalizes a
row-major layout. An example representation of an ellipsoid on a three-dimensional grid is illustrated
in Listing 2.

1 e = (g.xs[0])**2 // ellipsoid nodal points

2 e += 4.0*(g.xs[1])**2

3 if g.dim==3:

4 data += (9.0*(grid.xs[2])**2)

5 e -= radius // radius=major axis of ellipsoid

Listing 2. An ellipsoid as a signed distance function.

4.3 Calculus on Implicit Function Representations
Geometrical operations on implicitly defined functions carries through in the package as follows.

Suppose that 𝒗1 (𝑥) and 𝒗2 (𝑥) are two signed distance representations, then the union of the interior
of the two functions is simply min(𝒗1 (𝑥), 𝒗2 (𝑥)) (example illustrations in Fig. 1 a, c, d and h).
The intersection of the interior of two signed distance functions is generated by max(𝒗1 (𝑥), 𝒗2 (𝑥))
(example illustrations in Fig. 1). The complement of a function is found by negating its signed
distance function i.e. −𝒗 (𝑥). The resultant function as a result of the subtraction of the interior of one

6This parameter is useful when computing signed distance to every nodal point on the state space in the implicit representation
of 𝒗
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signed distance function 𝒗2 from the another one, say, 𝒗1 is defined max(𝒗1 (𝑥),−𝒗2 (𝑥)). All of these
are implemented in the module shapeOps.

• For example, if we desire to unite two separate interfaces defined along the nodal points of
a grid constructed on R𝑛, say a sphere and a rectangle, we would carry out an element-wise
minimum of every point belonging to the two or more interfaces. This is what we do in
shapeUnion.

• If we desire to intersect the two interfaces, we would carry out an element-wise maximum of
every nodal point belonging to the two or more interfaces. We implement this in the routine
shapeIntersect.

• Very often, we want to just subtract an interface’ geometry from that of another. In this case,
we negate the nodal points belong to the interface which we want to subtract, and then follow
this operation with an element-wise maximum of all shapes. We implement this operation in
shapeDifference.

• Another common operation on implicit interfaces is the need to find the complement set of an in-
terface. In this instance, we simply negate the original function. This is in shapeComplement.

5 SPATIAL DISCRETIZATION: UPWINDING
Monotone solutions to the levelset equation, as introduced by Crandall and Lions [11] are attractive
but they are at most first-order accurate and tend to be dissipative for most practical applications.
In this section, we discuss higher-order upwinding schemes that mimic high-order essentially non-
socillatory (ENO) schemes for computing the spatial derivatives 𝒗𝑥 for the numerical viscosity
solutions to levelset PDE’s of the Eulerian form (introduced in (17)). Codebases for procedures
herewith described are in the folder SpatialDerivatives.

Using the Eulerian form of the levelset equation,

𝒗𝑡 + 𝑭 · ∇𝒗 = 0 (17)

where 𝑭 is the speed functionI, the implicit function itself (section 4) is used both to denote and
to evolve the interface. Suppose that the interface speed 𝑭 is a three-vector [𝑓𝑥 , 𝑓𝑦, 𝑓𝑧] on a three-
dimensional Cartesian grid, expanding (17) the evolution of the implicit function on the zero levelset
yields the Eulerian form

𝒗𝑡 + 𝑓𝑥𝒗𝑥 + 𝑓𝑦𝒗𝑦 + 𝑓𝑧𝒗𝑧 = 0 (18)

of the interface evolution given that the interface encapsulates the implicit representation 𝒗. In
our implementations, we define 𝒗 throughout the computational domain Ω. However, narrow band
methods [43] that only contain the interface can be implemented as well so that memory is saved
while the front is being tracked. -

5.1 Upwinding
Let us first define the following differencing schemes

𝐷−𝒗 =
𝜕𝒗

𝜕𝑥
≈ 𝒗𝑖+1 − 𝒗𝑖

Δ𝑥
, 𝐷+𝒗 ≈ 𝒗𝑖 − 𝒗𝑖−1

Δ𝑥
. (19)

Suppose that 𝒗 and its speed 𝑭 are defined over a domain Ω (this is the Cartesian grid in our
representation). Using the forward Euler method, the levelset equation (18) becomes

𝒗𝑛+1 − 𝒗𝑛

Δ𝑡
+ 𝑓 𝑛𝑥 𝒗

𝑛
𝑥 + 𝑓 𝑛𝑦 𝒗

𝑛
𝑦 + 𝑓 𝑛𝑧 𝒗

𝑛
𝑧 = 0. (20)
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Now, suppose that we are on a one-dimensional surface and around a grid point 𝑖, then given that
𝑓 𝑛 may be spatially varying the equation in the foregoing evaluates to

𝒗𝑛+1
𝑖 − 𝒗𝑛𝑖
Δ𝑡

+ 𝑓 𝑛𝑖 (𝒗𝑥 )𝑛𝑖 = 0 (21)

where (𝒗𝑥 )𝑖 denotes the spatial derivative of 𝒗 w.r.t 𝑥 at the point 𝑖.

5.2 First-order accurate discretization
If 𝑓𝑖 > 0, the values of 𝒗 are traversing from left to right so that in order to update 𝒗 at the end of the
next time step, we must look to the left (going by the method of characteristics [39, §3.1]) and vice
versa if 𝑓𝑖 < 0. We therefore follow the standard upwinding method by using (19): we approximate
𝒗𝑥 with 𝐷−𝒗 whenever 𝑓𝑖 > 0 and we approximate 𝒗𝑥 with 𝐷+𝒗 whenever 𝑓𝑖 < 0. No approximation
is needed when 𝑓𝑖 = 0 since 𝑓𝑖 (𝒗𝑥 )𝑖 ) vanishes. This discretization scheme is accurate within 𝑂 (Δ𝑥)
given the first order accurate approximations 𝐷−𝒗 and 𝐷+𝒗. We have followed the naming convention
in [35] and in our SpatialDerivatives folder, we name this function upwindFirstFirst.

5.3 ENO Polynomial Interpolation of Solutions
Using a divided difference table, essentially non-oscillatory (ENO) polynomial interpolation of the
discretization [42] of the levelset equation are known to generate improved numerical approximations
to 𝐷−𝒗 and 𝐷+𝒗.

Suppose that we choose a uniform mesh discretization Δ𝑥 . Define the zeroth divided differences
of 𝒗 at the grid nodes 𝑖 as

𝐷0
𝑖 𝒗 = 𝒗𝑖 , (22)

and the first, second, and third order divided differences of 𝒗 as the midway between grid nodes i.e.

𝐷1
𝑖+1/2𝒗 =

𝐷0
𝑖+1𝒗 − 𝐷0

𝑖 𝒗

Δ𝑥
, 𝐷2

𝑖 𝒗 =
𝐷1
𝑖+1/2𝒗 − 𝐷1

𝑖−1/2𝒗

2Δ𝑥
, 𝐷3

𝑖+1/2𝒗 =
𝐷2
𝑖+1𝒗 − 𝐷2

𝑖 𝒗

3Δ𝑥
. (23)

Then, an essentially non-oscillating polynomial of the form

𝒗 (𝑥) = 𝑄0 (𝑥) +𝑄1 (𝑥)!𝑄2 (𝑥) +𝑄3 (𝑥) (24)

can be constructed. In this light, the backward and forward spatial derivatives of 𝒗 w.r.t 𝑥 at grid node
𝑖 is found in terms of the derivatives of the coefficients 𝑄𝑖 (𝑥) in the foregoing i.e.

𝒗𝑥 (𝑥𝑖 ) = 𝑄 ′
1 (𝑥𝑖 ) +𝑄 ′

2 (𝑥𝑖 ) +𝑄 ′
3 (𝑥𝑖 ). (25)

Define 𝑘 = 𝑖 − 1 and 𝑘 = 𝑖 for 𝒗−𝑥 and 𝒗+𝑥 respectively. Then the first order accurate polynomial
interpolation is essentially

𝑄1 (𝑥) = (𝐷1
𝑘+1/2𝒗) (𝑥 − 𝑥𝑖 ), 𝑄 ′

1 (𝑥𝑖 ) = 𝐷1
𝑘+1/2𝒗 (26)

i.e. first-order upwinding.
We follow [39]’s recommendation in avoiding interpolating near large oscillations in gradients.

Therefore, we choose a constant 𝑐 such that

𝑐 =

{
𝐷2
𝑘
𝒗 if |𝐷2

𝑘
𝒗 | ≤ |𝐷2

𝑘+1𝒗 |
𝐷2
𝑘+1𝒗 otherwise

(27)

so that

𝑄2 (𝑥) = 𝑐 (𝑥 − 𝑥𝑘 ) (𝑥 − 𝑥𝑘+1), 𝑄 ′
2 (𝑥𝑖 ) = 𝑐 (2𝑖 − 2𝑘 − 1)Δ𝑥 (28a)

is the second-order accurate upwinding solution for the polynomial interpolation. This is implemented
as upwindFirstENO2 in the SpatialDerivatives folder.
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To obtain a third-order accurate solution, we choose 𝑐★ as follows

𝑐★ =

{
𝐷3
𝑘★+1/2 if |𝐷3

𝑘★+1/2𝒗 | ≤ |𝐷3
𝑘★+3/2𝒗 |

𝐷3
𝑘★+3/2𝒗 if |𝐷3

𝑘★+1/2𝒗 | > |𝐷3
𝑘★+3/2𝒗 |.

(29)

Whence, we have

𝑄3 (𝑥) = 𝑐★(𝑥 − 𝑥𝑘★) (𝑥 − 𝑥𝑘★ + 1) (𝑥 − 𝑥𝑘★ + 2) (30a)

𝑄 ′
3 (𝑥𝑖 ) = 𝑐★(3(𝑖 − 𝑘★)2 − 6(𝑖 − 𝑘★) + 2) (Δ𝑥)2 (30b)

for the third-order accurate correction to the approximated upwinding scheme (24). This is imple-
mented as a routine in upwindFirstENO3aHelper and called as upwindFirstENO3 in the
SpatialDerivatives folder.

5.4 HJ Weighted Essentially Nonoscillatory Solutions
Here, we focus on weighted ENO (WENO) schemes with the same stencil as the third-order ENO
scheme but with accuracy reaching as high as fifth-order in the smooth parts of the solution. Results
here presented closely follow the presentation of Jiang and Peng in [28]. These WENO schemes
approximate spatial derivatives at integer grid points as opposed to at half-integer grid values as we
did in the ENO schemes in the previous section.

The third-order accurate ENO scheme essentially employs one of three substencils on a grid,
namely {𝑖 − 3, 𝑖 − 2, · · · , 𝑖}, {𝑖 − 2, 𝑖 − 1, · · · , 𝑖 + 1}, and {𝑖 − 1, · · · , 𝑖 + 3} on the stencils range
{𝑖 − 3, 𝑖 − 2, · · · , 𝑖 + 3} in calculating spatial derivatives for 𝒗.

Suppose that the spatial derivative 𝒗𝑥 is to be found using the left-leaning substencil: {𝑖 − 3, 𝑖 −
2, · · · , 𝑖}, then the third-order ENO scheme chooses one from

𝒗−,0
𝑥,𝑖

=
1
3
𝐷+𝒗𝑖−3 −

7
6
𝐷+𝒗𝑖−2 +

11
6
𝐷+𝒗𝑖−1 (31a)

𝒗−,1
𝑥,𝑖

= −1
6
𝐷+𝒗𝑖−2 +

5
6
𝐷+𝒗𝑖−1 +

1
3
𝐷+𝒗𝑖 (31b)

𝒗−,2
𝑥,𝑖

= −1
3
𝐷+𝒗𝑖−1 +

5
6
𝐷+𝒗𝑖 −

1
6
𝐷+𝒗𝑖+1 (31c)

where 𝒗−,𝑝
𝑥,𝑖

denotes the third-order 𝑝’th substencil to 𝒗𝑥 (𝑥𝑖 ) for 𝑝 = 0, 1, 2. The WENO approximation
to 𝒗𝑥 (𝑥𝑖 ) leverages a convex weighted average of the three substencils so that

𝒗−𝑥,𝑖 = 𝑤0𝒗
−,0
𝑥,𝑖

+𝑤1𝒗
−,1
𝑥,𝑖

+𝑤2𝒗
−,2
𝑥,𝑖

. (32)

In smooth regions of the phase space,𝑤0 = 0.1,𝑤1 = 0.6, and𝑤2 = 0.3 yield the optimally accurate
fifth order WENO approximation, we have for 𝒗−𝑥,𝑖

1
30

𝐷+𝒗𝑖−3−
13
60

𝐷+𝒗𝑖−2 +
47
60

𝐷+𝒗𝑖−1 +
9
20

𝐷+𝒗𝑖 −
1
20

𝐷+𝒗𝑖+1 (33)

the fifth-order approximation 𝒗𝑥 (𝑥𝑖 ) and provides the smallest truncation error on a six-point stencil.
To account for weights in non-smooth regions, however, the smoothness of the stencils (31) can

be estimated as recommended in [39, §3.4] so that if

𝛼1 = 0.1/(𝜎1 + 𝜖)2, 𝛼2 = 0.6/(𝜎2 + 𝜖)2, 𝛼3 = 0.1/(𝜎3 + 𝜖)2 (34)
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for

𝜎1 =
13
12

(𝐷+𝒗𝑖−3 − 2𝐷+𝒗𝑖−2 + 𝐷+𝒗𝑖−1)2 + 1
4
(𝐷+𝒗𝑖−3 − 4𝐷+𝒗𝑖−2 + 3𝐷+𝒗𝑖−1)2, (35a)

𝜎2 =
13
12

(𝐷+𝒗𝑖−2 − 2𝐷+𝒗𝑖−3 + 𝐷+𝒗𝑖 )2 + 1
4
(𝐷+𝒗𝑖−2 − 𝐷+𝒗𝑖 )2, (35b)

𝜎3 =
13
12

(𝐷+𝒗𝑖−1 − 2𝐷+𝒗𝑖 + 𝐷+𝒗𝑖+1)2 + 1
4
(3𝐷+𝒗𝑖−1 − 4𝐷+𝒗𝑖 + 𝐷+𝒗𝑖+1)2, (35c)

and

𝜖 = 10−6 max{𝐷+𝒗𝑖−3, 𝐷
+𝒗𝑖−2, 𝐷

+𝒗𝑖−1, 𝐷
+𝒗𝑖𝐷

+𝒗𝑖+1} + 10−99 (36)

then, we may define the weights for the WENO scheme as

𝑤1 = 𝛼1/
3∑︁

𝑖=1
𝛼𝑖 , 𝑤2 = 𝛼2/

3∑︁
𝑖=1

𝛼𝑖 , 𝑤3 = 𝛼3/
3∑︁

𝑖=1
𝛼𝑖 . (37)

which well approximates the optimal weights 𝑤0 = 0.1, 𝑤1 = 0.6 and 𝑤2 = 0.3 for decently smooth
𝜎𝑘 that can be dominated ny 𝜖. This is implemented as a routine in upwindFirstWENO5a and
called as upwindFirstWENO5.

5.5 Lax-Friedrichs Monotone Difference Schemes
We now describe a convergent monotone difference spatial approximation scheme for scalar conser-
vation laws of the form

𝒗𝑡 +
𝑁∑︁
𝑖=1

𝑓𝑖 (𝒗)𝑥𝑖 = 0 for 𝑡 > 0, 𝒙 = (𝑥1, · · · , 𝑥𝑁 ) ∈ R𝑛

𝒗 (𝒙, 0) = 𝒗0 (𝒙), for 𝒙 ∈ R𝑛 (38)

Suppose that 𝑁 = 1, let us define 𝜆𝑥 = Δ𝑡/Δ𝑥 , Δ+
𝑥 = 𝒗 𝑗+1 − 𝑣 𝑗 , and Δ−

𝑥 = 𝒗 𝑗 − 𝒗 𝑗−1. Then at the
𝑛𝑡ℎ time step, the Lax-Friedrichs scheme is [12]

𝒗𝑛+1
𝑗 = 𝒗𝑛𝑗 −

𝜆𝑥

2
Δ0
𝑥 𝑓 (𝒗𝑛𝑗 ) +

1
2
Δ+
𝑥Δ

−
𝑥 𝒗

𝑛
𝑗 . (39)

Furthermore, if we define the flux on the state space as

𝑔(𝒗 𝑗 , 𝒗 𝑗−1) =
𝑓 (𝒗 𝑗 ) + 𝑓 (𝒗 𝑗−1)

2
− 1

2
𝜆𝑥 (𝒗 𝑗 − 𝒗 𝑗−1), (40)

we may write

𝒗𝑛+1
𝑗 = 𝒗𝑛𝑗 − 𝜆+𝑥 (𝒗 𝑗 , 𝒗 𝑗−1). (41)

The Lax-Friedrichs scheme is monotone on the interval [𝑎, 𝑏] if the CFL condition

𝜆𝑥 max
𝑎≤𝒗≤𝑏

|𝑓 ′ (𝒗) | ≤ 1 (42)

for (𝑎, 𝑏) > 0 and the upwind differencing scheme for a nondecreasing 𝑓 is

𝒗𝑛+1
𝑗 = 𝒗𝑛𝑗 − 𝜆𝑥Δ

+
𝑥 𝑓 (𝒗𝑛𝑗−1). (43)

For a nonincreasing 𝑓 , we have

𝒗𝑛+1
𝑗 = 𝒗𝑛𝑗 − 𝜆𝑥Δ

+
𝑥 𝑓 (𝒗𝑛𝑗 ). (44)

Our Lax-Friedrichs implementation is in the link.
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6 TEMPORAL DISCRETIZATION: METHOD OF LINES
Here, we describe further improvements on the numerical derivatives of HJ equations by further
improving the fifth order accurate HJ WENO schemes presented in section 5. We adopt the method
of lines (MOL) used in converting the time-dependent PDE ’s to ODE’s.

In the MOL, the spatial derivatives in the PDE are replaced with algebraic approximations (in
our case, one of the ENO schemes earlier presented) so that spatial derivatives no longer explicitly
depend on spatial independent variables. Whence, only time, the initial value variable, is left so that
we end up with a system of ordinary differential equations (ODEs) that closely approximate the
original PDE.

Our presentation here follows the total variation diminishing (TVD) Runge Kutta (RK) schemes
with Courant-Friedrichs-Lewy (CFL) conditioning imposed for stability as presented in [41] and
implemented in MATLAB® in [35].

6.1 Higher-Order TVD-RK Time Discretizations
To adopt the method of lines, the 𝑁 -dimensional levelset representation of 𝒗 is first rolled into a
1-D vector and an adaptive integration step size, Δ𝑡 , is chosen to guarantee stability following the
recommendation in [45]. The forward Euler algorithm thus becomes

𝒗 (𝑥, 𝑡 + Δ𝑡) = 𝒗 (𝑥, 𝑡) + Δ𝑡Υ(𝑥, 𝒗 (𝑥, 𝑡)) (45)

where Υ is now the function to be integrated.
A standard MOL can then be applied for the integration similar to ODEs (we have followed [35]’s

code layout to provide consistency for MATLAB users). Since the details of the implementation are
described in [35], we here describe the function arguments and describe call signatures.

We implement TVD-RK MOL schemes up to third-order accurate forward Euler integration
schemes and the calling signature is as described in Listing 3.

1 odeCFLx(schemeFunc, tspan, y0, options, schemeData)

Listing 3. CFL-constrained method of lines routines.

where 𝑥 could be one of 1, 2, or 3 to indicate first-order accurate, second-order accurate, or third-
order accurate TVD-RK scheme. schemeFunc is typically a one of the Lax-Friedrichs approxima-
tion routines (implemented as termLaxFriedrichs) in the folder ExplicitIntegration/Term
that approximates the HJ equation based on dissipation functions (to be shortly introduced).

The first-order accurate TVD (it is total variation bounded [TVB] actually) together with the
spatial discretization used for the PDE is equivalent to the forward Euler method. We implement this
as odeCFL1.

The second-order accurate TVD-RK scheme follows the RK scheme by evolving the Euler step to
𝑡𝑛 + Δ𝑡 ,

𝒗𝑛+1 − 𝒗𝑛

Δ𝑡
+ 𝐹𝑛 · ∇𝒗𝑛 = 0. (46)

A following Euler step to 𝑡𝑛 + 2Δ𝑡 follows such that

𝒗𝑛+2 − 𝒗𝑛+1

Δ𝑡
+ 𝐹𝑛+1 · ∇𝒗𝑛+1 = 0 (47)

before a convex combination of the initial value function and the result of the preceding Euler steps
is taken in the following averaging step

𝒗𝑛+1 =
1
2
{𝒗𝑛 + 𝒗𝑛+2}. (48)
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The equation in the foregoing produces the second-order accurate TVD approximation to 𝒗 at 𝑡𝑛 +Δ𝑡 ,
implemented as odeCFL2.

With the third-order accurate TVD-RK scheme, the first two advancements in forward Euler
schemes are computed but with a different averaging scheme

𝒗𝑛+1/2 =
1
4
{3𝒗𝑛 + 𝒗𝑛+2} (49)

which averages the previous two solutions at 𝑡𝑛 + 1
2
Δ𝑡 . The third Euler advancement step to 𝑡𝑛 + 3

2
Δ𝑡

is

𝒗𝑛+
3
2 − 𝒗𝑛+

1
2

Δ𝑡
+ 𝐹𝑛+

1
2 · ∇𝒗𝑛+ 1

2 = 0 (50)

together with the averaging scheme

𝒗𝑛+1 =
1
3
{𝒗𝑛 + 2𝒗𝑛+

3
2 } (51)

to produce a third-order accurate approximation to 𝒗 at time 𝑡𝑛 + Δ𝑡 , implemented as odeCFL3.

7 EXAMPLES AND NUMERICAL EXPERIMENTS
In this section, we will present problems motivated by real-world scenarios and amend them to HJ
PDE forms where their numerical solutions can be resolved with our LevelSetPy toolbox. The
problems that we consider belong in transport, differential games, and time-to-reach
problem classes. The library has been tested on numerous problems; however, for the sake of brevity
we will only report a few results.

For the differential games, we do not necessarily analyze a single game, but rather a collection/-
family of games, Υ = {Γ1, · · · , Γ𝑔}. Each game within a differential game may be characterized as a
pursuit-evasion game, Γ. Such a game terminates when capture occurs, that is the distance between
players falls below a predetermined threshold. Each player in a game shall constitute either a pursuer
(𝑷 ) or an evader (𝑬). Let the cursory reader not interpret 𝑷 or 𝑬 as controlling a single agent. In our
various numerical experiments, we are poised with one or several pursuers (enemies) or evaders
(peaceful citizens). However, when 𝑷 or 𝑬 governs the behavior of but one agent, these symbols will
denote the agent itself. The nucleolus of our illustrative examples is to geometrically (approximately)
ascertain the separation between the CZ and EZ surfaces i.e. the barrier hypersurface, where starting
points exist for which escape occurs, capture occurs, and for which the outcome is neutral.

To address our desiderata, we must settle upon how best should 𝑷 pursue 𝑬 . Here, at every time
instant, 𝑷 possesses knowledge of his own and that of 𝑬’s position so that 𝑷 knows how to regulate
its various controlling variables with respect to 𝑬’s motion in an optimal fashion. This follows
the mathematical layout in section 3. The task is to assay the game of kind for the envelope of
the capturable states i.e. we are not so much as seeking a game’s outcome as we are seeking the
conditions under which capture can occur. This introduces the barrier hypersurface which separates,
in the initial conditions space, the hypersurface of capture from those of escape. In this game of kind
postulation, all optimal strategies are not unique, but rather are a legion. Ergo, we are concerned
with the set of initial positions on the vectogram where the capture zone (CZ) exists i.e. where game
termination occurs; and the nature of escape zones (EZ) i.e. zones where termination or escape does
not occur – after playing the differential game.

The rest of this section introduces different representative examples where real-world problems are
adopted and amended to HJ PDE forms and whose solution we seek to numerically recover. Space
here has limited us to four illustrative examples: First, we present two rockets in a pursuit-evasion
game where the goal is for the evader to guard a territory and the pursuer’s goal is to penetrate the

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 20XX.

https://github.com/robotsorcerer/LevelSetPy/blob/cupy/ExplicitIntegration/Integration/ode_cfl_2.py
https://github.com/robotsorcerer/LevelSetPy/blob/cupy/ExplicitIntegration/Integration/ode_cfl_3.py


LevelSetPy: A GPU Package for Hyperbolic HJ PDEs Solubility 000:15

boundary of the territory being guarded. Second, we describe a double integral dynamical system:
the double integral plant is a simplified abstraction of many real-world force-control system e.g.
those that obey Newton’s second law of motion or the torque-inertia dynamics of a body with rotary
dynamics. We provide the numerical enumeration of the solution to the analytical time to reach
problem. Third, we describe a collective behavior system in natural starlings and we provide a
mathematical abstraction that allows the computation of the collision-avoidance safety envelope
that may then be used in e.g. runtime assurance (RTA) safety-critical controller [24]. Fourth, we
compare the resolution of the (approximately) capturable sets in Dubins’ game of two identical
vehicles with the levelsets toolbox’s solution. RTA controllers act intelligently as a safety system
between a real-world controller and the system to be controlled by providing a state monitoring
scheme useful in intervening in the real-world where vulnerabilities to danger is a constant factor
to be mitigated against. All the examples presented in this section can be found in the Examples
folder of our online library.

7.1 Two Rockets in a Pursuit-Evasion Terminal Value Differential Game
We adopt the rocket launch problem of Dreyfus [15] and amend it to a differential game between two
identical rockets, 𝑷 and 𝑬 , on an (𝑥, 𝑧) cross-section of a Cartesian plane. We set out to compute the
useable part of the boundary of the approximate terminal surface of a predefined target set over a
time horizon (i.e. the target tube). The useable part entails the regions of the state-space for which
the min-max operation over either strategy of 𝑷 and 𝑬 is below 0. The boundary of the useable part
(BUP) constitute where the variational HJI PDE is exactly zero.

The BUP, target tube, or in modern parlance backward reachable tube (BRT) shall be implicitly
constructed with our LevelSetPy library as the zero-level set of an implicitly defined function over
the entire state space. At the zero level set, resolving the kinematic equation of the rockets in relative
coordinates helps us understand the nature of the barrier hypersurface. Specifically, the target tube is
a terminal surface that enunciates the set of initial starting points for which termination (capture or
C), no termination (escape or E) of a game does occur, or analyzing the barrier separating C or E
after playing the differential game.

A single rocket’s motion is dictated by the following system of differential equations (under
Dreyfus’ assumptions):

¤𝑥1 = 𝑥3, 𝑥1 (𝑡0) = 0; (52a)

¤𝑥2 = 𝑥4, 𝑥2 (𝑡0) = 0; (52b)

¤𝑥3 = 𝑎 cos𝑢, 𝑥3 (𝑡0) = 0; (52c)

¤𝑥4 = 𝑎 sin𝑢 − 𝑔, 𝑥4 (𝑡0) = 0; (52d)

where, (𝑥1, 𝑥2) are respectively the horizontal and vertical range of the rocket (in feet); (𝑥3, 𝑥4) are
respectively the horizontal and vertical velocities of the rocket (in feet per second); and 𝑎 and 𝑔 are
respectively the acceleration and gravitational accelerations (in feet per square second).

We now make the problem amenable to a two-player differential game. Let rockets 𝑷 and 𝑬
share identical dynamics in a general sense. The coordinates of 𝑷 are freely chosen; however, the
coordinates of 𝑬 are chosen a distance 𝝓 away from (𝑥, 𝑧) at the origin of the plane (as illustrated in
Fig. 2) so that the 𝑷𝑬 vector’s inclination measured counterclockwise from the 𝒙 axis is 𝜃 .

Being a free endpoint problem, let the states of 𝑷 and 𝑬 be denoted by (𝒙𝑝 , 𝒙𝑒 ). Furthermore,
let the rockets be driven by their thrusts, denoted by (𝑢𝑝 , 𝑢𝑒 ) for 𝑷 and 𝑬 respectively (see Figure
2). Fix the range of the rockets so that what is left of the motion of either 𝑷 or 𝑬’s is restricted to
orientation on the (𝑥, 𝑧) plane as illustrated in Fig. 2. Whence, the relevant kinematic equations (KE)
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Fig. 2. Motion of two rockets on a Cartesian 𝒙𝒛-plane with a thrust inclination in relative coordinates
given by 𝜃 := 𝑢𝑝 − 𝑢𝑒 .

from equation (52) are

¤𝑥2𝑒 = 𝑥4𝑒 ; ¤𝑥2𝑝 = 𝑥4𝑝 , (53a)
¤𝑥4𝑒 = 𝑎 sin𝑢𝑒 − 𝑔; ¤𝑥4𝑝 = 𝑎 sin𝑢𝑝 − 𝑔 (53b)

where 𝑎 and 𝑔 are respectively the acceleration and gravitational accelerations (in feet per square
second) 7.

We want to determine the outcome of a simulated game between the two agents over a time
interval. In the process of this protracted simulation, the nature of the barrier surface (henceforth
called the backward reachable tube [37] or BRT8) will change.

Our desideratum is determining if capture can be achieved at all in a “yes-or-no" fashion. Therefore,
we pose the game over a finite range over outcomes so that the game at hand assumes Isaac’s [26]
description of a game of kind. 𝑷 can achieve as much proximity to a given target set as much
as possible while 𝑬 is set up to protect the target set. For example, one may take 𝑷 as seeking
to penetrate a (closed) territory (called target) under guard by player 𝑬 ; and 𝑷 ’s goal may be to
maximize the time of play so as to penetrate the barrier surface of the target. 𝑬 seeks to protect a
given target’s surface. As long as 𝑬 remains within this backward reachable tube (or BRT), 𝑷 cannot
cause damage or exercise an action of deleterious consequence on, say, the territory being guarded
by 𝑬 .

Setting up 𝑬 to maximize the payoff quantity (55) with the largest possible margin or at least
frustrate the efforts of 𝑷 with minimal collateral damage while the pursuer minimizes the payoff
quantity constitutes a terminal value optimal differential game: there is no optimal pursuit without

7We set 𝑎 = 1𝑓 𝑡/𝑠𝑒𝑐2 and 𝑔 = 32𝑓 𝑡/𝑠𝑒𝑐2 in our simulation.
8It is called backward because the game is simulated backward in time.
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an optimal evasion since 𝑷 and 𝑬 are both executing motions as they see fit within the problem
parameters.

Therefore, we rewrite (52) with 𝑷 ’s motion relative to 𝑬 ’s along the (𝒙, 𝒛) plane so that the relative
orientation as shown in Fig. 2 is 𝜃 = 𝑢𝑝 − 𝑢𝑒 – this shall serve as the control input. Following the
conventions in Fig. 2, the game’s relative equations of motion in reduced space [26, §2.2] i.e. is
𝒙 = (𝑥, 𝑧, 𝜃 ) where 𝜃 ∈

[
−𝜋

2 ,
𝜋
2
)

and (𝑥, 𝑧) ∈ R2 are

¤𝒙 =


¤𝑥 = 𝑎𝑝 cos𝜃 + 𝑢𝑒𝑥,
¤𝑧 = 𝑎𝑝 sin𝜃 + 𝑎𝑒 + 𝑢𝑒𝑥 − 𝑔,

¤𝜃 = 𝑢𝑝 − 𝑢𝑒 .

(54)

The boundary of the usable part of the origin-centered circle of radius 𝝓 (we have set 𝝓 = 1.5 feet
in our evaluations) is ∥𝑷𝑬 ∥2 so that

𝝓2 = 𝑥2 + 𝑧2 . (55)

All capture points are specified by the variational HJ PDE [37]:

𝜕𝝓

𝜕𝑡
(𝒙, 𝑡) + min

[
0,𝑯 (𝒙, 𝜕𝝓 (𝒙, 𝑡)

𝜕𝒙
)
]
≤ 0, (56)

with Hamiltonian given by

𝑯 (𝒙, 𝑝) = − max
𝑢𝑒 ∈[𝑢𝑒 ,𝑢𝑒 ]

min
𝑢𝑝 ∈[𝑢𝑝 ,𝑢𝑝 ] .

[
𝑝1 𝑝2 𝑝3

] 
𝑎𝑝 cos𝜃 + 𝑢𝑒𝑥

𝑎𝑝 sin𝜃 + 𝑎𝑒 + 𝑢𝑝𝑥 − 𝑔

𝑢𝑝 − 𝑢𝑒

 (57)

Here, the co-states 𝑝 is defined with a strict corresponding property, and [𝑢
𝑒
, 𝑢𝑒 ] denotes the extremals

that the evader must choose as input in response to the extremal controls that the pursuer plays i.e.
[𝑢

𝑝
, 𝑢𝑝 ].

We must consider the possibilities of behavior by either agent in an all-encompassing fashion
in order to know what an outcome may be in the future should either agent execute different
controls. Rather than resort to analytical geometric reasoning, we may analyze this game via a
principled numerical simulation. This is what we present next. From (57), set 𝑢

𝑒
= 𝑢

𝑝
= 𝑢 ≜ −1 and

𝑢𝑝 = 𝑢𝑒 = 𝑢 ≜ +1 so that

𝑯 (𝒙, 𝑝) = − max
𝑢𝑒 ∈[𝑢𝑒 ,𝑢𝑒 ]

min
𝑢𝑝 ∈[𝑢𝑝 ,𝑢𝑝 ]

[
𝑝1 (𝑎𝑝 cos𝜃 + 𝑢𝑒𝑥) + 𝑝2 (𝑎𝑝 sin𝜃 + 𝑎𝑒 + 𝑢𝑝𝑥 − 𝑔) + 𝑝3 (𝑢𝑝 − 𝑢𝑒 )

]
,

= −𝑎𝑝𝑝1 cos𝜃 − 𝑎𝑝2 sin𝜃 − 𝑎𝑝2 + 𝑔𝑝2 − max
𝑢𝑒 ∈[𝑢𝑒 ,𝑢𝑒 ]

min
𝑢𝑝 ∈[𝑢𝑝 ,𝑢𝑝 ]

(
𝑝1𝑢𝑒 + 𝑝2𝑢𝑝𝑥 + 𝑝3 (𝑢𝑝 − 𝑢𝑒 )

)
,

= −𝑎𝑝𝑝1 cos𝜃 − 𝑎𝑝2 sin𝜃 − 𝑎𝑝2 + 𝑔𝑝2 − 𝑢 |𝑝1𝑥 + 𝑝3 | + 𝑢 |𝑝2𝑥 + 𝑝3 |,
≜ −𝑎𝑝1 cos𝜃 − 𝑝2 (𝑔 − 𝑎 − 𝑎 sin𝜃 ) − 𝑢 |𝑝1𝑥 + 𝑝3 | + 𝑢 |𝑝2𝑥 + 𝑝3 |, (58)

where the last line in (58) follows from setting 𝑎𝑒 = 𝑎𝑝 ≜ 𝑎.
For the target set being guarded by 𝑬 , we choose an implicit representation with a cylindrical

mesh on a three-dimensional grid as our representation. The grid’s nodes are uniformly spaced apart
at a resolution of 100 points per dimension over the interval [−64, 64]. In numerically solving for
the Hamiltonian (58), a TVD-RK discretization scheme [42] based on fluxes is used in choosing
smooth nonoscillatory results as described in §6. Denote by (𝑥,𝑦, 𝑧) a generic point in R3 so
that given mesh sizes Δ𝑥, Δ𝑦, Δ𝑧, Δ𝑡 > 0, letters 𝑢, 𝑣,𝑤 represent functions on the 𝑥,𝑦, 𝑧 lattice:
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Fig. 3. (Left to Right): Backward reachable tubes (capture surfaces) for the rocket system (cf. Fig. 2) optimized for
the paths of slowest-quickest descent in equation (57) at various time steps during the differential game. In all, the
BRTs were computed using the method outlined in [9, 36, 39]. We set 𝑎𝑒 = 𝑎𝑝 = 1𝑓 𝑡/𝑠𝑒𝑐2 and 𝑔 = 32𝑓 𝑡/𝑠𝑒𝑐2 as in
Dreyfus’ original example.

Δ = {(𝑥𝑖 , 𝑦 𝑗 , 𝑧𝑘 ) : 𝑖, 𝑗, 𝑘 ∈ Z}. We define the numerical monotone flux �̂� (𝒙, 𝑝), of 𝑯 (𝒙, 𝑝) as

�̂� (𝑢+, 𝑢−, 𝑣+, 𝑣−,𝑤+,𝑤−) = 𝑯

(
𝑢+ + 𝑢−

2
,
𝑣+ + 𝑣−

2
,
𝑤+ +𝑤−

2

)
,

= −1
2

[
𝛼
(𝑖 ) 𝑗
𝑥

(
𝑢+ − 𝑢− ) + 𝛼

(𝑖 ) 𝑗
𝑦

(
𝑣+ − 𝑣−

)
+ 𝛼

(𝑖 ) 𝑗
𝑧

(
𝑤+ −𝑤− ) ] , (59)

where

𝛼𝑥 = max
𝑎≤𝑢≤𝑏
𝑐≤𝑣≤𝑑
𝑒≤𝑤≤ 𝑓

|𝑯𝑢 (·) |, 𝛼𝑦 = max
𝑎≤𝑢≤𝑏
𝑐≤𝑣≤𝑑
𝑒≤𝑤≤ 𝑓

|𝑯𝑣 (·) |, and 𝛼𝑧 = max
𝑎≤𝑢≤𝑏
𝑐≤𝑣≤𝑑
𝑒≤𝑤≤ 𝑓

|𝑯𝑤 (·) | (60)

are the dissipation coefficients, controlling the level of numerical viscosity in order to realize a stable
solution that is physically realistic [11]. Here, the subscripts of 𝑯 are the partial derivatives w.r.t the
subscript variable, and the flux, �̂� (·) is monotone for 𝑎 ≤ 𝑢± ≤ 𝑏, 𝑐 ≤ 𝑣± ≤ 𝑑, 𝑒 ≤ 𝑤± ≤ 𝑓 . It is easy
to very from (58) that

𝛼𝑥 = |𝑎 cos𝜃 | + 𝑢 |𝑥 |, 𝛼𝑦 = |𝑔 − 𝑎 − 𝑎 sin𝜃 | + 𝑢 |𝑥 |, and 𝛼𝑧 = |𝑢 | + |𝑢. (61)
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1 finite_diff_data = {"innerFunc": termLaxFriedrichs,

2 "innerData": {"grid": g, "hamFunc": rocket_rel.ham,

3 "partialFunc": rocket_rel.dissipation,

4 "dissFunc": artificialDissipationGLF,

5 "CoStateCalc": upwindFirstENO2},

6 "positive": True} // direction of approx. growth

Listing 4. HJ ENO2 computational scheme for the rockets.

The Hamiltonian, upwinding scheme, flux dissipation method, and the overapproximation parame-
ter for the essentially non-oscillatory polynomial interpolatory data used in geometrically reasoning
about the target set is set up as seen in Listing 4. The data structure finite_diff_data con-
tains all the routines needed for adding dynamics to the original implicit surface representation of
𝒗 (𝒙, 𝑡). The monotone spatial upwinding scheme used (here termLaxFriedrichs described in
§5.5) is passed into the innerFunc query field. The explicit form of the Hamiltonian (see (58)) is
passed to the hamFunc query field and the grid described in the foregoing is passed to the grid
field. We adopted a second-order accurate upwinding scheme together with the Lax-Friedrichs
approximator. To indicate that we intend to overapproximate the value function, we specify a True
parameter for the positive query field.

Safety is engendered by having the evader respond optimally to the pursuer at various times during
the game. We are thus interested in the entire safety set over the time interval of play (i.e. the safety
tube). The backward reachable tube (BRT) [37], under the control strategies of 𝑷 or 𝑬 , is a part
of the phase space that constitutes Ω × 𝑇 . We would like the BRT to cover as much of the entire
phase space as possible. Thus, we overapproximate it. Using our GPU-accelerated levelset toolbox,
we compute the overapproximated BRT of the game over a time span of [−2.5, 0] seconds over 11
global optimization time steps. The BRTs at representative time steps in the optimization procedure
is depicted in Fig. 3.

The initial value function (leftmost inset of Fig. 3) is represented as a (closed) dynamic implicit
surface over all point sets in the state space (using a signed distance function) for a coordinate-aligned
cylinder whose vertical axes runs parallel to the orientation of the rockets depicted in Fig. 2. This
closed and bounded assumption of the target set is a prerequisite of the backward reachable analysis
(see [37]). It allows us to include all limiting velocities The two middle capture surfaces indicate the
evolution of the capture surface (here the zero levelset) of the target set upon the optimal response
of the evader to the pursuer. We reach convergence at the eleventh global optimization timestep
(rightmost inset of Fig. 3).

Reachability theory thus affords us an ability to numerically reason about the behavior of these
two rockets aforetime in a principled manner. To do this, we have passed relevant parameters to
the package as shown in Listing 4 and run a CFL constrained optimization scheme (as in Listing 3)
for a finite number of global optimization timesteps. It is global because internally, there are other
local spatial and temporal finite differencing scheme that occurs “under the hood" (see 5 and the
corresponding codes described).

7.2 Time Optimal Control: The Double Integral Plant
Here, we analyze a time-optimal control problem to determine what admissible control9 can “trans-
port" the system under consideration to a desired “origin" in the shortest possible time. We consider
the double integral plant [5, 46] as an illustrative example of our objective, which is to compute the
points in the state space that can reach the origin in finite-time under the influence of a time-optimal
controller.

9A control law is admissible when its range belongs in the admissible input set where it is bounded.
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We shall leverage standard necessary conditions from the principle of optimality [4] to obtain a
time-optimal feedback control design; introduce the notion of isochrones and switching surfaces;
and discuss the analytic and approximate solutions (with our library) to the time-optimal control
problem for a double integrator. We shall conclude the section by comparing the analytic and the
overapproximated numerical solution (using the LevelSetPy toolbox) to the time to reach the origin
problem.

7.2.1 Dynamics and Problem Setup. The double integrator is controllable, so that open-loop
strategies may be employed in driving specific states to the origin in finite time [46]. The plant has
the following second-order dynamics

¥𝒙 (𝑡) = 𝒖 (𝑡) (62)

and admits bounded control signals | 𝒖 (𝑡) |≤ 1 for all time 𝑡 . After a change of variables,we have the
following system of first-order differential equations

¤𝒙1 (𝑡) = 𝒙2 (𝑡),
¤𝒙2 (𝑡) = 𝒖 (𝑡), | 𝒖 (𝑡) |≤ 1. (63)

The reachability problem that we consider is to address the question of what states can reach a
certain point (here, the origin) in a transient manner. That is, we would like to find point sets on the
state space, at a particular time step, such that we can bring the system to the equilibrium, (0, 0).

7.2.2 Time-optimal control scheme. This is an 𝑯 -minimal control problem whereupon we must
find the control law that minimizes the Hamiltonian

𝑯 (𝒙, 𝑝) = 𝑝1 ¤𝒙1 + 𝑝2 ¤𝒙2 . (64)

The necessary optimality condition stipulates that the minimizing control law be

𝒖 (𝑡) = − sign (𝑝2 (𝑡)) ≜ ±1. (65)

For the co-states in question, suppose that their initial values (for constants 𝑘1 and 𝑘2) are
𝑝1 (𝑡0) = 𝑘1 and 𝑝2 (𝑡0) = 𝑘2, only four candidates can serve as time-optimal control sequences
i.e. {[+1], [−1], [+1,−1], [−1, +1]}. On a finite time interval, 𝑡 ∈ [𝑡0, 𝑡𝑓 ], the time-optimal 𝒖 (𝑡) is a
constant 𝑘 ≡ ±1 so that for initial conditions 𝒙1 (𝑡0) = 𝝃1 and 𝒙2 (𝑡0) = 𝝃2, it can be verified that the
state trajectories obey the relation

𝒙1 (𝑡) = 𝝃1 +
1
2
𝑘

(
𝒙2

2 − 𝝃 2
2
)
, for 𝑡 = 𝑘 (𝒙2 (𝑡) − 𝝃2) . (66)

The trajectories of (66) traced out over a finite time horizon 𝑡 = [−1, 1] with piecewise constant
control laws, 𝑢 = ±1 on a state space and under the control laws 𝒖 (𝑡) = ±1 is depicted in Fig. 4.
Curves with arrows that point upwards denote trajectories under the control law 𝒖 = +1; call these
trajectories 𝜸+; while the trajectories marked by dashed arrows pointing downward on the curves
were executed under 𝒖 = −1; call these trajectories 𝜸− .

7.2.3 Analytic Time to Reach the Origin. The time to reach the origin (0, 0) from any other pair
(𝑥1, 𝑥2) on the state plane of Fig. 4 in the shortest possible time is our approximation problem. This
minimum time admits an analytical solution given by [1]

𝑡★(𝒙1, 𝒙2) =


𝒙2 +

√︃
4𝒙1 + 2𝒙2

2 if 𝒙1 >
1
2
𝒙2 |𝒙2 |

−𝒙2 +
√︃
−4𝒙1 + 2𝒙2

2 if 𝒙1 < −1
2
𝒙2 |𝒙2 |

|𝒙2 | if 𝒙1 =
1
2
𝒙2 |𝒙2 |.

(67)
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Fig. 4. State trajectories of the double integral plant. The solid curves are trajectories generated for
𝒖 = +1 while the dashed curves are trajectories for 𝒖 = −1.

Fig. 5. Analytical time to reach the origin on the state grid, (R × R); the switching curve, 𝜸 = 𝜸− ∪ 𝜸+, passes
through states on (0, 0).

The geometry (phase portrait) of (67) is shown in Fig. 5. Let us define 𝜸+ as the locus of all points
(𝑥1, 𝑥2) which can be forced to the origin by 𝑢 = +1 i.e.

𝜸+ = {(𝑥1, 𝑥2) : 𝑥1 =
1
2
𝑥2

2 ; 𝑥2 ≤ 0} (68)
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(a) Isochrones above 𝜸 (b) Isochrones below 𝜸

Fig. 6. (a) Isochrones for states above the switching curve, (b) states below the switching curve.

and let 𝜸− be the locus of all points (𝑥1, 𝑥2) which can be forced to the origin by 𝑢 = −1 i.e.

𝜸− = {(𝑥1, 𝑥2) : 𝑥1 =
1
2
𝑥2

2 ; 𝑥2 ≥ 0}. (69)

The confluence of the locus of points on 𝜸+ and 𝜸− is the switching curve, depicted in bright
orange in Fig. 5, is

𝜸 ≜ 𝜸+ ∪𝜸− =

{
(𝒙1, 𝒙2) : 𝒙1 =

1
2
𝒙2 |𝒙2 |

}
. (70)

The unique time-optimal control law, 𝒖★, that solves this problem can be determined to be

𝒖★ = 𝒖★(𝒙1, 𝒙2) = +1 ∀ (𝒙1, 𝒙2) ∈ 𝜸+ ∪ R+,
𝒖★ = 𝒖★(𝒙1, 𝒙2) = −1 ∀ (𝒙1, 𝒙2) ∈ 𝜸− ∪ R−, (71)

𝒖★ = −sgn {𝒙2} ∀ (𝒙1, 𝒙2) ∈ 𝜸 .

The minimum cost for this problem is equivalent to the minimum time for states (𝒙1, 𝒙2) to reach the
origin (0, 0). This is given as

𝚽
★(𝒙, 𝑡) ≜ 𝑡★(𝒙1, 𝒙2) (72)

with the associated terminal value

− 𝜕𝚽★(𝒙, 𝑡)
𝜕𝑡

= 𝑯

(
𝑡, 𝒙,

𝜕𝚽★(𝒙, 𝑡)
𝜕𝑡

, 𝒖

) ����𝒙=𝒙★
𝒖=𝒖★

with 𝑯 (𝑡 ; 𝒙, 𝒖, 𝑝1, 𝑝2) = 𝒙2 (𝑡)𝑝1 (𝑡) + 𝒖 (𝑡)𝑝2 (𝑡) (73)

and

𝑝1 =
𝜕𝑡★

𝜕𝒙1
, 𝑝2 =

𝜕𝑡★

𝜕𝒙2
. (74)

The HJ equation is given by

𝜕Φ★

𝜕𝑡
+ 𝒙2

𝜕Φ★

𝜕𝒙1
− 𝜕Φ★

𝜕𝒙2
= 0 if 𝒙1 > −1

2
𝒙2 |𝒙2 |,

𝜕Φ★

𝜕𝑡
+ 𝒙2

𝜕Φ★

𝜕𝒙1
+ 𝜕Φ★

𝜕𝒙2
= 0 if 𝒙1 < −1

2
𝒙2 |𝒙2 |,

𝜕Φ★

𝜕𝑡
+ 𝒙2

𝜕Φ★

𝜕𝒙1
− sgn{𝒙2}

𝜕Φ★

𝜕𝒙2
= 0 if 𝒙1 = −1

2
𝒙2 |𝒙2 |. (75)

The set of states (𝑥1, 𝑥2) that can be forced to reach the origin in the same minimum time 𝑡★ ≡ Φ★

are the system’s isochrones which are illustrated in Fig. 6. A point (𝒙1, 𝒙2) on the state grid belongs

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 20XX.



LevelSetPy: A GPU Package for Hyperbolic HJ PDEs Solubility 000:23

to the set of states 𝑆 (𝑡★) from which it can be forced to the origin (0, 0) in the same minimum time
𝑡★. We call the set 𝑆 (𝑡★) the minimum isochrone. These are the isochrones of the system – akin to
the isochrone map used in geography, hydrology, and transportation planning for depicting areas of
equal travel time to a goal state. The level sets of (75) correspond to the isochrones of the system as
illustrated in Fig. 6.

7.2.4 Approximate Time to Reach the Origin. We compare the analytical solution to the time to
reach (TTR) the origin problem (see Fig. 6) against the approximated TTR solution using a dynamic
implicit surface representation of the approximate value function. An ellipsoid with a radius of 1.0
along its major axis was chosen to represent the initial time to reach interface (see Fig. 7a, right
inset). We then choose a controller with values ±1 depending on which side of the switch surface
Fig. 6 we are on in generating the system’s phase portrait illustrated in Fig. 4.

The closed-form solution to the time-to-reach the origin problem on a 2-D grid with 𝑥/𝑦 axis
limits [[−1, 1], [−1, 1]] is shown in the left inset of Fig. 4a. We set out to investigate the result of
adding dynamics (with levelsets) to the elliptic implicit representation of the analytical TTR and
evaluate the efficacy of our computational scheme. We proceed as shown in Listing 6.

1 finite_diff_data = {"innerFunc": termLaxFriedrichs,

2 "innerData": {"grid": g, "hamFunc": dint.ham,

3 "partialFunc": dint.dissipation,

4 "dissFunc": artificialDissipationGLF,

5 "CoStateCalc": upwindFirstENO2},

6 "positive": False} // direction of approx. growth

Listing 5. Overapproximation setup for the double integrator TTR problem.

As a custom, a separate class (see DoubleIntegrator in the folder DynamicalSystems)
holds all the dynamics (cref. equations 62 and 63), switching surface (cref. equations 68, 69, and 70),
Hamiltonian (cref. equation 64), dissipation, and costates (cref. 74) of the double integrator plant.
Over a twenty-step timespan ranging from 0 to 20, we integrate the right-hand-side of (75) forward
in time by the Courant-Friedrichs-Lewy constrained second-order accurate integrator i.e. odeCFL2
in our library:

1 t, y, ~ = odeCFL2(termRestrictUpdate, t_span, y0, options, finite_diff_data)

Listing 6. Overapproximation setup for the double integrator TTR problem.

where y0 is the initial elliptic function that represents Φ in (75), options are the set of integration
parameters such as the number of actual timesteps to take in the adaptive integration scheme, the
maximum step size and so on. The routine termRestrictUpdate restricts the sign of the update
of the HJ approximation by either increasing or decreasing the levelset.

A side-by-side comparison of the level sets is shown in Fig. 7a. The approximation to the isochrones
by our integration scheme is an overapproximation of the analytical TTR problem. This is illustrated
in the right inset of Fig. 7a. Because we are not concerned with the safe set (unlike the example
in 7.1), we do not overapproximate the time-to-reach solution. On the overall, we obtain similar
isochrones to the analytical result, hence validating our hypothesis.

7.3 Reach-Avoid Games: Flocks within Starling Murmurations
Here, we will borrow inspiration from natural swarms, particularly the murmuration [21] of European
starlings – the sturnus vulgaris – in our problem construction and solution concept. We are concerned
with reach-avoid games in multiagent systems, whereupon agents must safely navigate a phase
space (e.g. in achieving an attitude convergence goal), whilst avoiding collision with one another
and capture by an external predator. A natural environment where this problem occurs is in the
murmuration of European Starlings. The problem that we study is of importance in multiagent
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(a) Analytical and Initial BRS (with implicit ellipsoids).

(b) Overapproximated BRS at time 𝑡 = 0.25 secs

Fig. 7. Time to reach the origin at different integration time steps. Top-left: Closed-form Solution to the time
to reach the origin problem. Top-right: Implicit representation of the initial TTR solution. Bottom: Lax-Friedrichs
Approximation to the TTR the origin problem.

systems such as the safe control of quadcopters, safe interaction among distributed agents on a
computing network where local nearest neighbor rules apply. In what follows, we formulate the
problem mathematically and pose the collision avoidance for a local set of birds as a reachable
differential game.

7.3.1 Problem Description. Consider a group of starlings moving on a space-time continuum
Ω × 𝑇 10 as illustrated in Fig. 8. Recent field studies [8] suggest that emergent collective motion
observed among these birds is as a result of local nearest neighbor interactions among separable
subsets of bird groups on Ω ×𝑇 . There is evidence with justifiable confidence [27] suggesting that
when density varies among the birds (henceforth called agents), the relationship among agents in
local groups is not determined by the metric distance among nearest neighbors but rather by a
topological notion of distance (defined as the number of intermediate birds between one agent from
another [2]).

Starlings exhibit complex formation patterns that are effective in avoiding capture – mostly by
peregrine Falcons in the wild [20]. We will leverage this notion of topological distance between
agents in developing a target or safe set [24] for a subset of agents within the murmuration. If we can
compute this safe set, it can serve as e.g. a safety filter for multiagent systems (to be controlled) and
their actual controller whilst respecting state constraints [24] and the control constraints (admissible
inputs, dynamic update frequency of input control laws e.t.c.). An illustration of the problem
setup is illustrated in Fig. 8. For a comprehensive understanding of the intuition that guides our

10Here Ω is the open set that contains all states of the birds and𝑇 is the length of time over the real line.
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Fig. 8. Starlings murmurations. From the top-left and clockwise. (i) A starlings flock rises into the air, in a dense
structure (Reuters/Amir Cohen). (ii) Starlings migrating over an Israeli village (AP Photo/Oded Balilty). (iii) Starlings
feeding on laid seeds in the ground in Romania. (iv) Two flocks of migrating starlings (Menahem Kahana/AFP/Getty
Images). (v) A concentric conical formation of starlings (Courtesy of The Gathering Site.). (vi) Splitting and joining
of a flock of starlings.

mathematical formulation here, we refer agents to the works of Ballerini et al. [2], Cavagna et al. [8],
and Cardaliaguet [7].

7.3.2 Mathematical abstractions. Individual agents self-organize into phases or regions S which
are in turn members of a union of multiple regions C. Every S ⊆ C and all members of C are disjoint
from one another i.e. S𝑖 ∪ S𝑗 = ∅ for any 𝑖 ≠ 𝑗 . The total number of elements in S is denoted [S],
and we denote by int Ω the interior of Ω. The closure of Ω is Ω̄. We let 𝛿Ω (:= Ω̄\int Ω) be the
boundary of Ω.

An evading agent in a region S𝑖 has a state notation 𝒙𝑖𝑎 (read: the state of agent 𝑎 in region 𝑖). A
state 𝒙𝑖𝑎 has linear velocity components, 𝒙𝑖𝑎1 , 𝒙

𝑖
𝑎2 , and heading 𝒙𝑖𝑎3 := 𝑤 𝑖

𝑎 . When we must distinguish
an agent 𝒙𝑖𝑎 ∈ C𝑥 from some other agent e.g. in another multiphase C𝑦 , we shall write 𝑥𝒙𝑖𝑎 and 𝑦𝒙𝑖𝑎
respectively.

The set of players in a game shall be denoted by N = {𝑖, 𝑗, . . .} with the subscript index indicating
players e.g. N𝑖 for player 𝑖. The set of neighbors of player 𝑖 is N(𝑖) ⊆ N . Player 𝑖 moves dynamically
with a control 𝑢𝑖 ∈ 𝜋𝑖 (i.e. 𝑢𝑖 belongs to a policy class 𝜋𝑖) that is both (a) optimal with respect
to its own objective J𝑖 ; and (b) optimal with respect to its neighboring players’ current policy
𝜋−𝑖 ∈ Π 𝑗∈𝑁,𝑗≠𝑖 . Neighbors of agent 𝑖 at time 𝑡 are those which are either within, or on a circle
specified by a fixed topological range, 𝑟𝑐 . This topological range is given by the difference in the
numerical label of individuals (see Definition 3), and is consistent with findings in collective swarm
behaviors as it reinforces group cohesion [2].

The topological metric is given by the label of an agent and it quantifies the number of intermediate
agents that separate two agents. This is consistent with collective animal behaviors where individuals’
bookkeeping on their neighbors’ positions help maintain the strength of an interaction when density
varies or when they need to reorient a control input, given by the average of its own orientation and
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that of its neighbors. Instead of metric distance interaction rules that make agents very vulnerable to
predation [2], we resort to a topological interaction rule11. Let us set forth with a few definitions first.

DEFINITION 1. Every agent within a flock has similar dynamics to that of its neighbor(s). Further-
more, agents travel at the same linear speed, 𝑣; the angular headings, 𝑤 , however, may be different
between agents, seeing we are dealing with a many-bodied system. Each agent’s continuous-time
dynamics, ¤𝒙 (𝑖 ) (𝑡), evolves as

¤𝒙 (𝑖 )
1 (𝑡)
¤𝒙 (𝑖 )

2 (𝑡)
¤𝒙 (𝑖 )

3 (𝑡)

 =


𝑣 (𝑡) cos 𝒙 (𝑖 )

3 (𝑡)
𝑣 (𝑡) sin 𝒙 (𝑖 )

3 (𝑡)
⟨𝑤 (𝑖 ) (𝑡)⟩𝑟

 , ⟨𝑤 (𝑖 ) (𝑡)⟩𝑟 =
1

1 + 𝑛𝑖 (𝑡)
©«𝑤 (𝑖 ) (𝑡) +

∑︁
𝑗∈N𝑖 (𝑡 )

𝑤 𝑗 (𝑡)
ª®¬ (76)

for agents 𝑖 = {1, 2, 3, ..., 𝑛𝑎}, where 𝑡 is the continuous-time index, 𝑛𝑖 (𝑡) is the number of agent 𝑖’s
neighbors at time 𝑡 , N𝑖 (𝑡) denotes the sets of labels of agent 𝑖’s neighbors at time 𝑡 , and ⟨𝑤 (𝑖 ) (𝑡)⟩𝑟 is
the average orientation of agent 𝑖 and its neighbors at time 𝑡 . Note that for a game where all agents
share the same constant linear speed and heading, (76) reduces to the dynamics of a Dubins’ vehicle
in absolute coordinates with −𝜋 ≤ 𝑤 (𝑖 ) (𝑡) < 𝜋 . The averaging over the degrees of freedom of other
agents in (76) is consistent with the mean field theory, whereby the effect of all other agents on any
one agent is an approximation of a single averaged influence.

DEFINITION 2 (NEIGHBORS OF AN AGENT). We define the neighbors N𝑖 (𝑡) of agent 𝑖 at time 𝑡
as the set of all agents that lie within a predefined radius, 𝑟𝑖 .

DEFINITION 3. We define a flock, 𝐹 , consisting of agents labeled {1, 2, · · · , 𝑛𝑎} as a collection of
agents within a phase space (Ω ×𝑇 ) such that all agents within the flock interact with their nearest
neighbors in a topological sense.

REMARK 1. Note that for a game where all agents share the same constant linear speed and
heading, (76) reduces to the dynamics of a Dubins’ vehicle in absolute coordinates with −𝜋 ≤
𝑤 (𝑖 ) (𝑡) < 𝜋 . The averaging over the degrees of freedom of other agents in (76) is consistent with
mean field theory, whereby the effect of all other agents on any one agent is an approximation of a
single averaged influence.

DEFINITION 4 (PAYOFF OF A FLOCK). To every flock 𝐹 𝑗 (with a finite number of agents 𝑛𝑎) within
a murmuration, 𝑗 = {1, 2, · · · , 𝑛𝑓 } , we associate a payoff, 𝚽𝑗 , that is the union of all respective
agent’s payoffs for expressing the outcome of a desired kinematic behavior.

7.3.3 Flock Motion as Differential Games. We restrict our analysis to a single local flock within
a murmuration. We must find a mathematical way to replicate the collision-avoidance scheme that
agents execute structural homogeneity of movement in every region S𝑖 ∈ C for 𝑖 = 1, · · · , [C]
as observed in natural systems. We will locally synthesize the kinematics of agents in a manner
amenable to state representation by resolving local payoff extremals, {𝝓1, · · · , 𝝓𝑛𝑓

}. This is a state
space partition induced by an aggregation of desired collective behavior from local flocks’ values
{𝒗1, · · · , 𝒗𝑛𝑓

}. Let the cursory reader understand that we use the concept of a flock loosely. The
value function could represent a palette of composed value functions whose extremals resolve local
behaviors we would like to emerge over separated local regions of the state space of dexterous drone
acrobatics [29], a robot balls juggling task [6], or any parallel task domain verification problem.

11With metric distance rules, we will have to formulate the breaking apart of value functions that encode a consensus heading
problem in order to resolve the extrema of multiple payoffs; which is typically what we want to mitigate against during
real-world autonomous tasks.
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7.3.4 Framework for Separated Payoffs. Suppose that a murmuration’s global heading is given
and that each agent 𝑖 within each flock, 𝐹 𝑗 , ( 𝑗 = {1, · · · , 𝑛𝑓 }) in the murmuration has a constant linear
velocity, 𝑣𝑖 . An agent’s orientation is its control input, given by the average of its own orientation
and that of its neighbors. What constitutes an agent’s neighbors are computed based on empirical
findings and studies from the lateral vision of birds and fishes [2, 23, 27] that provide insights into
their anisotropic kinematic density and structure. Importantly, starlings’ lateral visual axes and their
lack of a rear sector reinforces their lack of nearest neighbors in the front-rear direction. As such,
this enables them to maintain a tight density and robust heading during formation and flight.

Each agent within flock 𝐹 𝑗 interacts with a fixed number of neighbors, 𝑛𝑐 , within a fixed topological
range, 𝑟𝑐 . The range is chosen as the difference between the numerical labels of agents in a flock.
This is consistent with findings in collective swarm behaviors in that it reinforces group cohesion [2].
Since in starlings behavior, flying performance is often spurred by a predator, we emulate this by
introducing an external disturbance on the zeroth-index agent within the flock of interest (this aids
compactness of the zero levelset of flock S𝑖 as the theory of HJ Reachability recommends [37]).
However, we are interested in robust group cohesion. Ergo, we let a pursuer, 𝑷 , with a worst-possible
disturbance attack the flock. Here, flocks constitute an evading player, 𝑬 .

The delineation of an agent’s nearest neighbors is given in Algorithm 1. On lines 3 and 7 of
Algorithm 1, cohesion is reinforced by leveraging the observations above. While the neighbor
updates for an agent involve an 𝑂 (𝑛2) algorithm in Algorithm 1, we are merely dealing with 6 − 7
agents at a time in a local flock – making the computational cost measly.

7.3.5 Global Isotropy via Local Anisotropy. Isotropy of motion fields is a natural characteristic
in Starlings motion. The global isotropy of murmurations where group cohesion is maintained in
highly uncertain environments with limited or noisy information is often stimulated by Peregrine
Falcon attacks. Local birds maintain structural anisotroby via nearest neighbor rules, and a collection
of multiple local groups in the entire collection results in the global isotroby that is observed.
However, structural anisotropy is not merely an effect of a preferential velocity in animal flocking
kinematics but rather an explicit effect of the anisotropic interaction character itself: agents choose a
mutual position on the state space in order to maximize the sensitivity to changes in heading and
speed of neighbors; the neighbors’ anisotropy is optimized via vision-based collision avoidance
characteristically unrelated to the eye’s structure [2].

To reinforce robust group cohesion in local flocks, we let a pursuer 𝑷 𝑗 play attack an evading agent
𝑬 𝑗 in a flock 𝐹 𝑗 so that one agent within 𝐹 𝑗 is always in relative coordinates with 𝑷 𝑗 . By averaging
the heading of individual agents’ orientations with its neighbors (cf. (76)), a flock can achieve fast
response to danger when a pursuer is nearby. In this specialized case, 𝑬 and 𝑷 ’s speeds and maximum
turn radii are equal: if both players start the game with the same initial velocity and orientation, the
relative equations of motion show that 𝑬 can mimic 𝑷 ’s strategy by forever keeping the starting radial
separation. As such, the barrier is closed and the central theme in this game of kind is to determine
the surface of the boundary [33]. We defer a thorough analysis of the nature of the surface to a future
work. Owing to the high-dimensionality of the state space, we cannot resolve this barrier analytically,
hence we resort to our HJ PDE numerical approximation.

For agent 𝑖 within a flock with index 𝑗 in a murmuration, the equations of motion under attack
from a predator 𝑝 in relative coordinates is


¤𝒙 (𝑖 ) 𝑗

1 (𝑡)
¤𝒙 (𝑖 ) 𝑗

2 (𝑡)
¤𝒙 (𝑖 ) 𝑗

3 (𝑡)

 =


−𝑣 (𝑖 ) 𝑗𝑒 (𝑡) + 𝑣

( 𝑗 )
𝑝 cos 𝒙 (𝑖 ) 𝑗

3 (𝑡) + ⟨𝑤 (𝑖 ) 𝑗
𝑒 ⟩𝑟𝒙

(𝑖 ) 𝑗
2 (𝑡)

𝑣
(𝑖 ) 𝑗
𝑝 (𝑡) sin 𝒙

(𝑖 ) 𝑗
3 (𝑡) − ⟨𝑤 (𝑖 ) 𝑗

𝑒 ⟩𝑟𝒙
(𝑖 ) 𝑗
1 (𝑡)

𝑤
( 𝑗 )
𝑝 (𝑡) − ⟨𝑤 (𝑖 ) 𝑗

𝑒 (𝑡)⟩𝑟

 for 𝑖 = 1, · · · , 𝑛𝑎 (77)
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Algorithm 1 Nearest Neighbors For Agents in a Flock.

1: Given a set of agents 𝒂 = {𝑎1, 𝑎2, · · · , 𝑎𝑛𝑎 | [𝑎] = 𝑛𝑎} ⊲ 𝑛𝑎 agents in a flock 𝐹𝑘 .
2: function UpdateNeighbor(𝑛)
3: for 𝑖 in 1, . . . , 𝑛 do ⊲ Look to the right and update neighbors.
4: for 𝑗 in 𝑖 + 1, . . . , 𝑛 do
5: COMPARE_NEIGHBOR(𝑎[𝑖] , 𝑎[ 𝑗])
6: end for
7: for 𝑗 in 𝑖 − 1 down to 0 do ⊲ Look to the left and update neighbors.
8: COMPARE_NEIGHBOR(𝑎[𝑖] , 𝑎[ 𝑗])
9: end for

10: end for
11: for each 𝑎𝑖 ∈ 𝐹𝑘 , 𝑖 = 1, · · ·𝑛𝑎 do ⊲ Recursively update agents’ headings.
12: Update headings according to (76).
13: end for
14: end function

1: function Compare_Neighbor(𝑎1, 𝑎2) ⊲ (𝑎1, 𝑎2): distinct instances of AGENT.
2: if |𝑎1.label - 𝑎2.label| < 𝑎1.𝑟

1
𝑐 ⊲ 𝑟𝑛𝑐 : agent 𝑛’s capture radius, 𝑟𝑐 .

3: 𝑎1 .UPDATE_NEIGHBORS(𝑎2) then
4: end if
5: end function
1: procedure Agent(𝑎𝑖 , Neighbors={}) ⊲ Neighbors: Set of neighbors of this agent.
2: ⊲ Agent 𝑎𝑖 with attributes label ∈ N, avoid and capture radii, 𝑟𝑎, 𝑟𝑐 .
3: function UPDATE_NEIGHBORS(neigh)
4: if length(neigh)> 1 then ⊲ Multiple neighbors.
5: for each neighbor of neigh do
6: UPDATE_NEIGHBORS(neighbor) ⊲ Recursive updates.
7: end for
8: end if
9: Add neigh to Neighbors

10: end function
11: end procedure

where 𝑛𝑎 is the number of agents within a flock,
(
𝒙
(𝑖 ) 𝑗
1 (𝑡), 𝒙 (𝑖 ) 𝑗

2 (𝑡)
)
∈ R2, and we have 𝒙

(𝑖 ) 𝑗
3 (𝑡) ∈

[−𝜋, +𝜋). We have multiplied the dynamics by −1 so that the extremal’s resolution evolves backwards
in time. Read 𝒙

(𝑖 ) 𝑗
1 (𝑡): the first component of the state of agent 𝑖 for flock 𝑗 at time 𝑡 . In absolute

coordinates, the equation of motion for free agents is
¤𝒙 (𝑖 ) 𝑗

1 (𝑡)
¤𝒙 (𝑖 ) 𝑗

2 (𝑡)
¤𝒙 (𝑖 ) 𝑗

3 (𝑡)

 =


𝑣
(𝑖 ) 𝑗
𝑒 (𝑡) cos 𝒙 (𝑖 ) 𝑗

3 (𝑡)
𝑣
(𝑖 ) 𝑗
𝑒 (𝑡) sin 𝒙

(𝑖 ) 𝑗
3 (𝑡)

⟨𝑤 (𝑖 ) 𝑗
𝑒 (𝑡)⟩𝑟

 . (78)

7.3.6 Flock Motion from Aggregated Value Functions. We introduce the union operator i.e.
∪ below as an aggregation symbol since the respective payoffs of each agent in a flock may be
implicitly or explicitly constructed. In resolving the zero-level sets of HJ value functions, it is typical
to represent the payoff’s surface as the isocontour of some function (usually a signed distance
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function). In these instances, we shall aggregate the payoff of agents 1 and 2, for example, as

∪ {𝝓1 (𝒙, 𝑡), 𝝓2 (𝒙, 𝑡)} ≡ 𝝓1 (𝒙, 𝑡) ∪ 𝝓2 (𝒙, 𝑡) = min(𝝓1 (𝒙, 𝑡), 𝝓2 (𝒙, 𝑡)). (79)

Standard assumptions about the existence of a flock’s value applies. And by an extension of
Hamilton’s principle of least action, the terminal motion of a flock coincide with the extremal of the
payoff functional i.e. ,

𝒗 (𝒙, 𝑡) = inf
𝛽 (1) ∈B (1)

sup
𝒖 (1) ∈U (1)

∪
[
𝑔 (1) (𝒙 (𝑇 ))

]
∪ · · · ∪ inf

𝛽
(𝑛𝑓 ) ∈B (𝑛𝑓 )

sup
𝒖
(𝑛𝑓 ) ∈U (𝑛𝑓 )

[
𝑔 (𝑛𝑓 ) (𝒙 (𝑇 ))

]
where 𝑛𝑓 is the total number of distinct flocks in a murmuration. The resolution of this equation
admits a viscosity solution to the following variational terminal HJI PDE [37]

∪𝑛𝑓

𝑗=1

[
∪𝑛𝑎
𝑖=1

(
𝜕𝒗𝑖
𝜕𝑡

(𝒙, 𝑡) + min
[
0,𝑯 (𝑖 ) (𝒙 (𝑖 ) , 𝒗𝑥 (𝒙, 𝑡))

] )]
= 0. (80)

with Hamiltonian,

𝑯 (𝑖 ) (𝑡 ; 𝒙 (𝑖 ) , 𝒖 (𝑖 ) , 𝒗 (𝑖 ) , 𝑝 (𝑖 ) ) = max
𝑢 (𝑖 ) ∈U (𝑖 )

min
𝑣 (𝑖 ) ∈V (𝑖 )

⟨𝑓 (𝑖 ) (𝑡 ; 𝒙, 𝒖 (𝑖 ) , 𝒗 (𝑖 ) ), 𝑝 (𝑖 )⟩. (81)

In swarms’ collective motion, when e.g. a Peregrine Falcon attacks, immediate nearest agents
change direction almost instantaneously. And because of the interdependence of the orientations
of individual agents with respect to one another, all other agents respond instantaneously. Thus,
we only simulate a single attack against a flock within the murmuration to realize robust cohesion.
Throughout the game, we assume that the roles of 𝑷 and 𝑬 do not change, so that when capture
can occur, a necessary condition to be satisfied by the saddle-point controls of the players is the
Hamiltonian, 𝑯 𝑖 (𝒙, 𝑝).

THEOREM 1. For a flock, 𝐹 𝑗 , the Hamiltonian is the total energy given by a summation of the
exerted energy by each agent 𝑖 so that we can write the main equation or total Hamiltonian of a
murmuration as

𝑯 (𝒙, 𝑝) = max
𝑤

(𝑘 ) 𝑗
𝑒 ∈[𝑤 𝑗

𝑒 ,�̄�
𝑗
𝑒 ]

min
𝑤

(𝑘 ) 𝑗
𝑝 ∈[𝑤 𝑗

𝑝 ,�̄�
𝑗
𝑝 ]
∪𝑛𝑓

𝑗=1

[
𝐻

(𝑘 ) 𝑗
𝑎 (𝒙, 𝑝) ∪

(
∪𝑛𝑎−1
𝑖=1 𝐻

(𝑖 ) 𝑗
𝑓

(𝒙, 𝑝)
)]

(82)

≜ ∪𝑛𝑓

𝑗=1

(
∪𝑛𝑎−1
𝑖=1

[
𝑝
(𝑖 ) 𝑗
1 𝑣 (𝑖 ) 𝑗 cos 𝒙3 + 𝑝

(𝑖 ) 𝑗
2 𝑣 (𝑖 ) 𝑗 sin 𝒙3 + 𝑝

(𝑖 ) 𝑗
3 ⟨𝑤 (𝑖 ) 𝑗

𝑒 ⟩𝑟
]

∪
[
𝑝
(𝑘 ) 𝑗
1

(
𝑣 (𝑘 ) 𝑗 − 𝑣 (𝑘 ) 𝑗 cos 𝒙 (𝑘 ) 𝑗

3

)
− 𝑝

(𝑘 ) 𝑗
2 𝑣 (𝑘 ) 𝑗 sin 𝒙

(𝑘 ) 𝑗
3 −𝑤 𝑗

𝑝
|𝑝 (𝑘 ) 𝑗

3 |

+�̄� 𝑗
𝑒

����𝑝 (𝑘 ) 𝑗
2 𝒙

(𝑘 ) 𝑗
1 − 𝑝

(𝑘 ) 𝑗
1 𝒙

(𝑘 ) 𝑗
2 + 𝑝

(𝑘 ) 𝑗
3

����] ) . (83)

where 𝑯
(𝑘 ) 𝑗
𝑎 (𝒙, 𝑝) is the Hamiltonian of the individual under attack by a pursuing agent, 𝑷 , and

𝐻
(𝑖 ) 𝑗
𝑓

(𝒙, 𝑝) are the respective Hamiltonians of the free agents, 𝑖 = {1, · · · , 𝑛𝑓 }, within an evading

flock, and not under the direct influence of capture or attack by 𝑷 . We denote by 𝑤 (𝑖 ) 𝑗
𝑒 the heading

of an evader 𝑖 within a flock 𝑗 and 𝑤
( 𝑗 )
𝑝 the heading of a pursuer aimed at flock 𝑗; 𝑤 (𝑘 ) 𝑗

𝑒 is the
orientation that corresponds to the orientation of the agent with minimum turn radius among all
the neighbors of agent 𝑘 , inclusive of agent 𝑘 at time 𝑡; similarly, �̄� (𝑘 ) 𝑗

𝑒 is the maximum orientation
among all of the orientation of agent 𝑘’s neighbors.

PROOF. The proof to this theorem is given in Appendix A. □
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Fig. 9. Left column: Initial zero-level set for various flocks at different initial conditions. Right column: Evading
flock’s interface under a pursuer’s attack after specific Lax-Friedrichs’ integration. (Metric reach radius=0.2𝑚, Avoid
Radius=0.2𝑚).

J. ACM, Vol. 00, No. 0, Article 000. Publication date: 20XX.



LevelSetPy: A GPU Package for Hyperbolic HJ PDEs Solubility 000:31

COROLLARY 2. For the special case where the linear speeds of the evading agents and pursuer
are equal i.e. 𝑣 (𝑖 ) 𝑗𝑒 (𝑡) = 𝑣𝑝 (𝑡) = +1𝑚/𝑠, we have the Hamiltonian as

𝑯 (𝒙, 𝑝) = ∪𝑛𝑓

𝑗=1

(
∪𝑛𝑎−1
𝑖=1

[
𝑝
(𝑖 ) 𝑗
1 cos 𝒙3 + 𝑝

(𝑖 ) 𝑗
2 sin 𝒙3 + 𝑝

(𝑖 ) 𝑗
3 ⟨𝑤 (𝑖 ) 𝑗

𝑒 ⟩𝑟
]

∪
[
𝑝
(𝑘 ) 𝑗
1

(
1 − cos 𝒙 (𝑘 ) 𝑗

3

)
− 𝑝

(𝑘 ) 𝑗
2 sin 𝒙

(𝑘 ) 𝑗
3 −𝑤 𝑗

𝑝
|𝑝 (𝑘 ) 𝑗

3 |

+�̄� 𝑗
𝑒

����𝑝 (𝑘 ) 𝑗
2 𝒙

(𝑘 ) 𝑗
1 − 𝑝

(𝑘 ) 𝑗
1 𝒙

(𝑘 ) 𝑗
2 + 𝑝

(𝑘 ) 𝑗
3

����] ) . (84)

We adopt the essentially non-oscillatory Lax-Friedrichs scheme of [42] in resolving (84). Denote
by (𝑥,𝑦, 𝑧) a generic point in R3 so that given mesh sizes Δ𝑥, Δ𝑦, Δ𝑧, Δ𝑡 > 0, letters 𝑢, 𝑣,𝑤 will
represent functions on the 𝑥,𝑦, 𝑧 lattice Δ = {(𝑥𝑖 , 𝑦 𝑗 , 𝑧𝑘 ) : 𝑖, 𝑗, 𝑘 ∈ Z}. We define the numerical
monotone flux, �̂� (𝑖 ) 𝑗 (·), of 𝑯 (𝑖 )

𝑗
(·) as

�̂� (𝑖 ) 𝑗 (𝑢+, 𝑢−, 𝑣+, 𝑣−,𝑤+,𝑤−) = 𝑯 (𝑖 ) 𝑗
(
𝑢+ + 𝑢−

2
,
𝑣+ + 𝑣−

2
,
𝑤+ +𝑤−

2

)
−1

2

[
𝛼
(𝑖 ) 𝑗
𝑥

(
𝑢+ − 𝑢− ) + 𝛼

(𝑖 ) 𝑗
𝑦

(
𝑣+ − 𝑣−

)
+ 𝛼

(𝑖 ) 𝑗
𝑧

(
𝑤+ −𝑤− ) ] (85)

where

𝛼
(𝑖 ) 𝑗
𝑥 = max

𝑎≤𝑢≤𝑏
𝑐≤𝑣≤𝑑
𝑒≤𝑤≤ 𝑓

|𝑯 (𝑖 ) 𝑗
𝑢 (·) |, 𝛼 (𝑖 ) 𝑗

𝑦 = max
𝑎≤𝑢≤𝑏
𝑐≤𝑣≤𝑑
𝑒≤𝑤≤ 𝑓

|𝑯 (𝑖 ) 𝑗
𝑣 (·) |, 𝛼 (𝑖 ) 𝑗

𝑧 = max
𝑎≤𝑢≤𝑏
𝑐≤𝑣≤𝑑
𝑒≤𝑤≤ 𝑓

|𝑯 (𝑖 ) 𝑗
𝑤 (·) | (86)

are the dissipation coefficients, controlling the level of numerical viscosity in order to realize a stable
solution that is physically realistic [12]. Here, the subscripts of 𝑯 are the partial derivatives w.r.t the
grid dimension variable, and the flux, �̂� (·) is monotone for 𝑎 ≤ 𝑢± ≤ 𝑏, 𝑐 ≤ 𝑣± ≤ 𝑑, 𝑒 ≤ 𝑤± ≤ 𝑓 .
We adopt the total variation diminishing Runge-Kutta scheme of [41, 45] in efficiently calculating
essentially non-oscillating upwinding finite difference gradients of 𝑯 (·).

The computed safe sets are as shown in Figure 9. Note that the symmetry between non-consecutive
flock labels e.g. flock 1 and flock 3’s RCBRAT is because the we multiplied the initial position of a
flock’s state by −1.

7.4 Dubins’ Game of Two Identical Vehicles
This example was originally proposed by Merz [33] as an iteration upon Isaacs [26]’s homicidal
chauffeur game, whereupon a pursuit-evasion game between two players with similar speeds and
minimum turn radii, is thoroughly analyzed. In Mitchell [36], this problem was established as a
benchmark for testing the solubility of capturable set of states (the backward reachable tube) in
Merz’s classical pursuit-evasion game. In this example, we solve the problem with our LevelSetPy
toolbox and establish that the approximated barrier surface to the two-player game conforms with
standard results.

The game is that of two cars sharing similar Dubins dynamics [16]: 𝑷 and 𝑬 both have a positive
minimum turn radii, 𝑤 , and constant speeds 𝑣 – with motion restricted to a plane as we have for
the rocket launch differential game above. In relative coordinates, the diagrammatic structure of the
motion is as depicted in Fig. 10. Choosing the Cartesian coordinate for motion representation, the
state vector of the game with 𝑬 at the origin can be characterized by its 𝑥1, 𝑥2 position relative to
𝑷 and the angle 𝜃 between the two vehicles. Capture occurs when the distance ∥𝑷𝑬 ∥2 between the
pursuer and the evader becomes less than a specified radius.
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x1

x2

ve

�e

evader vehicle

vp

�p

x3

pursuer vehicle

Fig. 10. Two Dubins’ vehicles in relative Cartesian coordinates. Reprinted from Mitchell [36].

The relative equations of motion, going by Fig. 10, is

©«
¤𝑥1
¤𝑥2
¤𝑥3

ª®¬ =
©«
−𝑣𝑒 + 𝑣𝑝 cos𝑥3 +𝑤𝑒𝑥2

𝑣𝑝 sin𝑥3 −𝑤𝑒𝑥1
𝑤𝑝 −𝑤𝑒

ª®¬ . (87)

We adopt specialization to a case where the two vehicles only possess a unit velocity and unit
maximum turn rates. Here, as Merz notes, if the initial velocities are parallel such as 𝑥3 = 0, then
the equations of relative motion imply that 𝑬 can be separated from 𝑷 forever by the initial radial
separation if it replicates 𝑷 ’s strategy. Whence, the barrier surface is closed and we are presented
with Isaacs [26]’s game of kind where we must determine the nature of the surface. This terminal
surface possesses a closed-form solution and we refer readers to the treatment by Merz [33]. In
this example, our chief concern is to judge the efficacy of our toolbox with respect to the analytical
solution of the barrier surface.

The the backward reachable tube that consists of the paths taken by the trajectories of either player
is defined as in the rockets pursuit evasion game so that we have

𝚽(0, 𝑥) = {𝑥 ∈ X|𝑥2
1 + 𝑥2

2 ≤ 𝑟 2}, (88)

where again 𝑟 is the capture radius. The target set is a cylinder as 𝚽 above excludes the heading, 𝑥3.
It is represented as shown in Fig. 11.

For a detailed treatment of the barrier surface, we refer readers to a proper analysis as elucidated
in [36]. Here, we focus on the construction of the BUP. The set of states that constitute the useable
part and its boundary are respectively a function of the implicit surface function representation
𝚽 : [−𝑇, 0] × X → R so that for a 𝑡 ∈ [0,𝑇 ], where 𝑇 > 0 is

T = {𝑥 ∈ X|𝚽(0, 𝑥) ≤ 0} (89)

𝑅( [−𝑡, 0],T) = {𝑥 ∈ X|𝚽(𝑡, 𝑥) ≤ 0}, (90)

When 𝑡 > 0, the implicit surface representation is the following HJI PDE
𝜕

𝜕𝑡
𝚽(𝑡, 𝑥) + min (0,𝑯 (𝑥,∇𝑥𝚽(𝑡, 𝑥))) = 0. (91)

It is easy to verify that the Hamiltonian is

𝐻 (𝑥, 𝑝) = 𝑝1 (𝑣𝑒 − 𝑣𝑝 cos𝑥3) − 𝑝2 (𝑣𝑝 sin𝑥3) −𝑤 |𝑝1𝑥2 − 𝑝2𝑥1 − 𝑝3| +𝑤 |𝑝3 |. (92)
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Fig. 11. The target set (left) and the boundary of the useable part of the state space after the differential game
between 𝑷 and 𝑬 .

Since we are concerned with the special case that the linear and angular speeds are equal, we set
𝑣𝑒 = 𝑣𝑝 = 𝑤 ≜ +1 in the foregoing so that the Hamiltonian, in the final analysis is

𝐻 (𝑥, 𝑝) = 𝑝1 (1 − cos𝑥3) − 𝑝2 (sin𝑥3) − |𝑝1𝑥2 − 𝑝2𝑥1 − 𝑝3| + |𝑝3 |. (93)

As before, we set up the differential game as in Listing 7
1 finite_diff_data = {"innerFunc": termLaxFriedrichs,

2 "innerData": {"grid": g, "hamFunc": dubins_rel.ham,

3 "partialFunc": dubins_rel.dissipation,

4 "dissFunc": artificialDissipationGLF,

5 "CoStateCalc": upwindFirstENO2},

6 "positive": True} // direction of approx. growth

Listing 7. HJ ENO2 computational scheme for the rockets.

The BRTs at various time steps for the approximation of the differential game is shown in Fig. 12.
Compared to the standardized benchmark of the analytical solution [33] to the differential game
problem and the approximated solutions [36, 37], our results jibe.

7.5 Computational Time Comparison with LevelSet Toolbox
In this subsection, we will compare the solution for recovering the zero level set of the systems
presented in the previous examples against Mitchell [35]’s LevelSet Toolbox in MATLAB®.
In all, we compare the efficacy of running various computational problems using our library on a
CPU – running with Numpy and its fast arithmetic libraries – versus on a CPU with MATLAB®– as
originally written in Mitchell [35]’s library. In addition, we compare the efficacy of running these
computational problems on a single GPU.

For the CPU tests, we run the computation on an Intel Core™i9-10885H 16 cores-processor with
a 2.4GHz clock frequency, and 62.4GB memory. We employed an NVIDIA Quadro RTX 4000
with 8.192 GiB memory running on a mobile workstation with the CPU specifications mentioned
erstwhile in all of our GPU library accelerations.

Table 1 depicts the time it takes to process a full global optimization and the average time for
the Lax-Friedrichs internal computational optimization algorithm for the reachable sets/tubes and
time-to-reach sets for the examples we have considered. The column Avg. local depicts the
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Fig. 12. BRTs for the differential game until termination time (2.25 secs).

average time the employed method of lines for resolving the HJ PDE takes per optimization step.
The column Global denotes the average time it takes to compute the numerical solution to the
HJ PDE . Each time query field represents an average over 20 experiments. We compare results of
running the algorithm on a GPU, and CPU (both in Numpy and MATLAB). In all our evaluations,
we aggressively free up GPU memory between and during computations in order to make GPU data
streaming and memory computations more efficient.

Across the GPU experiments for the examples presented, we see that computation is significantly
faster across all categories save the low-dimensional double integral plant experiment. We attribute
this to the little amount of data points used in the overapproximated stacked levelsets. For the Air3D
game of two vehicles on a plane problem and the two rockets differential game problem, the average
local time for computing the solutions to the stagewise HJ PDE ’s using the method of lines for Air3D
is a gain of ∼ 76%; the global time is a gain of 76.09%. Similarly, we notice substantial computational
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Table 1. Time to Resolve HJ PDE ’s.

PPPPPPPPExpt
Library LevelSetPy GPU Time (secs) LevelSetPy CPU Time (secs)

Global Avg. local Global Avg. local

Rockets Game 11.5153 ± 0.038 1.1833 107.84 ± 0.42 10.4023
Double Integrator 14.7657 ± 0.2643 1.5441 3.4535 ± 0.34 0.4317
Air 3D 30.8654 ± 0.1351 3.0881 129.1165 ± 0.13 12.6373
Starlings flock 8.6889 ± 0.8323 0.42853 15.2693 ± 0.167 7.4387

PPPPPPPPExpt
Library MATLAB CPU Time (secs)

Global Avg. local

Rockets Game 138.50 13.850
Double Integrator 5.23 0.65375
Dubins Game 134.77 16.8462

gains for the two rockets differential game problem: 89% faster global optimization time and 88.62%
average local computational time compared to our CPU implementations in Numpy. For this rockets
game problem, compared against Mitchell [35] library, we notice a speedup of almost 92% in global
optimization using our GPU-calibrated library versus an 89.32% gain using our CPU-calibrated library.

Notice the exception with the Double Integrator experiment, however: local and global
computations take a little longer compared to deployments on the CPU – both on our Harris et al.
[22]’s implementation and using Mitchell [35]’s native MATLAB®toolbox. We attribute this to the
little size of the arrays of interest in this problem. The entire target set of the double integral
plant exists on a two-dimensional grid whose analytic and approximate time-to-reach-the-origin
computational time involves little computational gain in passing data onto the GPU. Neverthe-
less, we still see noticeable gains in using our CPU implementation as opposed to Mitchell [35]’s
native MATLAB®toolbox.

On a CPU, owing to efficient arrays arithmetic native to Harris et al. [22]’s Numpy library, the
average time to compute the zero levelsets per optimization step for the odeCFLx functions is faster
with our Numpy implementation compared against Mitchell [35] LevelSets MATLAB® Toolbox
library computations across all experiments. The inefficiencies of MATLAB®’s array processing
routine in the longer time to resolve stagewise BRTs and the effective time to finish the overall HJ
PDE resolution per experiment manifests in all of our experimental categories. For CPU processing
of HJ PDE ’s, it is reasonable, based on these presented data to expect that users would find our
library far more useful for everyday computations in matters relating to the numerical resolution of
HJ PDE ’s.

In all, there is conclusive evidence that our implementations are faster, extensible to modern
libraries, and scalable for modern complex system design and verification problems that arise.

8 CONCLUSION
With the advent of function approximation (neural networks) and the increasing attention they are
gaining in almost every domain of expertise including reinforcement learning, control systems,
robotics, modeling, and real-time prediction in sensitive and safety-critical environments, it has
become paramount to start considering backup safety filters for these generally unstable large function
approximators in safety-critical environments. We have presented all the essential components of the
python version of the LevelSetPy library for numerically resolving HJ PDEs (pertaining to the
problems in the foregoing) and for advancing co-dimension one interfaces on Cartesian grids. We
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have motivated the work presented with several numerical examples to demonstrate the efficacy of
our library.

The examples we have presented in this document provide a foray into the computational aspects of
ascertaining the safety (freedom from harm) of the complex systems that we are continually designing
and building. This includes safety-critical analysis encompassing simple and complex multiagent
systems whose safe navigation over a phase space can be considered in an HJ PDE framework. As
complexity evolves, we hope that our library can serve as a useful tool for tinkerers looking for an
easy-to-use proof-of-concept toolkit for verification of dynamical systems based on a principled
numerical analysis.

We encourage users to download the library from the author’s github webpage (it is available in
CPU and GPU implementations via appropriately tagged branches) and use it robustly for various
problems of interest where speed and scale for the solubility of hyperbolic conservation laws and HJ
PDE’s are of high importance.
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A HAMILTONIAN OF A MURMURATION.
In this appendix, we provide a derivation for the overall Hamiltonian of a flock as elucidated in
Theorem 1.

PROOF OF THEOREM 1. We write the free agents’ Hamiltonians in absolute coordinates and that
of the agent under attack in relative coordinates with the pursuer. Henceforth, we drop the templated
time arguments for ease of readability. The overall flock’s Hamiltonian is

∪𝑛𝑎−1
𝑖=1 𝐻

(𝑖 ) 𝑗
𝑓

(𝒙, 𝑝) = ∪𝑛𝑎−1
𝑖=1

[
𝑝
(𝑖 ) 𝑗
1 𝑝

(𝑖 ) 𝑗
2 𝑝

(𝑖 ) 𝑗
3

] 
𝑣 (𝑖 ) 𝑗 cos 𝒙3
𝑣 (𝑖 ) 𝑗 sin 𝒙3

⟨𝑤 (𝑖 ) 𝑗
𝑒 ⟩𝑟

 . (94)

It follows that

∪𝑛𝑎−1
𝑖=1 𝐻

(𝑖 ) 𝑗
𝑓

(𝒙, 𝑝) = ∪𝑛𝑎−1
𝑖=1

[
𝑝
(𝑖 ) 𝑗
1 𝑣 (𝑖 ) 𝑗 cos 𝒙3 + 𝑝

(𝑖 ) 𝑗
2 𝑣 (𝑖 ) 𝑗 sin 𝒙3 + 𝑝

(𝑖 ) 𝑗
3 ⟨𝑤 (𝑖 ) 𝑗

𝑒 ⟩𝑟
]
. (95)
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Equation (83) can be re-written as

𝑯
(𝑘 ) 𝑗
𝑎 (𝒙, 𝑝) = − ©« max

𝑤
(𝑘 ) 𝑗
𝑒 ∈[𝑤 𝑗

𝑒 ,�̄�
𝑗
𝑒 ]

min
𝑤

(𝑘 ) 𝑗
𝑝 ∈[𝑤 𝑗

𝑝 ,�̄�
𝑗
𝑝 ]

[
𝑝
(𝑘 ) 𝑗
1 (𝑡) 𝑝

(𝑘 ) 𝑗
2 (𝑡) 𝑝

(𝑘 ) 𝑗
3 (𝑡)

]

−𝑣 (𝑘 ) 𝑗𝑒 (𝑡) + 𝑣

( 𝑗 )
𝑝 cos 𝒙 (𝑘 ) 𝑗

3 (𝑡) + ⟨𝑤 (𝑘 ) 𝑗
𝑒 ⟩𝑟 (𝑡)𝒙

(𝑘 ) 𝑗
2 (𝑡)

𝑣
𝑗
𝑝 (𝑡) sin 𝒙

(𝑘 ) 𝑗
3 (𝑡) − ⟨𝑤 (𝑘 ) 𝑗

𝑒 ⟩𝑟 (𝑡)𝒙
(𝑘 ) 𝑗
1 (𝑡)

𝑤
𝑗
𝑝 (𝑡) − ⟨𝑤 (𝑘 ) 𝑗

𝑒 (𝑡)⟩𝑟


ª®®¬ , (96)

where 𝑝
(𝑘 ) 𝑗
𝑙

(𝑡) |𝑙=1,2,3 are the adjoint or co-state vectors [33]. For the pursuer, its minimum and
maximum turn rates are fixed so that we have 𝑤 𝑗

𝑝 as the minimum turn bound of the pursuing vehicle,
and �̄�

𝑗
𝑝 is the maximum turn bound of the pursuing vehicle. Rewriting (95), we find that

𝑯
(𝑘 ) 𝑗
𝑎 (𝒙, 𝑝) = − ©« max

𝑤
(𝑘 ) 𝑗
𝑒 ∈[𝑤 𝑗

𝑒 ,�̄�
𝑗
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𝑤
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𝑝 ∈[𝑤 𝑗
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𝑗
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1 𝑣
(𝑘 ) 𝑗
𝑒 + 𝑝

(𝑘 ) 𝑗
1 𝑣

𝑗
𝑝 cos 𝒙 (𝑘 ) 𝑗

3

+𝑝 (𝑘 ) 𝑗
1 ⟨𝑤 (𝑘 ) 𝑗

𝑒 ⟩𝑟𝒙
(𝑘 ) 𝑗
2 + 𝑝

(𝑘 ) 𝑗
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𝑗
𝑝 sin 𝒙

(𝑘 ) 𝑗
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𝑒 ⟩𝑟𝒙
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𝑤
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𝑒 − 𝑣

𝑗
𝑝 cos 𝒙 (𝑘 ) 𝑗
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𝑝 ∈[𝑤

𝑗
𝑝 ,�̄�

𝑗
𝑝 ]

[
⟨𝑤 (𝑘 ) 𝑗

𝑒 ⟩𝑟
(
𝑝
(𝑘 ) 𝑗
2 𝒙

(𝑘 ) 𝑗
1 − 𝑝

(𝑘 ) 𝑗
1 𝒙

(𝑘 ) 𝑗
2 + 𝑝

(𝑘 ) 𝑗
3

)
− 𝑝

(𝑘 ) 𝑗
3 𝑤

𝑗
𝑝

] )
.

(97)

It follows that we have from (97) that

𝑯
(𝑘 ) 𝑗
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3

)
− 𝑝

(𝑘 ) 𝑗
2 𝑣

𝑗
𝑝 sin 𝒙

(𝑘 ) 𝑗
3 −𝑤 𝑗

𝑝
|𝑝 (𝑘 ) 𝑗

3 |

+ �̄� 𝑗
𝑒

����𝑝 (𝑘 ) 𝑗
2 𝒙

(𝑘 ) 𝑗
1 − 𝑝

(𝑘 ) 𝑗
1 𝒙

(𝑘 ) 𝑗
2 + 𝑝

(𝑘 ) 𝑗
3

���� (98)

and that

𝑯
(𝑖 ) 𝑗
𝑓

(𝒙, 𝑝) =
[
𝑝
(𝑖 ) 𝑗
1 𝑣 (𝑖 ) 𝑗 cos 𝒙3 + 𝑝
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𝑒 ⟩𝑟
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. (99)

A fortiori the main equation (83) becomes

𝑯 (𝒙, 𝑝) = ∪𝑛𝑓
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For the special case where the linear speeds of the evading agents and pursuer are equal i.e.
𝑣
(𝑖 ) 𝑗
𝑒 (𝑡) = 𝑣𝑝 (𝑡) = +1𝑚/𝑠, we have a murmuration’s Hamiltonian as
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