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Summary
The Bellman equation and its continuous-time counterpart, the Hamilton-Jacobi-Bellman

(HJB) equation, serve as necessary conditions for optimality in reinforcement learning and
optimal control. While the value function is known to be the unique solution to the Bellman
equation in tabular settings, we demonstrate that this uniqueness fails to hold in continuous
state spaces. Specifically, for linear dynamical systems, we prove the Bellman equation admits
at least

(
2n
n

)
solutions, where n is the state dimension. Crucially, only one of these solutions

yields both an optimal policy and a stable closed-loop system. We then demonstrate a common
failure mode in value-based methods: convergence to unstable solutions due to the exponential
imbalance between stable and unstable solutions. Finally, we introduce a positive-definite
neural architecture that guarantees convergence to the stable solution by construction to address
this issue.

Contribution(s)
1. We prove that solutions to the Bellman equation in continuous state and action spaces are

generally non-unique, even under standard assumptions (e.g., smooth dynamics, discount
factors). Furthermore, we demonstrate that value-based learning approaches frequently
converge to unstable solutions, directly linking this non-uniqueness to practical failures in
closed-loop control.
Context: While prior work established uniqueness in finite settings (Bellman, 1957; Black-
well, 1965; Sutton, 1988) and identified edge cases of non-uniqueness in continuous spaces
(e.g., undiscounted or nonsmooth problems) (Misztela, 2018; Hosoya, 2024; Xuan et al.,
2024), our results show non-uniqueness persists generically—exposing a broader, underap-
preciated limitation of value-based reinforcement learning.

2. For linear dynamical systems, we derive an exact lower bound of
(
2n
n

)
distinct solutions

to the Bellman equation, yet only one corresponds to a stable controller. This exponen-
tial imbalance explains why learning methods struggle to identify viable policies in high
dimensions–a phenomenon we term the curse of dimensionality in solution space, mirror-
ing the computational curse of dimensionality in tabular settings.
Context: Though inspired by the solution to algebraic Riccati equation (Willems, 1971;
Lancaster, 1995), we provide novel linear-algebraic proofs (avoiding functional analysis)
and explicitly characterize how discount factors affect the results.

3. We introduce the use of positive-definite neural architectures to exclude unstable solutions
from being learned and demonstrate their effectiveness in solving nonlinear control prob-
lems.
Context: The key insight behind the use of positive-definite models is the close relation-
ship between the value function and Lyapunov function. This opens up a new possibility to
connect the value-based approach with the safe reinforcement learning community (Brunke
et al., 2022; Dawson et al., 2022; 2023).
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Abstract

The Bellman equation and its continuous-time counterpart, the Hamilton-Jacobi-
Bellman (HJB) equation, serve as necessary conditions for optimality in reinforcement
learning and optimal control. While the value function is known to be the unique so-
lution to the Bellman equation in tabular settings, we demonstrate that this uniqueness
fails to hold in continuous state spaces. Specifically, for linear dynamical systems,
we prove the Bellman equation admits at least

(
2n
n

)
solutions, where n is the state di-

mension. Crucially, only one of these solutions yields both an optimal policy and a
stable closed-loop system. We then demonstrate a common failure mode in value-based
methods: convergence to unstable solutions due to the exponential imbalance between
admissible and inadmissible solutions. Finally, we introduce a positive-definite neu-
ral architecture that guarantees convergence to the stable solution by construction to
address this issue.

1 Introduction

Reinforcement learning (RL) methods are broadly categorized into policy-based ap-
proaches (Williams, 1992; Schulman et al., 2015; 2017), which directly optimize policy parameters
using gradient estimates, and value-based approaches (Watkins & Dayan, 1992; Mnih et al.,
2015; Lillicrap, 2015), which indirectly learn policies by solving optimality conditions encoded
in Bellman equations. While policy-based methods excel in high-dimensional dynamical system,
value-based approaches benefit from sample efficiency through offline learning. In continuous-time
domains, the Hamilton–Jacobi–Bellman (HJB) equation serves as the counterpart to the discrete-
time Bellman equation. HJB-based RL enables control at arbitrarily high frequencies (Doya,
2000) and naturally incorporates physical priors for robust policy synthesis (Lutter et al., 2021a).
Despite these advantages, practical applications remain largely limited to low-dimensional sys-
tems (Nakamura-Zimmerer et al., 2021; Lutter et al., 2023), due to fundamental challenges in
solving high-dimensional HJB equations.

Two critical issues hinder the extension of HJB methods to complex systems:

Solution Existence: The value function (optimal performance index) may lack smoothness or
even continuity (Bardi et al., 1997; Clarke et al., 2008). Common remedies include viscosity so-
lutions (Crandall & Lions, 1983; Shilova et al., 2024) that generalize differentiability requirements,
or stochastic regularization through noise injection (Fleming & Soner, 2006; Tassa & Erez, 2007).

Solution Uniqueness: Since the Bellman equation is only a necessary condition for optimality, it
may admit general solutions beyond the value function. Early work (Bellman, 1957; Blackwell,
1965; Sutton, 1988) has shown, value function is indeed the unique solution to Bellman equation for
the finite state and action space. Yet, the uniqueness of general solutions in continuous state space
is overlooked in the reinforcement learning community. We show that the Bellman equation admits
multiple solutions in continuous state spaces, making the performance of value-based approaches
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highly dependent on model initialization. This non-uniqueness partially explains why value-based
approaches are sensitive to hyperparameter choices and initialization (Ceron et al., 2024).

In this paper, we formally analyze solution spaces for both discrete-time Bellman and continuous-
time HJB equations in continuous state and action space. For linear dynamical systems, we prove
the Bellman equation admits at least

(
2n
n

)
solutions – a number growing exponentially(∼ 4n/

√
πn

asymptotically) with state dimension n. Crucially, only one solution leads to a stable closed-loop
system. This exponential disparity between admissible solutions and the unique stabilizing optimum
fundamentally obstructs value-based learning approaches from synthesizing effective controllers.
We characterize this inherent challenge in continuous spaces – the need to identify the optimal
solution among exponentially many alternatives – as the curse of dimensionality in solution space,
complementing the well-known curse of dimensionality in computation from tabular setting.

Our key contributions are:

1. A constructive method to derive general solutions of Bellman/HJB equations for linear systems,
with theoretical characterization of their relationship to closed-loop stability via spectral analysis.

2. Identification of a canonical failure mode in practice: value-based methods converge to unstable
general solutions.

3. A positive-definite neural architecture that provably constrains learning to the stable solution
subspace, demonstrating its effectiveness beyond linear dynamics.

The rest of the paper is organized as following: Section 2 covers the background on problem setting,
Bellman equation, and learning methods for solving them. Section 3 focus on the general solutions
of Bellman equation and how they affect control. Section 4 present a canonical failure mode in
value-based learning approach. Section 5 discuss techniques to handle this failure. Finally, Section 6
highlight the difference between this paper and existing work.

2 Background

This section presents the optimal control framework, introduces both continuous-time and discrete-
time Bellman equations, and reviews contemporary learning methods for their solution.

2.1 Problem Setting

We consider both continuous-time and discrete-time dynamical systems in the form

xk+1 = f(xk,uk) and ẋ(t) = f(x(t),u(t)). (1)

Here, x ∈ X ⊆ Rn is the state and u ∈ U ⊆ Rm is the control input, The control policy π : X → U
maps states to actions,

u(t) = π(x(t)) or uk = π(xk), (2)

with associated cumulative costs:

J π(x(t)) =

∫ ∞

t

e−
s−t
τ l(x(s),u(s))ds and J π(xk) =

∞∑
i=k

γi−kl(xi,ui) (3)

Here, l : X × U → R+ is the running cost, e−
s−t
τ and γi−k are discount factors for future cost.

The states x(·) evolve under the dynamics (1), influenced by the policy (2). The optimal control
problem seeks a policy π∗ minimizing J π for all initial states. The time-invariant formulation
ensures stationarity of π∗ in infinite-horizon settings.
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2.2 The (Discrete-time) Bellman and Hamilton-Jacobi Bellman Equations

Control laws that optimize (3) are established by minimizing a value function, which is defined via
the following cumulative cost,

V(x(t)) := J π∗
(x(t)) = min

u[t,∞)

[∫ ∞

t

e−
s−t
τ l(x(s),u(s))ds

]
, (4)

or in discrete-time case,

V(xk) := J π∗
(xk) = min

uk,uk+1,...

[ ∞∑
i=k

γi−kl(xi,ui)

]
, (5)

where u[t,∞) denotes the continuous control laws and {uk, . . . } the discrete control sequence.
According to the principle of optimality (Bellman, 1957), the value function (in the discrete-time
case) can be obtained via the Bellman equation,

V(xk) = min
uk

[
l(xk,uk) + γV(xk+1)

]
, (6)

or for the continuous-time case via the Hamilton-Jacobi-Bellman (HJB) equation,

V(x(t)) = min
u(t)∈U

[
l(x(t),u(t)) +

〈
∂V⊤(x(t))

∂x
, f(t;x,u)

〉]
, t ∈ [0, T ), (7)

where the notation f(t; x,u) implies that x and u are dependent on t. The optimal policy (for
discrete-time case) is obtained by solving the right-hand side of (7), that is,

uk := π∗(xk) = argmin
u∈U

[
l(xk,u) + γV(xk+1)

]
, k ∈ [0, · · · ,K − 1), (8)

and in the continuous-time case, we have

u∗(t) = π∗(x(t)) = argmin
u∈U

[
l(x(t),u) +

〈
∂V⊤(x(t))

∂x
, f(t;x,u)

〉]
. (9)

2.3 Approximate Solutions to The Bellman and HJB Equations

For many systems, expanding the value function in (6) or (7) is impractical owing to the curse of
dimensionality when expanding V(x, t) around the state-control pairs. A practical way of obtaining
approximate solutions is to consider a perturbation around a current system trajectory {x(t),u(t)}
or in discrete-time, {xk,uk}. The nominal solution that minimizes the corresponding residual costs
around this perturbed trajectory (Doya, 2000; Sutton, 2018) are given as,

δ(x(t)) ≜ l(x(t),u∗(t)) +

〈
∂V̂⊤

θ (x(t))

∂x
, f(x(t),u∗(t))

〉
− V̂θ(x(t)), (10)

and
δ(xk) ≜ l(xk,u

∗
k) + γV̂θ(f(xk,u

∗
k))− V̂θ(xk), (11)

where, V̂θ : X × Θ → R is a parameterized candidate solution to (6). In tabular dynamic pro-
gramming settings, this minimization is applied to the entire state space via value iteration (see
Appendix B). For large state spaces or in the continuous-time setting, a subset of the states are up-
dated as the numerical integration evolves. These subsets are collected either through Monte Carlo
rollouts (Mnih et al., 2015; Lillicrap, 2015) or via grid sampling (Shilova et al., 2024). The notation
u∗ represents the current estimate of the optimal action that minimizes the right-hand side of the
Bellman equation. In practice, u∗ is executed by training another policy network (Lillicrap, 2015)
or solved analytically (Gu et al., 2016; Lutter et al., 2021b; Molu et al., 2018).
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3 General Solutions to The Bellman and HJB Equations

We describe the general solutions to the Bellman equation and relations to learning for control. We
begin our analysis with a continuous-time linear dynamical problem and then extend the study to
the discrete-time case. We complete this section with an analysis of nonlinear problems.

3.1 Solutions to Linear Continuous-Time Control Problem

let us consider the continuous-time version of the linear quadratic regulator (LQR) optimal control
problem,

min
∫∞
t

x(s)⊤Qx(s) + u(s)⊤Ru(s)ds
subject to ẋ(t) = Ax(t) +Bu(t),

(12)

where A ∈ Rn×n, B ∈ Rn×m, Q = Q⊤ ⪰ 0 ∈ Rn×n, and R = R⊤ ≻ 0 ∈ Rm×m are constant
matrices. Suppose that the value function is quadratic in the state such that

V(x(t)) = x⊤(t)Px(t), (13)

for a symmetric and positive-definite matrix P . Substituting (13) and (12) into (7), we find that

0 = min
u(t)

[
u(t)⊤Ru(t) + 2x(t)⊤PBu(t) + x(t)⊤Qx(t) + x(t)⊤PAx(t) + x(t)⊤APx(t)

]
. (14)

Notably, the minimizing problem on the right-hand side is quadratic in u(t). Thereforce, we can
obtain the analytical optimal control

u∗(t) = −R−1B⊤Px(t), (15)

which yields
x⊤(t)(A⊤P + PA− PBR−1B⊤P +Q)x(t) = 0. (16)

The HJB equation must be satisfied globally; therefore, the following continuous algebraic Riccati
equation (ARE) must hold for the matrix P ,

A⊤P + PA− PBR−1B⊤P +Q = 0. (17)

Conversely, any matrix P that satisfies the ARE (17) is a solution to HJB equation of the LQR
problem.

Effect of Discount Factor In the formulation of LQR problem (17), we omit the discount factor
e−

s
τ . This omission is made only for simplicity and by no means affect the generality of the results

we will show shortly. Particularly considering the LQR problem with discounted running cost

min
∫∞
t

e−
s
τ [x(s)⊤Qx(s) + u(s)⊤Ru(s)]ds

subject to ẋ(s) = Ax(s) +Bu(s), x(0) = x0
(18)

and its undiscounted counterpart with modified dynamics

min
∫∞
t

x(s)⊤Qx(s) + u(s)⊤Ru(s)ds
subject to ẋ(s) = (A− 1

2τ I)x(s) +Bu(s), x(0) = x0
, (19)

we have the following result.

Theorem 1. The value function V(x) = x⊤Px satisfies the HJB equation for the discounted LQR
problem (18) if and only if it satisfies the HJB equation for the undiscounted LQR problem with
modified dynamics (19).
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Proof. Substituting the discounted LQR problem (18), V(x) = x⊤Px, and policy u∗(t) =
−R−1B⊤Px(t) into HJB equation (7) yields

x⊤(t)(A⊤P + PA− PBR−1B⊤P +Q)x⊤(t) = x⊤(t)Px(t). (20)

Rearranging the equation (20), we have

x⊤(t)[(A− 1

2τ
I)⊤P + P (A− 1

2τ
I)− PBR−1B⊤P +Q]x⊤(t) = 0, (21)

which matches equation (16) with modified dynamics ẋ(s) = (A− 1
2τ I)x(s) +Bu(s).

The stability ofthe opened-loop system ẋ(s) = Ax(s) depends solely on the eigenvalues of A. Spe-
cially, the system becomes exponentially stable as the eigenvalues of A become negative. Therefore,
an interesting interpretation of Theorem 1 is that, in terms of the value function, incorporating a dis-
count factor into the running cost is equivalent to controlling a more stable system.

Solutions to Algebraic Riccati Equation Here, we introduce a subspace invariant method (Lan-
caster, 1995) to obtain a general solution for the ARE (17). We begin by construct a 2n × 2n a
Hamiltonian matrix:

H =

[
A −BR−1B⊤

−Q −A⊤

]
. (22)

Definition 1. We sayM is an invariant subspace of H if Hx ∈M for all x ∈M.

Theorem 2. Suppose [P⊤
1 , P⊤

2 ]⊤forms a basis of invariant subspace of H (22), where P1, P2 are
n× n matrices and P1 invertible. Then

P = P2P
−1
1 (23)

is a solution to ARE (17).

Proof. By the definition of the invariant subspace, there exist a n× n matrix T such that

H

[
P1

P2

]
=

[
P1

P2

]
T. (24)

Since P1 is invertible, we have[
A −BR−1B⊤

−Q −A⊤

] [
P1

P2

]
P−1
1 =

[
P1

P2

]
P−1
1 P1TP

−1
1 =

[
P1

P2

]
P−1
1 T̂ . (25)

so that [
A −BR−1B⊤

−Q −A⊤

] [
I

P2P
−1
1

]
=

[
T̂

P2P
−1
1 T̂

]
(26)

These give two set of matrix equation

T̂ = A−BR−1B⊤P2P
−1
1 , (27a)

−Q−A⊤P2P
−1
1 = P2P

−1
1 T̂ . (27b)

Substituting equation (27a) into (27b) we find that

Q+A⊤P2P
−1
1 + P2P

−1
1 A− P2P

−1
1 BR−1B⊤P2P

−1
1 = 0, (28)

which follow the ARE form (17) and complete the proof.
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We can then apply eigen-decomposition1 to obtain invariant subspace for H ,

H = V ΛV −1 =

[
P1 S1

P2 S2

] [
Λ1 0
0 Λ2

] [
P1 S1

P2 S2

]−1

, (29)

where [S⊤
1 , S⊤

2 ]⊤ is a 2n × n matrices that stores other n eigenvectors. By choosing different
combination of columns in the eigen-space, we can form

(
2n
n

)
different invariant subspaces, with

each of them yielding at least a solution to the HJB equation.

3.2 Behavior of The Closed-Loop System under General Solutions

Substituting the policy (15) into the open-loop dynamics in (12) yields the dynamics of the closed-
loop system:

ẋ(t) = (A−BR−1B⊤P ) x(t) = Aclx(t), (30)

where Acl is the closed-loop transition matrix. Here, we study the behavior of closed-loop sys-
tem (30) by relating the eigenvalues of Acl to H .

Lemma 3. If the pair (A,B) is controllable and the pair (Q,A) is observable, the Hamiltonian
matrix H (22) has no pure imaginary or zero eigenvalues.

Proof. See Appendix A.

Theorem 4. If λ is an eigenvalue of H , then −λ is also an eigenvalues. Furthermore, if the pair
(A,B) is controllable and the pair (Q,A) is observable, H has n positive eigenvalues and n negative
eigenvalues.

Proof. Let J =

[
0 I
−I 0

]
, then we must have HJ = (HJ)⊤.

So Hx = λx implies

J⊤HJJ⊤x = λJ⊤x

H⊤(J⊤x) = −λ(J⊤x)

Hence, −λ is an eigenvalue of H⊤ and must be an eigenvalue of H .

By Lemma 3, the eigenvalues only contains real number, so it must have n positive eigenvalues and
n negative eigenvalues.

Theorem 5. Suppose [P⊤
1 , P⊤

2 ]⊤ are invariant subspace of H (22) with eigenvalues Λ1 =
diag(λ1, . . . , λn) and P = P2P

−1
1 , then the characteristic matrix of closed-loop system Acl =

(A−BR−1B⊤P ) has eigenvalues Λ1.

Proof. By invariant subspace, we have[
A −BR−1B⊤

−Q −A⊤

] [
P1

P2

]
=

[
P1

P2

]
Λ1, (31)

which give
AP1 −BR−1B⊤P2 = P1Λ1

−QP1 −A⊤P2 = P2Λ1
(32)

Substituting P2 = PP1 into the first equation, we obtain

(A−BR−1B⊤P )P1 = P1Λ1, (33)

which completes the proof.
1If H is not diagonalizable, we can still apply the Schur decomposition. The results remain the same in this case.
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Corollary 6. Given the conditions in Lemma 3, and assuming that H is diagonalizable, there exists
at least

(
2n
n

)
P matrices that satisfy the CARE (17). In addition, only one of the solutions contributed

to a closed-loop stable system (30).

Proof. By picking different sets of n eigenvector from 2n-dimensional eigenspace of (29), we can
construct

(
2n
n

)
invariant subspaces Ms, each invariant subspace corresponding to a solution P .

By Theorem 4 and Theorem 5, the closed-loop system is stable, only when eigenvectors with all
negative λ are selected.

A similar result to Corollary 6 holds for the discounted cost setting, where at most one solution leads
to a stable closed-loop system. More details are provided in Appendix A.

3.3 The Discrete-Time Case

The results for the discrete-time case are similar to their continuous-time counterpart; however, the
proof is more involved. Therefore, we present the main theorems for the discrete-time system in the
main text and leave the proof in Appendix A.

We consider the discrete-time LQR prblem:

min
∑∞

i=t x
⊤
i Qxi + u⊤

i Rui

subject to xi+1 = Axi +Bui,
. (34)

The discrete-time algebraic-Riccati equation of (34) is given by

P = Q+A⊤PA−A⊤PB(R+B⊤PB)−1B⊤PA. (35)

Similar to the continuous-time case, we construct the Hamiltonian matrix as:

H =

[
A+BR−1B⊤A−⊤Q −BR−1B⊤A−⊤

−A−⊤Q A−⊤

]
. (36)

Theorem 7. Suppose [P⊤
1 , P⊤

2 ]⊤ are invariant subspace of discrete-time Hamitonian matrix
H (36), then P = P2P

−1
1 is the solution to discrete-time algebraic-Riccati equation (35).

Proof. See Appendix A.

In the discrete-time problem, the dynamics of closed-loop is given by

xi+1 = (A−B(R+B⊤PB)−1B⊤PA), xi = Aclxi, (37)

where stability is determined by the eigenvalues of Acl being within the unit circle. We now relate
the eigenvalues of closed-loop system matrix Acl to the Hamiltonian H for the discrete-time system.

Theorem 8. If λ is an eigenvalue of the discrete-time Hamiltonian matrix H (36), then 1
λ is also

a eigenvalue of H . Moreover, if the pair (A,B) is controllable and the pair (Q,A) is observable,
then H has n eigenvalues within the unit circle and n eigenvalues outside the unit cycle.

Proof. See Appendix A.

Theorem 9. Suppose [P⊤
1 , P⊤

2 ]⊤ is the invariant subspace of H (36) with eigenvalues Λ1 =
diag(λ1, . . . , λ2) and P = P2P

−1
1 , then the characteristic matrix of closed-loop system Acl =

(A−B(R+B⊤PB)−1B⊤PA) has eigenvalues Λ1.

Proof. See Appendix A

Given Theorem 8 and Theorem 9, we have similar results for the discrete-time system, i.e., only one
among

(
2n
n

)
general solution to Bellman equation leads to stable closed-loop system.
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3.4 The Nonlinear Case

Here, we discuss the general solutions to HJB equation for nonlinear dynamics. In many appli-
cations, optimal control problems are highly structured. For example, in robotics, a common as-
sumption is that the dynamics are control-affine and the running cost is separable and convex in the
control input. In such scenarios, the optimal control problem can often be solved analytically (Lutter
et al., 2021b). Specifically, consider the optimal control problem formulated as follows:

min
∫∞
t

e−
s
τ [l1(x(s)) + u(s)⊤Ru(s)]ds

subject to ẋ(s) = f1(x(s)) + f2(x(s))u(s), x(0) = x0,
(38)

where f1 : X → Rn, f2 : X → Rn×m, l1 : X → R+ and R = R⊤ ≻ 0 ∈ Rm×m.

The optimal policy synthesis problem (9) is quadratic in control and can be obtained analytically:

u∗(t) =argmin
u∈U

[
l1(x(t)) + u⊤Ru+

〈
∂V⊤(x(t))

∂x
, (f1(x(t)) + f2(x(t))u)

〉]

=− 1

2
R−1f⊤

2 (x(t))
∂V(x(t))

∂x
. (39)

Substituting the HJB equation (7) into (39) yields the elliptic partial differential equation:

V(x(t)) = −1

4

∂V(x(t))
∂x

⊤
f2(x(t))R

−1f2(x(t))
⊤ ∂V(x(t))

∂x
+ f1(x(t))

⊤ ∂V(x(t))
∂x

+ l1(x(t)).

(40)
Thus, solving the HJB equation for the nonlinear control problem (38) is equivalent to solving the
elliptic partial differential equation (40).

In general, the elliptic partial differential equation (40) does not admit a unique solution. However,
the discussion of general solutions to nonlinear elliptic partial differential equations is beyond the
scope of this paper, and we refer readers to Han & Lin (2011); Evans (2022) for further details.

4 A Canonical Failure Mode in Learning Value Functions

Figure 1: Solution to LQR: V(x) = x⊤Px, where
P is given by (43). The green dot indicates the
stable solution, the blue dot marks the unstable
solution, and the orange ring represents additional
solutions arising from the noninvertibility of P1.

A generic neural network may converge to any
solution of the Bellman equation by minimiz-
ing the TD error. Moreover, it is likely for
the network to converge to undesired solution
given the imbalance ratio of solutions. Here, we
present an example to show such failure mode
do exist in practice.

Consider the time-continuous LQR (12) with

the parameters A = B = Q = R =

[
1 0
0 1

]
.

We obtain the analytical solution by using
the subspace invariant method discussed previ-
ously:

H =


1 0 −1 0
0 1 0 −1
−1 0 −1 0
0 −1 0 −1

 = V ΛV −1,

(41)
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where

V =


1 +
√
2 0 1−

√
2 0

0 1 +
√
2 0 1−

√
2

−1 0 −1 0
0 −1 0 −1

 ,Λ =


√
2 0 0 0

0
√
2 0 0

0 0 −
√
2 0

0 0 0 −
√
2

 . (42)

By selecting columns from the matrix V , we can obtain different solution matrices P .
Note that when the first and third or second and fourth columns are selected, i.e., P1 =[
1 +
√
2 1−

√
2

0 0

]
, P2 =

[
−1 −1
0 0

]
or P1 =

[
0 0

1−
√
2 1−

√
2

]
, P2 =

[
0 0
−1 −1

]
, the ma-

trix P1 is not invertible, introducing additional degrees of freedom. This leads to an infinite number

of unstable solutions.In summary, the analytical solution can be expressed as P =

[
a b
b c

]
, where

a = 1 +
√
2, b = 0, c = 1 +

√
2 (Stable Solution)

a = 1−
√
2, b = 0, c = 1−

√
2 (Unstable Solution)

a = z, b =
√
2z + 1− z2, c = 2− z, z ∈ (1−

√
2, 1 +

√
2) (Unstable with Extra Freedom)

.

(43)

These solutions are visualized in Figure 1.

Now, we solve the LQR problem with a learning approach. Specifically, we use a 3-layer MLP
architecture with 128 neurons in each layer and the ELU activation function to approximate the value
function. The weights are initialized with Lecun normal (Klambauer et al., 2017) and the biases are
initialized to zero. We collect 104 samples uniformally from [−2, 2]× [−2, 2]. The neural network
is then trained by minimizing the mean square error of TD residuals (10) using Adam optimizer with
learning rate 10−3. We train the networks for 1000 epochs and achieve a mean square error below
10−4.

V
al
ue

Time

St
at
e

Figure 2: Learned solution to LQR. Left figure: the learned value function converges to the unstable
solution, up to an additive constant. Right figure: both the learned and analytical unstable solutions
yield identical diverging trajectories, whereas the stable solution converges to the origin.

Figure 2 compares the learned and analytical solutions. In this case, the neural network converges
to the unstable solution, and the associated policy causes trajectories to diverge. The issue of non-
unique solutions also arises in nonlinear dynamics, as we will demonstrate in Section 5. Moreover,
we find the solution to which the network converges is highly sensitive to weight initialization (see
Appendix C), suggesting that multiple solutions may partly explain the sensitivity of value-based
approaches to hyperparameters and random seeds (Ceron et al., 2024).

5 What Can We Do

In this section, we discuss potential solutions to address the failure of the value-based approach in
finding the optimal control policy due to the existence of general solutions to the Bellman equation.
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5.1 Approach 1: Adding Boundary Conditions

Setting boundary conditions is one of the most common techniques for isolating the stable solution of
the Bellman equation (Mnih et al., 2015; Lillicrap, 2015). However, selecting appropriate boundary
conditions can be challenging in practice. Insufficient boundary conditions may fail to guarantee
uniqueness, while inconsistent ones can result in no solution at all.

V
alue

Figure 3: Example of insufficient
boundary conditions: both solutions
share the same boundary value, yet one
yields a stable closed-loop system while
the other results in instability.

Insufficient Boundary Conditions Considering the
LQR example in Section 4, we can define a unit circle
boundary B = {x : x⊤x = 1} and set the Dirichlet
boundary condition: V(x) = 1 +

√
2, for x ∈ B.

Under the specified boundary conditions, the
stable solution, the stable solution V(x) =

x⊤
[
1 +
√
2 0

0 1 +
√
2

]
x still solves the associated

Bellman equation. However, there is another solution

V(x) = x⊤
[
1−
√
2 0

0 1−
√
2

]
x + 2

√
2, which meets

both the Bellman equation and the boundary conditions.
This solution is obtained by adding an offset of 2

√
2 to

the unstable solution V(x) = x⊤
[
1−
√
2 0

0 1−
√
2

]
x

by 2
√
2. This phenomenon occurs because the Bellman

equation and the resulting policy depend only on the
relative values of the value function rather than its absolute magnitude.

Inconsistent Boundary Conditions Here, we retain the Dirichlet boundary conditions from the
previous paragraph i.e., V(x) = 1 +

√
2, if x ∈ B1, where B1 = {x : x⊤x = 1}. Additionally,

we introduce a new boundary: B2 = {x : x⊤x = 0.5}, and set the Dirichlet boundary condition for
this new boundary as: V(x) = 0 if x ∈ B2. In this case, no general solution to Bellman equation
can satisfy both boundary conditions.

5.2 Approach 2: Special Neural Architectures

For many optimal control problems, the goal is to stabilize the system to an equilibrium point
(xeq,ueq) or track a reference trajectory. In this scenario, we can design specialized architectures to
exclude the unstable general solutions that the Bellman equation can admit.

Theorem 10. If V(x) is a solution to HJB equation (7) without discounted running cost, where
V(xeq) = 0 and V(x) > 0 for any x ̸= xeq, then the closed-loop system under the policy given
by (9) is stable. Furthermore, if l(x,u) > 0 for any state-control pair (x,u) other than (xeq,ueq),
then lims→∞ ∥x(s)− xeq∥ = 0 for any initial condition x(t).

Proof. See Appendix A.

The key insight here is the value function V(x) can naturally serve as a Lyapunov function for
the closed-loop system with the policy given by (9). Particularly, Bellman equation guarantees
V̇(x) < 0 under the policy (9). Additionally, the definition of the optimal control problem and value
function ensure the positive-definiteness conditions for the Lyapunov function, i.e., V(xeq) = 0 and
V(x) > 0 for any x ̸= xeq.

Theorem 10 inspires us to design a neural architecture that preserves the positive-definiteness, i.e.,
ensuring, regardless of how weight θ are set, we always have V̂θ(xeq) = 0 and V̂θ(x) > 0 for any

10



x ̸= xeq. We provide a positive-definite architecture below

V̂θ(x) = h⊤
Nh

hNh
+ ϵ∥x− xeq∥22, (44)

where
hk+1 = σ(θkhk) for k = 1, 2, . . . , Nh , andh1 = x− xeq. (45)

Here, σ represents nonlinear activation function that satisfies σ(0) = 0 (e.g., ReLU, tanh), and ϵ is
a small constant (e.g., 10−3). For any x ̸= xeq , we have h⊤

Nh
hNh

≥ 0 and ∥x− xeq∥22 > 0, which
implies that V̂θ(x) > 0. For xeq , we have h1 = 0, and by property of σ, hk+1 = 0 for k ≥ 1;
consequently, V̂θ(xeq) = 0.
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(a) TD Error (b) Cumulative Cost (c) Trajectory

Figure 4: Value learning with MLP and positive-definiteness architecture. For each case, we run the
experiments with 5 different seeds, reporting the average performance. The shaded area represents
the standard deviation across the runs. The TD error is minimized for both architecture, indicating
a solution to Bellman equation is found. However, generic MLP architecture cannot distinguish the
stable solution from the others leading to high cumulative cost and diverging behavoir

We apply the proposed architecture to two nonlinear dynamical systems: cartpole and drone. The
drone scenario poses additional challenges due to its intricate dynamics, the need for rapid response,
and limited control inputs. Further details regarding the tasks, learning algorithm, and hyperparam-
eters are provided in Appendix D.

Figure 4 illustrates the results for both our proposed architecture and a generic MLP. The absolute
TD error is minimized for both architectures, implying that the learning algorithm successfully
finds a solution to the Bellman equation in both cases. However, the generic MLP architecture
cannot distinguish the stable solution from the others, the resulting controller leads to an unstable
closed-loop system, causing higher cumulative costs. These results highlight the presence of non-
unique solutions in systems with nonlinear dynamics. In contrast, by using an architecture that
preserves positive definiteness, the learning algorithm consistently converges to the stable solution
and achieves lower cumulative costs.

Table 1: Trajectory Cost for Final Policy

Methods Linear Cartpole Drone
Ours 0.87 6.98 8.64
Lutter et al. (2020) 4.38 10.28 362.31

We compare our method to Lutter et al.
(2020; 2021b)’s continuous-time RL ap-
proach, which employs discount factor
i.e., s

τ , scheduling and Lagrangian net-
works (Lutter et al., 2019) for learning the
stable solution. Evaluations on three tasks
(including their original and the more challenging drone system) show our method outperforms
theirs, particularly on the drone task (Table 1). We find that a large discount factor s

τ complicates
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optimization, leading the problem essentially ill-defined (Tassa & Erez, 2007). Moreover, the La-
grangian network does not guarantee that the equilibrium point is the unique minimizer (Lutter et al.,
2023)—a key property for learning the stable solution. We hypothesize that these factors account
for the performance gap between our method and that of Lutter et al. (2020; 2021b).

6 Related Work

Uniqueness of Solution to Bellman Equation The uniqueness of Bellman equations has been
studied in both reinforcement learning and control. The first proof for the uniqueness of the Bellman
equation in finite state and action spaces was provided by Richard Bellman (Bellman, 1957). A well-
known contraction mapping proof was given by Blackwell (1965), also included in Appendix B.
This idea was extended by Sutton (1988). The study in continuous state and action spaces was
pioneered by Bertsekas & Shreve (1996), who showed the value function is the unique fixed point
of the Bellman equation under regularity conditions.

Recent works have explored non-uniqueness in Bellman equations. For example, Misztela (2018)
shows two distinct semi-continuous solutions to an HJB equation, and Hosoya (2024) finds infinitely
many solutions in a special class of HJB equations. Additionally, Xuan et al. (2024) shows that a
discount factor of one leads to multiple solutions. In this work, we demonstrate that non-uniqueness
is common in practice, and that the solution space can grows exponentially with state dimension.
We further study the behavior of the closed-loop system and show that only one solution leads to
stability, which presents challenges for value-based methods. Several key theorems in this work are
inspired by solutions to algebraic Riccati equations in control (Willems, 1971; Lancaster, 1995). We
provide an alternative, self-contained, linear-algebraic proof for our main results, without relying on
functional analysis tools, contributing to the theoretical foundation.

Neural Architectures for Dynamics and Control The need for stable dynamics and control
has led to the development of structured architectures. Kolter & Manek (2019) propose input-
convex networks for stable dynamical systems. Meanwhile Lutter et al. (2019) introduce La-
grangian networks for physically plausible dynamics. These architectures have been applied to
control tasks (Lutter, 2023). Positive-definiteness architectures are often explored in safety-critical
reinforcement learning (Chang & Gao, 2021; Brunke et al., 2022; Dawson et al., 2022; 2023), par-
ticularly due to their use of Lyapunov or barrier functions. In this work, we show a close relationship
between value functions and Lyapunov functions, demonstrating how structured architectures can
facilitate training and enhance policy performance for value-based methods.

7 Conclusion

In this work, we show that solutions to the Bellman equation are generally nonunique in continuous
state and action spaces, with the solution space potentially growing exponentially with dimension,
a phenomenon we term the “curse of dimensionality in solution space”. While one might mitigate
this by setting boundary conditions or designing initialization strategies, we demonstrate that this
is often challenging in practice. Instead, we propose using structured architectures to constrain the
search space to only desirable solutions, leveraging the close relationship between value functions
and Lyapunov functions.

The primary limitation of this architecture is its applicability mainly to control problems that de-
mand system stability. In problems such as locomotion, the objective is often to achieve a limit
cycle (Tedrake, 2023) rather than converging to an equilibrium point. In these scenarios, a more
effective initialization scheme may be necessary to find the desired solution, as we discussed in Ap-
pendix C. Another alternative is to switch to policy-based approaches (Schulman et al., 2017; Xu
et al., 2021). These methods do not face the challenges of distinguishing solutions that value-based
approaches encounter, as they directly optimize the policy with respect to the performance index.
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A Additional Proof

Proof of Lemma 3

Proof. We proof Lemma 3 via contradiction.

Assume λ+ λ̄ = 0 are pure imaginary numbers or zeros and

H

[
x
y

]
= λ

[
x
y

]
, (46)

where x and y are not both zero. We use upper bar to denote the conjugate of the vector.

We have

Ax−BR−1B⊤y = λx (47)

−Qx−A⊤y = λy, (48)

By replacing the second equation into first and multiplying both side with ȳ yields

ȳBR−1B⊤y = −(x̄Q+ λ̄ȳ)x− λȳx = −x̄Qx. (49)

Since BR−1B⊤ ⪰ 0 and Q ⪰ 0, we conclude Qx and BR−1B⊤y = 0. Thus[
A− λI

Q

]
x = 0. (50)

If x ̸= 0, then the above equation contradict the observability of (Q,A) by Popov-Belevitch-Hautus
test (Hespanha, 2018). Similarly, if we have y ̸= 0, we have

x̄[BR−1B⊤, A+ λ̄I] = 0, (51)

which contradict the controllability of (A,B).

Extension of Corollary 6 to the Discounted Setting:
Theorem 11. For the discounted LQR problem (18), at most one solution to the HJB equation (20)
results in a stable closed-loop system.

Proof. We prove Theorem 11 by relating the eigenvalues of the closed-loop system matrix Acl =
A−BR−1BP to its undiscounted counterpart (19).

Suppose P is a solution to the discounted LQR problem (18). By Theorem 1, it is also a solution to
its undiscounted counterpart (19). Then, we have a following relationship between the closed-loop
system matrix Acl and its undiscounted counterpart Âcl:

Acl = A−BR−1B⊤P = A− 1

2τ
I −BR−1B⊤P +

1

2τ
I = Âcl +

1

2τ
I. (52)

Therefore, Acl ≻ Âcl.

By Corollary 6 of undiscounted version, there exists at most one P that makes Âcl ≺ 0. Therefore,
at most one P makes Acl ≺ 0.

Note, the stable solution only exists when τ is sufficient large. In other words, if the future cost is
discounted too quickly, the policy becomes myopic and fails to provide any guarantees for long-term
behavior.
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Proof of Theorem 7

Proof. Since
[
P1

P2

]
are invariant subspace of H , following the proof of Theorem 2, we have

[
A+BR−1B⊤A−⊤Q −BR−1B⊤A−⊤

−A−⊤Q A−⊤

] [
I

P2P
−1
1

]
=

[
T̂

P2P
−1
1 T̂

]
, (53)

which gives two set of matrix equations:

T̂ = A+BR−1B⊤A−⊤Q−BR−1B⊤A−TP2P
−1
1 , (54)

P2P
−1
1 T̂ = −A−⊤Q+A−⊤P2P

−1
1 . (55)

Substitute the first set of equations into the second gives

P2P
−1
1 (A+BR−1B⊤A−⊤Q−BR−1PB⊤A−⊤P2P

−1
1 ) = −A−⊤Q+A−⊤P2P

−1
1 . (56)

Rewriting equation (56) and substituting P2P
−1
1 = P , we have

PA+ (I + PBR−1B⊤)A−⊤(Q− P ) = 0. (57)

Next, we are going to show I + PBR−1B⊤ is invertible.

Suppose there exists non-zero row vector y, such that y(I + PBR−1B⊤) = 0. Premultiplying (57)
by y yields yX = 0. However, then y = −y(XBR−1B⊤) = 0, which contradict the assumption
y ̸= 0. So I + PBR−1B⊤ is invertible. Thus, we have

A−⊤(Q− P ) = −(I + PBR−1B⊤)−1PA. (58)

Multiplying (57) by A⊤, we have

A⊤PA+A⊤PBR−1B⊤A−⊤(Q− P ) +Q− P = 0 (59)

Q+A⊤PA−A⊤PBR−1B⊤(I + PBR−1B⊤)−1PA = P (60)

Noticing

(R+B⊤PB)(R−1B⊤)(I + PBR−1B⊤)−1 = (B⊤ +B⊤PBR−1B)(I + PBR−1B⊤)−1 = B⊤,
(61)

we have
(R−1B⊤)(I + PBR−1B⊤)−1 = (R+B⊤PB)−1B⊤. (62)

Substituting (62) back to (60) yields

P = Q+A⊤PA−A⊤PB(R+B⊤PB)−1B⊤PA, (63)

which completes the proof.

Proof of Theorem 8 We first introduce the discrete-time counterpart of Lemma 3

Lemma 12. If the pair (A,B) is controllable and the pair (Q,A) is observable, the Hamiltonian
matrix H (36) has no eigenvalue such that |λ| = 1.

Proof. Let

H

[
x
y

]
= λ

[
x
y

]
, (64)
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and |λ| = 1. Then,

Ax+BR−1B⊤A−⊤Qx−BR−1B = λx (65)

−A−⊤Qx+A−⊤y = λy. (66)

Multiplying the second equation by BR−1B⊤ and adding it to the first give

Ax− λBR−1By = λx (67)

−Qx+ y = λA⊤y. (68)

Multiplying the first by λ̄ȳ and second by x̄ yields

λ̄ȳAx = λ̄λȳBR−1By + λ̄λȳx = −x̄Qx− ȳx. (69)

Thus
−λ̄λȳBR−1B⊤y − x̄Qx = (ȳy − 1)ȳx = 0. (70)

Therefore,

y⊤B = 0 (71)
Qx = 0 (72)

The equation Cx = 0 implies yTA = λ−1yT , which, together with yTB = 0, identifies λ−1 as an
uncontrollable eigenvalue of the pair (A,B). On the other hand, yTB = 0 implies Ax = λx, and
combined with Cx = 0, this characterizes λ as an unobservable eigenvalue of the pair (C,A).

We now proof the whole Theorem 8:

Proof. Let J =

[
0 I
−I 0

]
, we can easily verify H⊤JH = J .

So Hx = λx implies

JHx = λJx (73)

JHx = λH⊤(JHx) (74)
1

λ
v = H⊤v, (75)

where v = JHx. Thus, 1
λ is also a eigenvalue of H .

Given Lemma 12, there must be n eigenvalues within the unit cycle and n outside.

Proof of Theorem 9

Proof. By invariant subspace, we have[
A+BR−1B⊤Q −BR−1B⊤A−⊤

−A−⊤Q A−⊤

] [
P1

P2

]
=

[
P1

P2

]
Λ1, (76)

which yields to two matrix equations:

AP1 +BR−1B⊤QP1 −BRB⊤A−⊤P2 = P1Λ1 (77)

−A−⊤QP1 +A−⊤P2 = P2Λ1. (78)

Substituting P2 = PP1 into the second equation

A−⊤(P −Q)P1 = PP1Λ2. (79)
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Noticing
PAcl = PA− PB(R+B⊤PB)−1B⊤PA = A−⊤(P −Q). (80)

So,
PAclP1 = A−⊤(P −Q)P1 = PP1Λ2. (81)

Substituting P = P2P
−1
1 into (81), yields

P2P
−1
1 AclP1 = P2Λ1. (82)

Therefore, the diagonal entries of Λ1 are eigenvalues of P−1
1 AclP1. Since similarity transformations

preserve the eigenvalues of a matrix, Acl also have same set of eigenvalues Λ1

Proof of Theorem 10 Here, we introduce the Lyapunov Theorem and use it to finalize the proof.

Lemma 13. (Lyapunov Theorem) Consider a dynamical system described by the differential equa-
tion:

ẋ(t) = f(x(t)), x(t) ∈ Rn, (83)

where f : Rn → Rn is continuously differentiable.

Let V(x(t)) be a continuously differentiable scalar function, called a Lyapunov function, with the
following properties: V(x(t)) > 0 for x ̸= xeq and V(xeq) = 0.

Then, if V̇(x(t)) ≤ 0 for all x(t) ̸= xeq, then the equilibrium point at xeq is stable, where the
derivative of V(x(t)) along the trajectories of the system is given by:

V̇(x(t)) = ∂V(x(t))⊤

∂x
f(x(t)). (84)

Furthermore, if V̇(x) < 0 for all x ̸= xeq, the equilibrium point at xeq is asymptotically stable and
we have lims→∞ ∥x(s)− xeq∥ = 0 for any initial condition x(t).

Proof. See any control textbook or the English translation of Lyapunov’s original thesis (Lyapunov,
1992).

We now prove Theorem 10 by showing the solution to Bellman equation with positive definite model
is a Lyapunov function.

Proof. Since V(x(t)) is the solution to HJB equation, with the policy u∗(t) = π∗(x(t)), we have

V̇(x(t)) = ∂V(x)⊤

∂x
f(x(t), π∗(x(t))) = −l(x(t), π∗(x(t))) ≤ 0. (85)

Additionally, we have V(x) > 0 for all x ̸= xeq and V(xeq) = 0. Therefore V(x(t)) is also a
Lyapunov function for closed-loop system ẋ = f(x, π∗(x)). By Lemma (13), the closed-system is
stable. Furthermore, if we have l(x(t), π∗(x(t))) > 0 for all x ̸= xeq, the closed-loop is asymptoti-
cally stable.

Remark 1. We assume no discount on the running cost in the proof of Theorem 10. This assumption
allows the policy to equally weigh all future consequences of the current control, which is crucial
for proving the long-term behavior of the system such as stability. Additionally, the value function
V(x) <∞ is well-defined, given the presence of equilibrium points.

However, Theorem 10 may not hold if the discount factor e−
s
τ ≪ 1 is small, due to myopic policy

behavior. In such cases, local stability may still be proven under additional assumptions on the
running cost and system dynamics.
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B Bellman Equation in Tabular Setting

Here, we include the proof showing that the value function is the unique solution to the Bellman
equation in the tabular setting for comparison. The proof is mainly adapted from Blackwell (1965)
and the lecture note from Gangwani (2019).

We assume both X and U is finite sets with size |X | and |U|, respectively.

For simplicity, we reframe the problem from minimizing the cost-to-go to maximizing the reward-
to-go, where the reward is defined as r(x,u) = −l(x,u).

We define Bellman operator T : R|X | → R|X | for anyW ∈ R|X | as

(T W)(x) = max
u

[r(x,u) + γW(f(x,u))]. (86)

Theorem 14. Bellman operator T is a contraction mapping under sup-norm ∥ · ∥∞, i.e.,

∥T W − T Z∥∞ ≤ γ∥W − Z∥∞,∀W,Z ∈ R|X |. (87)

Proof. For any particular state x ∈ X , we have

|(T W)(x)− (T Z)(x)| = |max
u

[r(x,u) + γW(f(x,u))]−max
u

[r(x,u) + γZ(f(x,u))]| (88)

≤ γmax
u
|W(f(x,u))−Z(f(x,u))| (89)

≤ γ∥W − Z∥∞. (90)

Since, the above holds for any state x, we can conclude

∥T W − T Z∥∞ = max
x
|(T W)(x)− (T Z)(x)| ≤ γ∥W − Z∥∞. (91)

We can easily verified value function V is a fixed point to Bellman operator. Furthermore, value
iteration defined as

Wk+1 = T Wk, (92)

converge to the value function V .

Theorem 15. Value iteration (92) converges to value function V , i.e.,

lim
k→∞

Wk = V, (93)

whereWk = T k−1W0

Proof. Since V is a fixed point of T and according to Theorem 87, we have

∥Wk − V∥∞ = ∥T Wk−1 − T V∥∞ ≤ γ∥Wk−1 − V∥∞ ≤ · · · ≤ γk∥W0 − V∥∞. (94)

Let k →∞ completes the proof.

Corollary 16. Value function V is the unique solution to Bellman equation.

Proof. Suppose there are other V ′ that also satisfying Bellman equation. By Theorem 15, we have

∥T kV ′ − V∥∞ ≤ γk∥V ′ − V∥∞. (95)

However, since V ′ also satisfying Bellman equation, we have

∥T kV ′ − V∥∞ = ∥V ′ − V∥∞, (96)

which contradicts the equation (95).
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C Effect of Initialization

Despite the existence of infinitely many solutions for the LQR problem in Section 4, we observe
that the neural network tends to favor certain solutions over others. For example, when using self-
normalized initialization methods such as LeCun normal or Kaiming normal (Klambauer et al.,
2017), the network tends to converge to an unstable negative definite solution. We hypothesize that
this may be due to the negative definite solution having the smallest eigenvalues among the possible
solutions, which are closer to the initial weights generated by these self-normalized methods.

(a) Uniform (b) Normal (c) Lecun Normal

Figure 5: Solutions found with different initialization method

We further tested different initialization methods, including uniform initialization within ±0.5 and
initialization using a normal distribution with a standard deviation of 1. Figure 5 shows the solutions
found by the neural network with different initialization methods.

D Experiment Setup

D.1 Tasks

Cartpole Cartpole is a classical control task for reinforcement learning. In this task, we consider
bring the cart to the origin while maintain the posture of pole to upright position. The state is denote
as [p, θ, v, ω]⊤, where p denotes the position, θ is the angle measured from the upright position, and
v and ω denotes velocity and angular velocity, respectively. The dynamics is given by

ẋ(t) = f(x,u) =


v
ω

u+mp sin θ(lθ̇2−g cos θ)
mc+mp sin2 θ

u cos θ+mplθ̇
2 cos θ sin θ−(mc+mp)g sin θ
l(mc+mp sin2 θ)

 , (97)

where mc = 1kg, mp = 0.1kg are mass of cart and pole respectively,
and l = 1m is the length of rod, g = 9.81m/s2 is the gravity constant.

F

θ
p

𝑃𝑥,𝑃𝑦

θ

𝑢 1

𝑢 2

Figure 6: System Diagram

Each time, the cartpole is initialized uni-
formly within the ±[4, 0.5, 2, 2]⊤ and will re-
set the environment when the state goes beyond
±[10, 10, 1000, 1000] The control input is the
force applied to cartpole, with maximum value
equal to the weight of the pole. The running
cost is defined as

l(x(t),u(t)) = ∥x(t)∥22 + ∥u(t)∥22 (98)
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Drone The 2D drone is a canonical underactuated system in the control community. The state is
define as [px, py, θ, vx, vy, ω], where px, py represent the position in the XY plane, θ denotes the
orientation, vx, vy are linear velocity, and ω is the angular velocity. The dynamics is given by

ẋ(t) = f(x,u) =



vx
vy
ω

− (u1+u2) sin θ
m

(u1+u2) cos θ
m − g

r(u1−u2)
I


, (99)

where m = 1kg is the mass, r = 0.25m is the length of the wing, I = 0.0625kg ·m2 is the inertia
and g = 9.81m/s2 is gravity constant.

The task is to control the drone to reach a desired position and maintain hovering. Particularly, the
drone is initialized uniformly within±[2, 2, 2, 2, 2, 2]⊤ around the target state and is reset if the state
exceeds ±[4, 4, 4, 5, 5, 5] from the target. The control [u1, u2]

⊤ represents the thrust generated by
the propellers, with a maximum value of twice the total weight of the drone. The running cost is
defined as

l(x(t),u(t)) = ∥x(t)∥22 + ∥u(t)∥22. (100)

Figure 7: Example trajectories generated using our method. Left: The cartpole starts with high
angular and linear velocity, and our method successfully stabilizes it to the origin. Right: Drone
tracking problem. We compare trajectories with Lutter et al. (2020) and a linearized LQR controller.
Our method finds the optimal trajectory by effectively leveraging the nonlinear dynamics.

D.2 Algorithm

We minimize the following weighted TD loss:

Lθ =
1

N

N∑
i=1

|1 +
∂V̂θ(x

i)
∂x

⊤
f(xi,ui)− 1

τ V̂θ(x
i)

l(xi,ui)
| (101)

where N is the number of total states collected via Monte Carlo sampling. Compared to the original
TD error (10), the loss (101) weights the error based on the running cost, providing a well-scaled
measure that keeps the total loss within a reasonable range.

In both tasks, we control an affine system with box-constrained control limits. Therefore, we com-
pute the control ui analytically:

ui = clip(−1

2
R−1f⊤

2 (xi)
∂V(xi)

∂x
,umin,umax), (102)

where f(xi) is the control Jacobian matrix from (38).

The Algorithm 1 summarize the main algorithm.
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Algorithm 1 HJB Equation Learning

1: Initialize the parameters θ for Vθ, empty dataset D = {}
2: for i = 1 : nepoch do
3: Rollout nrollout trajectories and append states visited to D
4: for batch of xi in D do
5: Compute the optimal control ui based on (102)
6: Compute the weighed TD error Lθ based on (101)
7: Update the value function: θ ← θ − αdLθ

dθ
8: end for
9: end for

D.3 Hyperparameters

We use the same hyperparameters for both tasks and summarized them in Table 2.

Table 2: Hyperparameters

Parameter names Value
Network size [128, 128, 64]
Learning rate 10−3

Batch size 256
Number of rollout 20
Maximum trajectory length 200
ϵ 10−3

Activation function ELU
Kernel initialization Lecun normal
Optimizer Adam
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