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Abstract—We present a parallel robot mechanism and the
constitutive laws that govern the deformation of its constituent
soft actuators. Our ultimate goal is the real-time motion-
correction of a patient’s head deviation from a target pose
where the soft actuators control the position of the patient’s
cranial region on a treatment machine. We describe the
mechanism, derive the stress-strain constitutive laws for the
individual actuators and the inverse kinematics that prescribes
a given deformation, and then present simulation results that
validate our mathematical formulation. Our results demon-
strate deformations consistent with our radially symmetric
displacement formulation under a finite elastic deformation
framework.

I. INTRODUCTION

Along with chemotherapy and surgery, radiation therapy
(RT) is an effective method of cancer treatment, with more
than half of all cancer patients managed by RT having higher
survival rates [1]. This is in part due to the technological
advancements that enable maximizing radiation dose to a
tumor target, whilst simultaneously minimizing radiation to
surrounding healthy tissues within a target volume.

To assure optimal dose delivery, the patient lies supine
on a treatment table and their position with respect to the
treatment machine must be not exceed submillimeter and
subdegree deviations from treatment targets. The current
clinical convention for RT and stereotactic radiosurgery
(SRS) is to immobilize the patient with rigid metallic frames
or masks (see Figure 1). However, frames attenuate the
radiation dose (thus lowering treatment quality) owing to their
metallic components, lack real-time motion compensation
(hence the need for stopping the treatment when the patient
deviates from a target position beyond a given threshold),
and they cause patient discomfort and pain owing to their
invasiveness [2]. The limitations of frames have spurred
clinics to use thermoplastic face masks. The masks decrease
accuracy because of their flex, which can cause a drift of
up to 2-6mm; shrink and deformation in the mask’s physical
structure are also prominent, arising from repeated use. The
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Fig. 1: Left: The Brown-Robert-Wells SRS Head Frame,
reprinted from [3]. Right: Thermoplastic face mask.

motion correction precisions provided by frames and masks
are not suitable for deep tumors located near critical structures
such as the brain stem or for newer treatment modalities such
as single isocenter multiple-target stereotactic radiosurgery
(SRS), which are highly sensitive to rotational head motions.

To overcome these issues, explorative robotic positioning
research studies have demonstrated the feasibility of main-
taining stable patient cranial motion consistent with treatment
plans [4]–[7]. For example, Belcher et al’s Stewart-Gough
platform [4] achieves ≤ 0.5mm and ≤ 0.5◦ positioning
accuracy 99% of the time. This system, along with the
plastic-based Ostyn et al’s Stewart-Gough platform [8], use
stepper motors to actuate the robot links. The 6-DOF robotic
HexaPOD treatment couch of [7] was used in lung tumors
treatment evaluation. Leveraging the fast and precise posi-
tioning of heavy payloads, the authors implemented a linear
auto-regressive exogenous parameter-identification system to
identify the HexaPOD’s dynamics. The authors of [9] used
an Elekta 4-DOF (3 translation and one rotational) parallel
robot to first simulate and then control couch-based motion
in real-time. A linear state-space model approximated the
rigid body dynamics of the patient support system they had
proposed in [10]. These systems are accompanied by the
following hazards:
• they share their dextrous workspace with the patients’

body – a safety concern since these robots’ rigid
mechanical components are non-compliant;

• their lack of structural compliance mean that the patient
experiences “hard shocks” when the end effector moves;

• they are incapable of providing sophisticated motion
compensation that may be needed for respiratory and
internal organs displacement that often cause deviation
from the target; and
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• their component electric motors and linear actuators
introduce radiation attenuation and serious safety con-
cerns.

A. Contributions

This is why we have proposed inflatable air bladders (IABs)
as motion compensators during treatment (see [11]–[16]).
Contrary to stochastic system identification methods used
in deriving our earlier models, here, we regulate volume
fractions within the IABs and their spatial deformation
based on specific mathematical relationships. Furthermore,
we carve out a new class of IABs that are continuum,
compliant, and configurable (C3) soft actuators that provide
therapeutic patient head motion compensation. Contrary to
remote-controlled airbags that have been used in upper
mandible and head manipulation [17], our actuators deform
based on their material moduli, compressed air pressurization
and incompressibility constraints when given a reference
trajectory. Specifically, our contributions are as follows:
• We propose a minimally-invasive mechanism that largely

avoids dose attenuation, whilst providing patient comfort
in real-time head motion correction;

• We derive a constitutive model for the robot’s constituent
actuators by extending the principles of nonlinear elastic
deformations [18], [19] to strain deformations;

• We analyze their deformation under stress, strain, inter-
nal pressurization, and an arbitrary hydrostatic pressure.

The rest of this paper is structured as follows: in § II, we
present the overall C3 kinematic mechanism; we analyze the
deformation properties of the IAB in § III; we then provide
and discuss simulation results in § IV. We conclude the paper
in § V.

II. MECHANISM SYNTHESIS

In our previous IAB models [14], we used a system
identification approach to realize the overall system model.
Our resultant model lumped the patient, treatment couch,
as well as IAB models into one. The disadvantage of this
approach was that such overall model lacked sufficient
fidelity such that it necessitated the memory-based adaptive
control composite laws that were derived from inverse
Lyapunov analysis. Furthermore, the approximation model
component of the ensuing neural-network controller required
extensive training to realize a suitable controller for our
head immobilization. Our goal here is to realize closed-form
constitutive models for the IABs – capable of manipulating
the complete patient’s head DOF motion in real-time.

A. Type Synthesis

To design a soft mechanism that precisely manipulates
a patient on a treatment table, optimizing the geometrical
synthesis leaves many imponderables unresolved given the
multiple choices that arise, each calling for careful judgment
in weighing advantages against disadvantages. Owing to the
success of parallel mechanisms in precision manipulation

Fig. 2: Left. Gantry, Turntable, Patient and IABs around the
patient’s H&N Region (Panel removed for clarity). Right.
Close-up setup view with holding PVC foam panels in the
SOFA framework [21] [Not drawn to scale].

tasks [20], we decide upon a profile-mechanism consisting
of spherically-symmetric soft actuators arranged in a parallel
manner around the patient’s skull. We recognize that other
kinematicians may arrive at other linkage mechanisms that
may offer better results. Our goal here is to find a high-fidelity
model with tractable kinematics that can move the patient’s
head as desired on a treatment table.

B. Number Synthesis

We seek such freedoms and constraints in the structural
properties of the mechanism that enables rapid motion
correction when a patient deviates from target. Prehensile
control of the patient’s cranial motion is attractive given
its erstwhile success, e.g. [17]’s airbag mechanism. In this
sentiment, we choose eight IABs around the patient’s head
region as illustrated in Figure 2. The IABs are held in
place around the head by a low-temperature rigid PVC foam
insulation sheet, encased in carbon fiber to prevent radiation
beam attenuation. Velcro stickers (not shown) hold the IABs
in place.

The freedoms provided by each IAB within the setup in
Figure 2b are described as follows: the side actuators correct
head motion along the left-right axis of the head anatomy,
including the yaw and roll motions, while the base IABs
correct the head motion along the anterior-posterior axis [22,
Ch. 2]. This arrangement offers prehensile manipulation via
sensorless motion manipulation strategies within e.g. the
vision-based sensor plan used in SRS or IMRT. By this, we
mean the mechanical interactions of pushing or releasing
by the IABs may be harnessed to further improve head
manipulation robustness [23]–[25]. The IABs have an internal
cavity that is surrounded by two elastic shells. The shells have
radii 2.75 ± 0.5cm and 3.0 ± 0.5cm respectively and they
have constant volume within their wall. The wall thickness
is 0.25cm in the reference configuration, to accommodate
flex and shrinking from repeated use as well as exhibit
enough tensile strength that can move the patient’s head whilst
preserving its compliant properties. The geometry of an IAB
is shown in Figure 3. The outer shell encapsulates the inner
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Fig. 3: Concentric circular shells around IAB’s internal cavity
[Not drawn to scale].

shell so that deformation follows a local volume preservation
principle between configuration changes [18]. Deformation is
achieved by supplying or removing compressed air from the
internal IAB cavity. This fabrication procedure and hardware
experiments will be described in a future publication.

III. DEFORMATION ANALYSIS OF A SPHERICAL IAB

Our overarching assumption is that volume does not
change locally during deformation at a configuration χ(t) at
time t. We work from a continuum mechanical framework,
considering only final configurations for the soft robot; we
thus drop the explicit dependence of a configuration on time
and write it as χ. We refer readers to background reading
materials in [18], [26] and [27]. We conclude this section by
solving the boundary value problem under the assumption
incompressibility of the IAB rubber material.

A. Deformation Invariants

Under the action of applied forces, the IAB’s deformation
is governed by a stored energy function, W , which captures
the physical properties of the material [28]. We choose two
invariants, I1, and I2, described by the principal extension
ratios, λr, λφ, λθ defined as

I1 = λ2
r + λ2

φ + λ2
θ, and I2 = λ−2

r + λ−2
φ + λ−2

θ . (1)

Under the incompressibility assumptions of the IAB material,
it follows that λrλφλθ = 1 [19]. In spherical coordinates,
the change in polar/azimuth angles as well as radii from
the reference to current configurations are as illustrated in
Figure 4. Forces that produce deformations are derived using
the strain energy-invariants relationship, i.e. , ∂W∂I1 and ∂W

∂I2
.

B. Analysis of Strain Deformations

Suppose a particle on the IAB material surface in the
reference configuration has coordinates (R,Φ,Θ) defined in
spherical polar coordinates (see Figure 4), where R represents
the radial distance of the particle from a fixed origin, Θ is
the azimuth angle on a reference plane through the origin

(a) Reference onfiguration (b) Current configuration

Fig. 4: IAB configurations in spherical polar coordinates.

and orthogonal to the polar angle, Φ. Denote the internal
and external radii as Ri and Ro respectively. We define the
following constraints,

Ri ≤ R ≤ Ro, 0 ≤ Θ ≤ 2π, 0 ≤ Φ ≤ π. (2)

Now, suppose that the IAB undergoes deformation upon
pressurization of its internal cavity: arbitrary points A and A′

in the reference configuration become Q and Q′ in the current
configuration. Let the material element (or fiber) vector that
connects points A and A′ be a = aRer + aΘeΘ + aΦeΦ,
where eR, eΘ, and eΦ are respectively the basis vectors
for polar directions R,Θ, and Φ such that its axial length
stretches uniformly by an amount λz = r

R . If spherical
symmetry is maintained during deformation, we have the
following constraints in the current configuration

ri ≤ r ≤ ro, 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π. (3)

We define radial vectors R and r in spherical coordinates as,

R =

R cos Θ sin Φ,
R sin Θ sin Φ,

R cos Φ

 and r =

r cos θ sinφ,
r sin θ sinφ,
r cosφ

 . (4)

The material volume 4
3π
(
R3 −R3

i

)
contained between

spherical shells of radii R and Ri remains constant throughout
deformation, being equal in volume to 4

3π
(
r3 − r3

i

)
so that

4

3
π
(
R3 −R3

i

)
=

4

3
π
(
r3 − r3

i

)
or r3 = R3 + r3

i −R3
i . (5)

The homogeneous deformation between the two configura-
tions imply that

r3 = R3 + r3
i −R3

i , θ = Θ, φ = Φ, (6)

where the coordinates obey the constraints of equations
(2) and (3). The Mooney-Rivlin strain energy for small
deformations as a function of the strain invariants of (1),
is,

W ′ = C1(I1 − 3) + C2(I2 − 3), (7)
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where C1 and C2 are appropriate choices for the IAB
material moduli. The Mooney form (7) has been shown to be
valid even for large elastic deformations, provided that the
elastic materials exhibit incompressibility and are isotropic
in their reference configurations [29]. For mathematical
scaling purposes that will become apparent, we rewrite (7)
as W = 1

2W
′ so that

W =
1

2
C1(I1 − 3) +

1

2
C2(I2 − 3). (8)

The deformation gradient tensor in spherical-polar coordinates
can be verified to be

F = λrer ⊗ eR + λφeφ ⊗ eΦ + λθeθ ⊗ eΘ

=
R2

r2
er ⊗ eR +

r

R
eφ ⊗ eΦ +

r

R
eθ ⊗ eΘ, (9)

where ⊗ denotes the dyadic tensor product. It can be verified
that the radial stretch is λr = R2

r2 . The principal stretches
along the azimuthal and zenith axes imply that λθ = λφ.
Since for an isochoric deformation, λr · λθ · λφ = 1, the
principal extension ratios are

λr =
R2

r2
;λθ = λφ =

r

R
. (10)

The invariant equations, in spherical-polar coordinates, are
therefore a function of the right Cauchy-Green and finger
deformation tensors [30] i.e. ,

I1 = tr(C) =
R4

r4
+

2 r2

R2
, I2 = tr

(
C−1

)
=

r4

R4
+

2R2

r2

(11)

where, C = FTF and B = FFT are the right and left Cauchy-
Green tensors respectively.

C. Stress Laws and Constitutive Equations

We are concerned with the magnitudes of the differential
stress on the IAB skin from a mechanical point of view.
We do not rely on finite element methods in this work
but rather take the whole material as a single continuum
structure with elastic properties. Since the IAB deforms at
ambient temperature, we take thermodynamic properties such
as temperature and entropy to have negligible contribution.
The IAB material stress response, G, at any point on the
IAB’s boundary at time t determines the Cauchy stress, σ, as
well as the history of the motion up to and at the time t [18].
The constitutive relation for the nominal stress deformation
for an elastic IAB material is given by

σ = G(F) + qF
∂Λ

∂F
(F), (12)

where G is a functional with respect to the configuration
χt, q acts as a Lagrange multiplier, and Λ denotes the
internal (incompressibility) constraints of the IAB system.
For an incompressible material, the indeterminate Lagrange
multiplier becomes the hydrostatic pressure i.e. q = −p [26].
The incompressibility of the IAB material properties imply

Fig. 5: Stress distribution on the IAB’s differential surface,
dS.

that Λ ≡ det F− 1. Evaluating the partial derivative of Λ(F)
with respect to F and substituting −p for q in (12), we can
verify that

σ = G(F)− pI (13)

following the isochoric assumption i.e. , det(F) = 1. In terms
of the stored strain energy, we find that

σ =
∂W

∂F
FT − pI (14)

where I is the identity tensor and p represents an arbitrary
hydrostatic pressure. It follows that the constitutive law that
governs the Cauchy stress tensor is

σ =
∂W

∂I1
· ∂I1
∂F

FT +
∂W

∂I2
· ∂I2
∂F

FT − pI

=
1

2
C1

∂tr
(
FFT

)
∂F

FT +
1

2
C2

∂tr(
[
FT F

]−1
)

∂F
FT − p I

=
1

2
C1

(
2.FFT

)
+

1

2
C2

(
−2F(FT F)−2

)
FT − p I

= C1FFT − C2

(
FTF

)−1 − pI
σ = C1B− C2C−1 − pI, (15)

from which we can write the normal stress components as

σrr = −p+ C1
R4

r4
− C2

r4

R4
(16a)

σθθ = σφφ = −p+ C1
r2

R2
− C2

R2

r2
. (16b)

A visualization of the component stresses of (14) on the
outer shells of the IAB material is illustrated in Figure 5.

D. IAB Boundary Value Problem

Here, we analyze the stress and internal pressure of the IAB
at equilibrium. Consider the IAB with boundary conditions

σrr|R=Ro = −Patm, σrr|R=Ri = −Patm − P (17)

where Patm is the atmospheric pressure and P > 0 is the
internal pressure exerted on the walls of the IAB above Patm
i.e. , P > Patm. Suppose that the IAB stress components
satisfy hydrostatic equilibrium, the equilibrium equations for
the body force b′s physical component vectors, br, bθ, bφ are
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−br =
1

r2

∂r2σrr
∂r

+
1

r sinφ

∂ sinφσrφ
∂φ

+
1

r sinφ

∂σrθ
∂θ

− 1

r
(σθθ + σφφ) (18a)

−bφ =
1

r3

∂r3σrφ
∂r

+
1

r sinφ

∂ sinφσφφ
∂φ

+
1

r sinφ

∂σθφ
∂θ

− cotφ

r
(σθθ) (18b)

−bθ =
1

r3

∂r3σθr
∂r

+
1

r sin2 φ

∂ sin2 φσθφ
∂φ

+
1

r sinφ

∂σθθ
∂θ
(18c)

(see [31]). From the equation of balance of linear momentum
(Cauchy’s first law of motion), we have that

div σT + ρb = ρv̇ (19)

where ρ is the IAB body mass density, div is the divergence
operator, and v(x, t) = χ̇t(X) is the velocity gradient. Owing
to the incompressibility assumption, we remark in passing
that the mass density is uniform throughout the body of the
IAB material. When the IAB is at rest, v̇t(x) = 0∀ x ∈ B
such that equation (19) loses its dependence on time. The
assumed regularity of the IAB in the reference configuration
thus leads to the steady state conditions for Cauchy’s first
equation; the stress field σ becomes self-equilibrated by
virtue of the spatial divergence and the symmetric properties
of the stress tensor, so that we have

div σ = 0. (20)

Equation 20 is satisfied if the hydrostatic pressure p in (15)
is independent of θ and φ. Therefore, we are left with (18a)
so that we have

1

r

∂

∂r
(r2σrr) = (σθθ + σφφ). (21)

Expanding, we find that

1

r

[
r2 ∂σrr

∂r
+ σrr

∂(r2)

∂r

]
= (σθθ + σφφ)

r
∂σrr
∂r

= σθθ + σφφ − 2σrr (22)

∂σrr
∂r

=
1

r
(σθθ + σφφ − 2σrr). (23)

Integrating the above equation in the variable r, and taking
σrr(r◦) = 0, we find that

σrr(r) = −
∫ r◦

ri

1

r
(σθθ + σφφ − 2σrr)dr,

= −
∫ r◦

ri

[
2C1

(
r

R2
− R4

r5

)
+ 2C2

(
r3

R4
− R2

r3

)]
dr.

(24)

The above relation gives the radial stress in the current
configuration. Suppose we are in the current configuration
and we desire to revert to the reference configuration, we
may carry out a change of variables from r to R as follows,

σrr(R) = −
∫ R◦

Ri

1

r
(σθθ + σφφ − 2σrr)

dr

dR
dR,

= −
∫ R◦

Ri

[
2C1

(
1

r
− R6

r7

)
− 2C2

(
R4

r5
− r

R2

)]
dR.

(25)

In the same vein, using the boundary condition of (17)|2
and taking the ambient pressure Patm = 0, we find that the
internal pressure P = −σrr(r) so that

P (r) =

∫ r◦

ri

[
2C1

(
r

R2
− R4

r5

)
+ 2C2

(
r3

R4
− R2

r3

)]
dr

P (R) ≡
∫ R◦

Ri

[
2C1

(
1

r
− R6

r7

)
− 2C2

(
R4

r5
− r

R2

)]
dR.

(26)

Equations (25) and (26) completely determine the inverse
kinematics of the IAB material: given a desired expansion
or compression of the IAB walls, it calculates the internal
pressurization or stress tensor necessary to achieve such
deformation. Under the incompressibility of the IAB material
properties we have

r3 = R3 + r3
i −R3

i , and r◦3 = R3
◦ + r3

i −R3
i . (27)

IV. SIMULATION RESULTS

We conduct simulations under volumetric deformation with
different shell properties (stated in the tables of Figure 6 and
7). We fixed both reference configuration radii and choose
appropriate volumetric moduli for the IAB shells (with C1

being the material’s Young’s modulus and C2 its stiffness).
By specifying a desired radially symmetric expansion for the
inner IAB material, we test the local volume preservation
property of (5) and evaluate the resulting displacement of
the outer IAB skin, by applying the computed pressure (by
virtue of (26)) between configurations.

We used the partial differential equations toolbox in Matlab
in creating multispheres that correspond to the size synthesis
described in § II-B and in solving the integrands of (25) and
(26). The computed soft mesh model of the IAB is shown
in the top left of the charts while the stress distribution
after the application of the calculated pressure (by virtue of
(26)) is shown in the top-right of the figures. We chose a
Poisson’s ratio of ≈ 0.45 (since the material shells are made
of incompressible rubber materials) and a uniform mass
density set at 0.1kg/m3 for the IAB (owing to its volume
preserving property). The radii dimensions are in m, the
pressure is given in Pascals unless otherwise stated, C1 and
C2 are appropriate material moduli, and ∆V is the volumetric
change between the IAB shells between configurations (given
in m3).
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(a) Left: Mesh model. Right: Stress distribution on outer skin.

(b) Displacement errors along x, y, z coordinates.
Inputs Outputs

C1 C2 Ri ri R◦ r◦ P ∆V
1.1e4 2.2e4 .027 .03 .03 .033 .76 u 0

Fig. 6: Volumetric Deformation (Expansion).

A. Volumetric Expansion

In Figure 6, we test finite elastic deformation of the IAB
material shells. The internal and external radii in the reference
configuration are 0.027m and 0.03m. This is consistent with
the size and shape of the the head of an adult human head
from Cadaver studies [32]–[35]. The task here is to to achieve
a volumetric expansion so that in the current configuration,
the internal radius is 0.03m. By (6), we found r◦ to be
0.033m. The stress distribution on the skins of the IAB is
uniformly distributed based on the single value of the stress
in every region of the surface; this signifies an equal amount
of stress exertion on the walls of the actuator to achieve a
desired deformation. This is confirmed in the bottom part of
Figure 6 where we notice a displacement error of 0.15mm,
precise enough for prehensile motion manipulation of the
head as we would require in the enumerated applications for
this soft actuator model.

B. Volumetric Compression

Figure 7 depicts the volumetric compression of the incom-
pressible IAB under the application of the derived internal
pressure. For a desired uniform displacement 0.002m, our
results confirm the validity of the stress-strain constitutive
laws, as we again notice a displacement error of u 10−4m
along the sphere’s Cartesian axes in the lower charts of
Figure 7. The negative pressure in the table signify that air

(a) Left: Mesh model. Right: Stress distribution on outer skin.

(b) Displacement errors along x, y, z coordinates.
Inputs Outputs

C1 C2 Ri ri R◦ r◦ P ∆V

1.1e4 2.2e4 .025 .03 .03 .028 −.34 u 0

Fig. 7: Volumetric Deformation (Compression).

is being drawn out of the IAB. Again, our results show
consistency with respect to local volume preservation and
radially symmetric displacement.

V. CONCLUSIONS

We have presented a patient’s head motion-correction mech-
anism and the constitutive laws that governs the deformation
of its constituent soft actuators. The derived model was
tested with spheres with size small enough to accommodate
a head on a treatment table as shown in Figure 2. Our results
confirm the fidelity of this model given its high accuracy in
precise displacements. In future work, we will integrate the
soft inverse kinematics relation to the physical build of the
system and analyze the properties of head motion correction
under the action of a suitable controller.
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