
The Python LevelSet Toolbox (LevelSetPy)

Lekan Molu
https://github.com/robotsorcerer/levelsetpy

Abstract— This paper describes open-source scientific com-
puting contributions in python surrounding the numerical
solutions to hyperbolic HJ PDEs viz., their implicit repre-
sentation on co-dimension one domains; dynamics evolution
with levelsets; upwinding spatial derivatives; total variation
diminishing Runge-Kutta integration schemes; and their ap-
plications to the theory of reachable sets and safety-critical
systems. These procedures are increasingly finding interest in
multiple research domains including analyzing safety-critical
problems in reinforcement learning, robotics and automation;
and control engineering among others. We describe a hierarchy
of library components, and a representative numerical example
included in the online package. Our GPU-accelerated package
allows for easy portability to many modern libraries for the
numerical analyses of the Bellman and Isaacs equations.

I. OVERVIEW

The reliability of the complex algorithms that we design
has become paramount given the dangers that may evolve
if nominally envisioned system performance falters. Even
so, the need for scalable and faster numerical algorithms in
software for verification and validation has become timely
given the emerging growth of complexity in the systems that
we design and build. The foremost open-source verification
software for engineering applications based on Hamilton-
Jacobi equations [1, 2] and level set methods [3, 4] is the
MATLAB® [5] CPU-based level sets toolbox, before comput-
ing via graphical processing units (GPU) became pervasive.
Since then, there has been a lot of improvement in computer
hardware design, architecture, and code-acceleration.

This paper describes a GPU-accelerated scientific comput-
ing software package that is entirely written in python – for
numerically resolving generalized discontinuous solutions
to Cauchy-type (or time-dependent) Hamilton-Jacobi (HJ)
hyperbolic partial differential equations (PDE ’s) that arise
in many problem contexts including (multi-agent) reinforce-
ment learning, robotics, control theory, differential games,
flow and transport phenomena. We focus on the numerical
tools for safety assurance (ascertaining the freedom of a
system from harm) in a verification sense in this paper. Ac-
companying the package are implicit calculus operations on
dynamic codimension-one interfaces embedded on surfaces
in Rn, and numerical (spatial and temporal) discretization
schemes for hyperbolic partial differential equations. Fur-
thermore, we describe explicit integration schemes including
Lax-Friedrichs, Courant-Friedrichs-Lewy (CFL) integration
TVD-RK conditioning schemes for HJ Hamiltonians of the
form H(x,p), where x is the state and p is the co-state.

Microsoft Research, 300 Lafayette Street, NYC
lekanmolu@microsoft.com

Finally, extensions to reachability analyses for continuous
and hybrid systems, formulated as optimal control or game
theory problems using viscosity solutions to HJ PDE ’s is
described. While our emphasis is on the resolution of safe
sets in a reachability context for verification settings, the ap-
plications of this package extend beyond control engineering
applications.

The GPU package, implemented in CuPy [6] and
Python, is available on the author’s github repository:
LevelSetPy. Extensions to other python GPU program-
ming language is straightforward (as detailed in the CuPy
interoperability document). The CPU implemen-
tation (in Python) can be found at on the cpu-numpy
tree of the LevelSetPy repository. In addi-
tion, installation instructions are available on the github
repository. In all, we try to follow the Python Enhancement
Proposals (PEP) 8 style guide1 as much as possible but in
order not to break readability with respect to the original
MATLAB®code, we have tried to edge on the side of consis-
tency within the previous project.

II. BACKGROUND AND MOTIVATION

Our interest is in the evolution form of the HJ equation

vt(x, t) +H(t;x,∇xv) = 0 in Ω× (0, T ] (1)
v(x, t) = g, on ∂Ω× {t = T},v(x, 0) = v0(x) in Ω

or its convection counterpart

vt +

N∑
i=0

fi(u)xi = 0, for t > 0,x ∈ Rn,

v(x,0) = v0(x), x ∈ Rn (2)

where Ω is an open set in Rn; x is the state; vt denotes
the partial derivative(s) of the solution v with respect to
time t; the Hamiltonian H : (0, T ] × Rn × Rn → R and
f are continuous; g, and v0 are bounded and uniformly
continuous (BUC) functions in Rn; and ∇xv is the spatial
gradient of v. It is assumed that g and v0 are given.

Solving problems described by (1) under appropriate
boundary and/or initial conditions using the method of
characteristics is limiting as a result of crossing charac-
teristics [7]. In the same vein, global analysis is virtually
impossible owing to the lack of existence and uniqueness of
solutions v ∈ C1(Ω)×(0, T ] even ifH and g are smooth [7].
The method of “vanishing viscosity”, based on the idea of
traversing the limit as δ → 0 in the hyperbolic equation (1)

1Python PEP 8 style guide: peps.python.org/pep-0008/

https://github.com/robotsorcerer/levelsetpy
https://github.com/robotsorcerer/LevelSetPy
https://docs.cupy.dev/en/stable/user_guide/interoperability.html
https://github.com/robotsorcerer/levelsetpy/tree/cpu-numpy
https://github.com/robotsorcerer/levelsetpy/tree/cpu-numpy
https://peps.python.org/pep-0008/


allows generalized (discontinuous) solutions [9] whereupon
if v ∈ W 1,∞

loc (Ω) × (0, T ] and H ∈ W 1,∞
loc (Ω), one can

lay claim to strong notions of general existence, stability,
and uniqueness to BUC solutions vδ of the (approximate)
viscous Cauchy-type HJ equation

vδt +H(t;x,∇xvδ)− δ∆vδ = 0 in Ω× (0, T ] (3)

vδ(x,t) = g, on ∂Ω× {t = T},vδ(x, 0) = v0(x) in Ω

in the class BUC(Ω×[0, T ])∩C2,1(Ω×(0, T ]) i.e. continuous
second-order spatial and first order time derivatives for
all time T < ∞. Crandall and Lions [10] showed that
|vδ(x, t) − v(x, t)| ≤ k

√
δ for x ∈ Ω and t > 0. For most

of this paper, we are concerned with generalized viscosity
solutions of the manner described by (3).

Reachability concerns evaluating the decidability of a
dynamical system’s trajectories’ evolution throughout a state
space. Decidable reachable systems are those where one
can compute all states that can be reached from an initial
condition in a finite number of steps. For inf-sup or sup-inf
optimal control problems [17], the Hamiltonian is related
to the backward reachable set [13] of a dynamical system.
Mitchell [12] connected techniques used in level set meth-
ods to reachability analysis in optimal control, essentially
showing that the zero-level set of the differential zero-
sum two-person game in an Hamilton-Jacobi-Isaacs (HJI)
setting [9, 16] constitutes the safe set of a reachability
problem [17]. We refer interested readers on the technicalities
of the theory to [12]’s paper.

The well-known LevelSet Toolbox [5] is the consol-
idated MATLAB® package that contains the grid methods,
boundary conditions, time and spatial derivatives, integra-
tors and helper functions. While Mitchell motivated the
execution of the toolkit in MATLAB® for the expressive-
ness the language provides, modern data manipulation and
scripting libraries often render the original package non-
portable across distributed hardware since it lacks other
programming language interoperability, particularly python
and its associated scientific computing libraries such as
Numpy, Scipy, PyTorch and their variants. In this regard,
we revisit the major algorithms necessary for implicit surface
representation of HJ PDEs, write the spatial, temporal, and
monotone difference schemes in Python, accelerated onto
GPUs via CuPy [6] and present representative numerical
examples. Our contributions are as follows:

1) we describe the details of the LevelSetPy package,
starting with the common implicit surfaces that are used
as initial conditions to represent v(x, t) ;

2) we then describe the upwinding spatial derivative, tem-
poral discretization via method of lines schemes based
on (approximate) total variation diminishing (TVD)
Runge-Kutta (RK), and stabilizing Lax-Friedrichs
schemes for multidimensional monotone Hamiltonians
of HJ equations or scalar conservation laws;

3) we then conclude with a representative example,
namely, the barrier surface for two adversarial rockets
traveling on a plane. More examples abound on the

online code repository.
The rest of this paper is structured as follows. We de-

scribe the geometry of (and Boolean operations on) implicit
function representations of continuous-time value functions
described by (1) using Cartesian grids in section III. Spatial
derivatives to scalar conservation laws are discussed in
section IV, and temporal discretization schemes for these
conservation laws follow thereafter. In section VI we formu-
late a didactic two-rockets game and show how to define the
numerical safe backward reachable sets and tubes amenable
to HJ PDEs within a geometrical verification framework.
We conclude the paper in section VII. Additional python
examples, jupyter notebooks, and representative problems
are provided in the online package.

III. THE LEVELSETPY PYTHON PACKAGE

Let us now describe how solutions to the value function
in (1) and (3) are constructed in our software package.

A. Geometry of Implicit Surfaces and Layouts

As stated before, solutions to the value function (1) are
implicitly represented on co-dimension one surfaces in Rn.
We discuss implicit surface functions’ contruction in Lev-
elSetPy, CPU memory, and GPU transfers. Throughout, links
to API’s, routines, and subroutines are highlighted
in blue text (with a working hyperlink) and we use
code snippets in Python to illustrate API calls when it’s
convenient.

The implicit interfaces are typically isocontours of some
function, f(x). Implicit construction is attractive as it re-
quires less number of points to construct a function than
explicit forms. The zero isocontour (or the zero levelset) of a
reachable optimal control problem is equivalent to the safety
set or backward reachable tube; and for a differential game,
it is the boundary of the usable part of the barrier surface
between the capture and escape zones for all trajectories that
emanate from a system.

B. Grids Layout

Fundamental to implicit surface representations are Carte-
sian grids in our library. Packages that implement ‘grid’ data
structures are in the folder Grids. Grid g is created
by specifying minimum, gmin, and maximum axes bounds,
gmax, along every Cartesian coordinate axes n (see lines 3
and 4) of Listing 1; a desired number of discrete points N
is passed to the grid data structure – specifying the number
of grid nodes and the grid spacing in each dimension as
(line 5) listed in Listing 1. On line 5, a grid data structure is
constructed and all input parameters to the API are checked
for consistency.

1 from math import pi
2 import numpy as np
3 gmin = np.array((-5, -5, -pi)) // lower corner
4 gmax = np.array((5, 5, pi)) // upper corner
5 N = 41*ones(3, 1) // number of grid nodes
6 pdim = 3; // periodic boundary condition, dim 3
7 g = createGrid(gmin, gmax, N, pdim)

Listing 1: Creating a three-dimensional grid.

https://github.com/robotsorcerer/LevelSetPy/blob/cupy/LevelSetPy/Grids
https://github.com/robotsorcerer/LevelSetPy/blob/cupy/LevelSetPy/Grids/create_grid.py


Fig. 1: Zero level set of (a) a sphere on a 3D grid; (b) union of two 3D spheres implicitly constructed on a 2D grid; (c) the union of rectangles on a
2D grid; (d) the union of multiple cylinders on a 3D grid.

A grid data structure, g, (implemented in Listing 1)
has the following fields: (i) discretized nodes of the state(s)
x in (3), denoted as 1-D vectors g.vs; (ii) given the 1-D
vectors g.vs, an n-dimensional array of coordinates over n-
dimensional grids is computed with matrix-based indexing;
this generates a mesh for all state nodal points on the grid
g.xs as a list across all the dimensions of the grid; (iii) grid
dimension g.dim, denoting the number of Cartesian axes
needed for representing the state x2; (iv) boundary conditions
of the relavant HJ equation to be solved are grafted in by
populating the corresponding grid dimension with ghost cells
(to be introduced shortly).

C. Implicit Surface Representations: Levelsets

We treat coordinates as functional arguments using a fixed
level set of continuous function v : Rn → R. We use signed
distance functions to represent the dynamics throughout.
When the signed distance function is not numerically possi-
ble, we describe where the implicit surface representations
are smeared out in every routines’ documentation. The
query points for moving interfaces are grid point sets of
the computational domain described by implicit geometric
primitives such as spheres, cylinders, ellipsoids and even
polyhedrons such as icosahedrons. All of these are contained
in the folder InitialConditions on our project page.

The zero levelset of an implicit surface v(x, t) is defined
as Γ = {x : v(x) = 0} on a grid G ∈ Rn, where n denotes
the number of dimensions, where the representation of Γ on
G generalizes a row-major layout. An example representation
of an ellipsoid on a three-dimensional grid is illustrated in
Listing 2.

1 e = (g.xs[0])**2 // ellipsoid nodal points
2 e += 4.0*(g.xs[1])**2
3 if g.dim==3:
4 data += (9.0*(grid.xs[2])**2)
5 e -= radius // radius=major axis of ellipsoid

Listing 2: An ellipsoid as a signed distance function.

D. Calculus on Implicit Function Representations

Geometrical operations on implicitly defined functions
carries through in the package as follows. Let v1(x) and

2This parameter is useful when computing signed distance to every nodal
point on the state space in the implicit representation of v

v2(x) be two signed distance representations, then the union
of the interior of both is simply min(v1(x),v2(x)) (illus-
trations in Fig. 1 b and c and d). The intersection of the
interior of two signed distance functions is generated by
max(v1(x),v2(x)) (example illustrations in Fig. 1). The
complement of a function is found by negating its signed
distance function i.e. −v(x). The resultant function as a
result of the subtraction of the interior of one signed dis-
tance function v2 from the another one, say, v1 is defined
max(v1(x),−v2(x)). All of these are implemented in the
module shapeOps.

IV. SPATIAL DISCRETIZATION: UPWINDING

In this section, we discuss higher-order upwinding
schemes that mimic high-order essentially non-socillatory
(ENO) [19] schemes for computing the spatial deriva-
tives vx for the numerical viscosity solutions to levelset
PDE’s of the Eulerian form (introduced in (4)). Code-
bases for procedures herewith described are in the folder
SpatialDerivatives. Using the Eulerian form of the
levelset equation,

vt + F · ∇v = 0 (4)

where F is the speed function, the implicit function repre-
sentation vt (see §III) is used both to denote and evolve the
interface. Suppose that the interface speed F is a three-vector
[fx, fy, fz] on a three-dimensional Cartesian grid, expanding
(4) the evolution of the implicit function on the zero levelset
yields the Eulerian form

vt + fxvx + fyvy + fzvz = 0 (5)

of the interface evolution given that the interface encapsulates
the implicit representation v. In our implementation, we
define v throughout the computational domain Ω.

Let us first construct the general form of a spatial upwind-
ing scheme i.e.

D−v =
∂v

∂x
≈ vi+1 − vi

∆x
,D+v ≈ vi − vi−1

∆x
, (6)

where v and its speed F are defined over a domain Ω (this is
the Cartesian grid in our representation). Using the forward
Euler method, the levelset equation (5) becomes (1/∆t) ·
vn+1 − vn + fnx v

n
x + fny v

n
y + fnz v

n
z = 0.

https://github.com/robotsorcerer/LevelSetPy/blob/cupy/LevelSetPy/Grids/process_grid.py
https://github.com/robotsorcerer/LevelSetPy/tree/cupy/LevelSetPy/InitialConditions
https://github.com/robotsorcerer/LevelSetPy/blob/cupy/InitialConditions/ellipsoid.py
https://github.com/robotsorcerer/LevelSetPy/blob/cupy/LevelSetPy/InitialConditions/shape_ops.py
https://github.com/robotsorcerer/LevelSetPy/tree/cupy/SpatialDerivative


Now, suppose that we are on a one-dimensional surface
and around a grid point i, then given that fn may be spatially
varying the equation in the foregoing evaluates to

vn+1
i − vni

∆t
+ fni (vx)ni = 0 (7)

where (vx)i denotes the spatial derivative of v w.r.t x at the
point i. We now discuss the specific implementations of the
upwinding schemes in our library.

A. First-order accurate upwinding discretization

If fi > 0 in (7), the values of v are traversing from
left to right so that in order to update v at the end of
the next time step, we must look to the left (going by
the method of characteristics [4, §3.1]) and vice versa if
fi < 0. We therefore follow the standard upwinding method
by using (6): we approximate vx with D−v whenever fi > 0
and we approximate vx with D+v whenever fi < 0. No
approximation is needed when fi = 0 since fi(vx)i vanishes.
This discretization scheme is accurate within O(∆x) given
the first order accurate approximations D−v and D+v.
We have followed the naming convention in [5] and in
our SpatialDerivatives folder, we name this function
upwindFirstFirst.

B. ENO Polynomial Interpolation of Solutions

Using a divided differencing table, essentially non-
oscillatory (ENO) polynomial interpolation of the discretiza-
tion [19] of the levelset equation are known to generate
improved numerical approximations to D−v and D+v.
Suppose that we choose a uniform mesh discretization ∆x.
Define the zeroth divided differences of v at the grid nodes
i as D0

i v = vi, and the first, second, and third order divided
differences of v as the midway between grid nodes i.e.

D1
i+1/2v =

D0
i+1v −D0

i v

∆x
, D2

i v =
D1
i+1/2v −D

1
i−1/2v

2∆x
,

(8a)

D3
i+1/2v =

D2
i+1v −D2

i v

3∆x
. (8b)

Then, an essentially non-oscillating polynomial of the
form

v(x) = Q0(x) +Q1(x)!Q2(x) +Q3(x) (9)

can be constructed. In this light, the backward and forward
spatial derivatives of v w.r.t x at grid node i is found in terms
of the derivatives of the coefficients Qi(x) in the foregoing
i.e.

vx(xi) = Q′1(xi) +Q′2(xi) +Q′3(xi). (10)

Define k = i − 1 and k = i for v−x and v+
x respectively.

Then the first order (i.e. first-order upwinding) accurate
polynomial interpolation is essentially

Q1(x) = (D1
k+1/2v)(x− xi), Q′1(xi) = D1

k+1/2v. (11)

We follow [4]’s recommendation in avoiding interpolating
near large oscillations in gradients. Therefore, we choose a
constant c such that

c =

{
D2
kv if |D2

kv| ≤ |D2
k+1v|

D2
k+1v otherwise

(12)

so that

Q2(x) = c(x− xk)(x− xk+1), Q′2(xi) = c(2i− 2k − 1)∆x

is the second-order accurate upwinding solution for
the polynomial interpolation. This is implemented as
upwindFirstENO2 in the SpatialDerivatives
folder.

To obtain a third-order accurate solution, we choose c? as
follows

c? =

{
D3
k?+1/2 if |D3

k?+1/2v| ≤ |D
3
k?+3/2v|

D3
k?+3/2v if |D3

k?+1/2v| > |D
3
k?+3/2v|.

(13)

Whence, we have

Q3(x) = c?(x− xk?)(x− xk? + 1)(x− xk? + 2) (14a)

Q′3(xi) = c?(3(i− k?)2 − 6(i− k?) + 2)(∆x)2 (14b)

for the third-order accurate correction to the approxi-
mated upwinding scheme (9). This is implemented as
a routine in upwindFirstENO3aHelper and called
as upwindFirstENO3 in the SpatialDerivatives
folder.

C. HJ Weighted Essentially Nonoscillatory Solutions

Here, we focus on weighted ENO (WENO) schemes
with the same stencil as the third-order ENO scheme but
with accuracy reaching as high as fifth-order in the smooth
parts of the solution. Results here presented closely follow
the presentation of Jiang and Peng in [20]. These WENO
schemes approximate spatial derivatives at integer grid points
as opposed to at half-integer grid values as we did in the
ENO schemes in the previous section.

The third-order accurate ENO scheme essentially employs
one of three substencils on a grid, namely {i−3, i−2, · · · , i},
{i−2, i−1, · · · , i+1}, and {i−1, · · · , i+3} on the stencils
range {i−3, i−2, · · · , i+3} in calculating spatial derivatives
for v.

Suppose that the spatial derivative vx is to be found using
the left-leaning substencil: {i−3, i−2, · · · , i}, then the third-
order ENO scheme chooses one from

v−,0x,i =
1

3
D+vi−3 −

7

6
D+vi−2 +

11

6
D+vi−1 (15a)

v−,1x,i = −1

6
D+vi−2 +

5

6
D+vi−1 +

1

3
D+vi (15b)

v−,2x,i = −1

3
D+vi−1 +

5

6
D+vi −

1

6
D+vi+1 (15c)

where v−,px,i denotes the third-order p’th substencil to vx(xi)
for p = 0, 1, 2. The WENO approximation to vx(xi) lever-
ages a convex weighted average of the three substencils so
that

v−x,i = w0v
−,0
x,i + w1v

−,1
x,i + w2v

−,2
x,i . (16)

https://github.com/robotsorcerer/LevelSetPy/tree/cupy/SpatialDerivative
https://github.com/robotsorcerer/LevelSetPy/blob/cupy/SpatialDerivative/upwind_first_first.py
https://github.com/robotsorcerer/LevelSetPy/blob/cupy/SpatialDerivative/upwind_first_eno2.py
https://github.com/robotsorcerer/LevelSetPy/tree/cupy/SpatialDerivative
https://github.com/robotsorcerer/LevelSetPy/blob/cupy/SpatialDerivative/ENO3aHelper.py
https://github.com/robotsorcerer/LevelSetPy/blob/cupy/SpatialDerivative/upwind_first_eno3.py
https://github.com/robotsorcerer/LevelSetPy/tree/cupy/SpatialDerivative


In smooth regions of the phase space, w0 = 0.1, w1 = 0.6,
and w2 = 0.3 yield the optimally accurate fifth order WENO
approximation, we have for v−x,i

D+

30
vi−3−

13

60
D+vi−2 +

47

60
D+vi−1 +

9

20
D+vi −

D+

20
vi+1

the fifth-order approximation vx(xi) and provides the small-
est truncation error on a six-point stencil.

To account for weights in non-smooth regions, however,
the smoothness of the stencils (15) can be estimated as
recommended in [4, §3.4] so that if

α1 = 0.1/(σ1 + ε)2, α2 = 0.6/(σ2 + ε)2, α3 = 0.1/(σ3 + ε)2

(17)

for

σ1 =
13

12
(D+vi−3 − 2D+vi−2 +D+vi−1)2

+
1

4
(D+vi−3 − 4D+vi−2 + 3D+vi−1)2, (18a)

σ2 =
13

12
(D+vi−2 − 2D+vi−3 +D+vi)

2+

1

4
(D+vi−2 −D+vi)

2, (18b)

σ3 =
13

12
(D+vi−1 − 2D+vi +D+vi+1)2+

1

4
(3D+vi−1 − 4D+vi +D+vi+1)2, (18c)

and

ε = 10−6 max{D+vi−3, D
+vi−2, D

+vi−1, D
+viD

+vi+1}
+ 10−99 (19)

then, we may define the weights for the WENO scheme as

w1 = α1/

3∑
i=1

αi, w2 = α2/

3∑
i=1

αi, w3 = α3/

3∑
i=1

αi.

(20)

which well approximates the optimal weights w0 =
0.1, w1 = 0.6 and w2 = 0.3 for decently smooth
σk that can be dominated ny ε. This is implemented
as a routine in upwindFirstWENO5a and called as
upwindFirstWENO5.

D. Lax-Friedrichs Monotone Difference Schemes

We now describe a convergent monotone difference spatial
approximation scheme for scalar conservation laws of the
form

vt +

N∑
i=1

fi(v)xi
= 0 for t > 0,x = (x1, · · · , xN ) ∈ Rn

v(x, 0) = v0(x), for x ∈ Rn (21)

Suppose that N = 1, let us define λx = ∆t/∆x, ∆+
x =

vj+1− vj , and ∆−x = vj −vj−1. Then at the nth time step,
the Lax-Friedrichs scheme is [21]

vn+1
j = vnj −

λx
2

∆0
xf(vnj ) +

1

2
∆+
x ∆−x v

n
j . (22)

Furthermore, if we define the flux on the state space as

g(vj ,vj−1) =
f(vj) + f(vj−1)

2
− 1

2
λx(vj − vj−1), (23)

we may write vn+1
j = vnj − λ+

x (vj ,vj−1).
The Lax-Friedrichs scheme is monotone on the interval

[a, b] if the CFL condition λx maxa≤v≤b |f ′(v)| ≤ 1 for
(a, b) > 0 and the upwind differencing scheme for a
nondecreasing f is vn+1

j = vnj − λx∆+
x f(vnj−1). For a

non-increasing f , we have vn+1
j = vnj − λx∆+

x f(vnj ).
Our Lax-Friedrichs implementation is implemented in the
ExplicitIntegration/Term folder.

V. TEMPORAL DISCRETIZATION: METHOD OF LINES

Here, we describe further improvements on the numerical
derivatives of HJ equations by further improving the fifth
order accurate HJ WENO schemes presented in section IV.
We adopt the method of lines (MOL) used in converting
the time-dependent PDEs to ODEs. Our presentation follows
the total variation diminishing (TVD) Runge Kutta (RK)
schemes with Courant-Friedrichs-Lewy (CFL) conditioning
imposed for stability as presented in [22] and implemented
in MATLAB® in [5].

A. Higher-Order TVD-RK Time Discretizations

To adopt the method of lines, the N -dimensional levelset
representation of v is first rolled into a 1-D vector and an
adaptive integration step size, ∆t, is chosen to guarantee
stability following the recommendation in [23]. The forward
Euler algorithm thus becomes

v(x, t+ ∆t) = v(x, t) + ∆tΥ(x,v(x, t)) (24)

where Υ is now the function to be integrated.
A standard MOL can then be applied for the integration

similar to ODEs (we have followed [5]’s code layout to
provide consistency for MATLAB users). We implement
TVD-RK MOL schemes up to third-order accurate forward
Euler integration schemes and the calling signature is as
described in Listing 3.

1 odeCFLx(schemeFunc, tspan, y0, options, schemeData)

Listing 3: CFL-constrained method of lines routines.

where x could be one of 1, 2, or 3 to indicate first-
order accurate, second-order accurate, or third-order accu-
rate TVD-RK scheme. The routine schemeFunc is typ-
ically one of the Lax-Friedrichs approximation routines
(implemented as termLaxFriedrichs) in the folder
ExplicitIntegration/Term. It approximates the HJ
equation based on dissipation functions (shortly introduced).

The first-order accurate TVD (it is total variation bounded
[TVB] actually) together with the spatial discretization used
for the PDE is equivalent to the forward Euler method. We
implement this as odeCFL1.

The second-order accurate TVD-RK scheme follows the
RK scheme by evolving the Euler step to tn + ∆t,

vn+1 − vn

∆t
+ Fn · ∇vn = 0. (25)

https://github.com/robotsorcerer/LevelSetPy/blob/cupy/SpatialDerivative/upwind_first_weno5a.py
https://github.com/robotsorcerer/LevelSetPy/blob/cupy/SpatialDerivative/upwind_first_weno5.py
https://github.com/robotsorcerer/LevelSetPy/blob/cupy/ExplicitIntegration/Term/term_lax_friedrich.py
https://github.com/robotsorcerer/LevelSetPy/blob/cupy/ExplicitIntegration/Term/term_lax_friedrich.py
https://github.com/robotsorcerer/LevelSetPy/tree/cupy/ExplicitIntegration/Term
https://github.com/robotsorcerer/LevelSetPy/blob/cupy/ExplicitIntegration/Integration/ode_cfl_1.py


A following Euler step to tn + 2∆t follows such that

vn+2 − vn+1

∆t
+ Fn+1 · ∇vn+1 = 0 (26)

before a convex combination of the initial value function
and the result of the preceding Euler steps is taken in

the following averaging step, vn+1 =
1

2
{vn + vn+2}.

The equation in the foregoing produces the second-order
accurate TVD approximation to v at tn + ∆t, implemented
as odeCFL2.

With the third-order accurate TVD-RK scheme, the first
two advancements in forward Euler schemes are computed

but with a different averaging scheme, vn+1/2 =
1

4
{3vn +

vn+2} which averages the previous two solutions at tn +
1

2
∆t. The third Euler advancement step to tn +

3

2
∆t is

vn+ 3
2 − vn+ 1

2

∆t
+ Fn+ 1

2 · ∇vn+ 1
2 = 0 (27)

together with the averaging scheme, vn+1 =
1

3
{vn +

2vn+ 3
2 } to produce a third-order accurate approximation to

v at time tn + ∆t, implemented as odeCFL3.

VI. NUMERICAL VALIDATION

In this section, we will a representative problem and
amend it to an HJ PDE form that can be resolved with our
LevelSetPy toolbox. We consider a collection/family of
differential games, Υ = {Γ1, · · · ,Γg}. Each game within a
differential game may be characterized as a pursuit-evasion
game, Γ. Such a game terminates when capture occurs, that
is the distance between players falls below a predetermined
threshold. Each player in a game shall constitute either a
pursuer (P ) or an evader (E).

To address our desiderata, we must settle upon how best
should P pursue E: at every time instant, P possesses
knowledge of his own and that of E’s position so that
P knows how to regulate its various controlling variables
with respect to E’s motion in an optimal fashion. The
task is to assay the game of kind [16] for the envelope of
the capturable states under which capture3 can occur. This
introduces the barrier hypersurface which separates, in the
initial conditions space, the hypersurface of capture states
from those of escape.

A. The Rockets Launch Problem

We consider the rocket launch problem of Dreyfus [24]
and amend it to a differential game between two identical
rockets, P and E, on an (x, z) cross-section of a Cartesian
plane. We want to compute the backward reachable tube
(BRT) [12] of the approximate terminal surface’s boundary
for a predefined target set over a time horizon (i.e. the target
tube). The BRT entails the state-space regions for which min-
max operations over either strategy of P or E is below zero,
and where the variational HJI PDE is exactly zero.

3We say a capture has occured when the distance between P and E falls
below a predetermined threshold.

g

Evader

Pursuer

x

z

Origin

Fig. 2: Motion of two rockets on a Cartesian xz-plane with
a thrust inclination in relative coordinates given by θ :=
up − ue.

For a two-player differential game, let P and E share
identical dynamics in a general sense so that we can freely
choose the coordinates of P ; however, E’s origin is a
distance φ away from (x, z) at plane’s origin (see Fig. 2) so
that the PE vector’s inclination measured counterclockwise
from the x axis is θ.

Let the states of P and E be denoted by (xp,xe).
Furthermore, let the P and E rockets be driven by their
thrusts, denoted by (up, ue) respectively (see Figure 2). Fix
the rockets’ range so that what is left of the motion of either
P or E’s is restricted to orientation on the (x, z) plane as
illustrated in Fig. 2. It follows that the relevant kinematic
equations (KE) (derived off [24]’s single rocket dynamics)
is

ẋ2e = x4e; ẋ2p = x4p, (28a)
ẋ4e = a sinue − g; ẋ4p = a sinup − g (28b)

where a and g are respectively the acceleration and gravi-
tational accelerations (in feet per square second) 4.

Our desideratum is determining if capture can be achieved
at all in a “yes-or-no” fashion. Therefore, we pose the game
over a finite range of outcomes so that the game at hand
assumes Isaac’s [16] description of a game of kind. P can
achieve as much proximity to a given target set as much
as possible while E is set up to protect the target set from
being penetrated. As long as E remains within this target
region or backward reachable tube (or BRT), P cannot cause
damage or exercise an action of deleterious consequence
on, say, the territory being guarded by E. Setting up E
to maximize a payoff quantity with the largest possible
margin or at least frustrate the efforts of P with minimal
collateral damage while the pursuer minimizes this quantity
constitutes a terminal value optimal differential game: there
is no optimal pursuit without an optimal evasion.
P ’s motion relative to E’s along the (x, z) plane includes

the relative orientation shown in Fig. 2 as θ = up−ue – the
control input. Following the conventions in Fig. 2, the game’s

4We set a = 1ft/sec2 and g = 32ft/sec2 in our simulation.

https://github.com/robotsorcerer/LevelSetPy/blob/cupy/ExplicitIntegration/Integration/ode_cfl_2.py
https://github.com/robotsorcerer/LevelSetPy/blob/cupy/ExplicitIntegration/Integration/ode_cfl_3.py


relative equations of motion in reduced space [16, §2.2] i.e.
is x = (x, z, θ) where θ ∈

[
−π2 ,

π
2

)
and (x, z) ∈ R2 are

ẋ =


ẋ = ap cos θ + uex,

ż = ap sin θ + ae + uex− g,
θ̇ = up − ue.

(29)

The capture radius of the origin-centered circle φ (we set
φ = 1.5 ft) is ‖PE‖2 so that φ2 = x2 + z2. All capture
points are specified by the variational HJ PDE [12]:

∂φ

∂t
(x, t) + min

[
0,H(x,

∂φ(x, t)

∂x
)

]
≤ 0, (30)

with Hamiltonian given by

H(x, p) = − max
ue∈[ue,ūe]

min
up∈[up,ūp].

[
p1 p2 p3

]
 ap cos θ + uex
ap sin θ + ae + upx− g

up − ue

 . (31)

Here, p are the co-states, and [ue, ūe] denotes extremals that
the evader must choose as input in response to the extremal
controls that the pursuer plays i.e. [up, ūp]. Rather than
resort to analytical geometric reasoning, we may analyze
possibilities of behavior by either agent via a principled
numerical simulation. This is the essence of this work. From
(31), set ue = up = u , −1 and ūp = ūe = ū , +1 so that
H(x, p) is

− max
ue∈[ue,ūe]

min
up∈[up,ūp]

 p1(ap cos θ + uex)+
p2(ap sin θ + ae+

upx− g) + p3(up − ue)

 ,
, −ap1 cos θ − p2(g − a− a sin θ)− ū|p1x+ p3|

+ u|p2x+ p3|, (32)

where the last line follows from setting ae = ap , a.
For the target set guarded by E, we choose an implicitly

constructed cylindrical mesh on a three-dimensional grid.
The grid’s nodes are uniformly spaced apart at a resolution
of 100 points per dimension over the interval [−64, 64].
In numerically solving for the Hamiltonian (32), a TVD-
RK discretization scheme [19] based on fluxes is used in
choosing smooth nonoscillatory results as described in §V.
Denote by (x, y, z) a generic point in R3 so that given
mesh sizes ∆x, ∆y, ∆z, ∆t > 0, letters u, v, w represent
functions on the x, y, z lattice: ∆ = {(xi, yj , zk) : i, j, k ∈
Z}.

1 finite_diff_data = {"innerFunc": termLaxFriedrichs,
2 "innerData": {"grid": g, "hamFunc": rocket_rel.ham,
3 "partialFunc": rocket_rel.dissipation,
4 "dissFunc": artificialDissipationGLF,
5 "CoStateCalc": upwindFirstENO2},
6 "positive": True} // direction of approx. growth

Listing 4: HJ ENO2 computational scheme for the rock-
ets.

The Hamiltonian, upwinding scheme, flux dissipation
method, and the overapproximation parameter for the
essentially non-oscillatory polynomial interpolatory data

used in geometrically reasoning about the target tube
is set up as seen in Listing 4. The data structure
finite diff data contains all the routines needed for
adding dynamics to the original implicit surface represen-
tation of v(x, t). The monotone spatial upwinding scheme
used (here termLaxFriedrichs described in §IV-D) is
passed into the innerFunc query field. The explicit form of
the Hamiltonian (see (32)) is passed to the hamFunc query
field, and the grid is passed to the grid field. We adopt a
second-order accurate upwinding scheme together with the
a Lax-Friedrichs conditioner for numerical stability.
To indicate that we intend to overapproximate the value
function, we specify a True parameter for the positive
query field.

Safety is engendered by having the evader respond op-
timally to the pursuer at various times during the game.
We are thus interested in the entire safety set over the
time interval of play (i.e. the safety tube). The backward
reachable tube (BRT) [12], under the control strategies of P
or E, is a part of the phase space that constitutes Ω × T .
Using our GPU-accelerated levelset toolbox, we compute the
overapproximated BRT of the game over a time span of
[−2.5, 0] seconds during 11 global optimization time steps
(the global steps constitute the time-horizon over which the
BRT is computed).

The initial value function (leftmost inset of Fig. 3) is
represented as a (closed) dynamic implicit surface over all
point sets in the state space (using a signed distance function)
for a coordinate-aligned cylinder whose vertical axes runs
parallel to the orientation of the rockets depicted in Fig. 2.
This closed and bounded assumption of the target set is a
prerequisite of the backward reachable analysis (see [12]).
It allows us to include all limiting velocities. The two middle
capture surfaces indicate the evolution of the capture surface
(here the zero levelset) of the target set upon the optimal
response of the evader to the pursuer. We reach convergence
at the eleventh global optimization timestep (rightmost inset
of Fig. 3). The BRTs at representative time steps in the
optimization procedure is depicted in Fig. 3.

Reachability [11, 17] thus affords us an ability to nu-
merically reason about the behavior of these two rockets
aforetime without closed-form geometrical analysis. To do
this, we have passed relevant parameters to the package as
shown in Listing 4 and run a CFL constrained optimization
scheme (as in Listing 3) for a finite number of global
optimization timesteps. More complicated examples such as
the the safe region of a group of migrating Starlings such
that they do not self-collide during flight is available on our
github repository and we encourage readers to use and test
the library for multiple other safety analysis and/or synthesis.

VII. CONCLUSION

HJ PDE’s are increasingly becoming a useful tool in con-
trol and learning applications. We have presented all the es-
sential components of the python version of the LevelSet
toolbox for numerically resolving HJ PDEs and for advanc-
ing co-dimension one interfaces on Cartesian grids. We have



Fig. 3: (Left to Right): Backward reachable tubes (capture surfaces) for the rocket system (cf. Fig. 2) optimized for the paths of slowest-quickest descent
in equation (31) at various time steps during the differential game. In all, the BRTs were computed using the method outlined in [4, 13, 14]. We set
ae = ap = 1ft/sec2 and g = 32ft/sec2 as in Dreyfus’ original example.

motivated the work presented with a numerical example to
demonstrate the efficacy of our numerical implementation.
We remark that further examples are documented in our
online library for users who may wish to utilize our toolbox.
Further analysis (indicated on the online package repository)
delineates the CPU and GPU capabilities of the library and
the average time to compute solutions across diverse tasks.

REFERENCES

[1] S. Kruzkov, “First Order Quasilinear Equations In Several Independent
Variables,” Mathematics of the USSR-Sbornik, 1970. 1

[2] L. C. Evans, Partial Differential Equations. American Mathematical
Society, 2022, vol. 19. 1

[3] J. A. Sethian, “Level Set Methods And Fast Marching Methods:
Evolving Interfaces In Computational Geometry, Fluid Mechanics,
Computer Vision, And Materials Science,” Robotica, vol. 18, no. 1,
pp. 89–92, 2000. 1

[4] S. Osher and R. Fedkiw, “Level Set Methods and Dynamic Implicit
Surfaces,” Applied Mechanics Reviews, vol. 57, no. 3, pp. B15–B15,
2004. 1, 4, 5, 8

[5] I. Mitchell, “A toolbox of level set methods, version 1.0,” The
University of British Columbia, UBC CS TR-2004-09, pp. 1–94, July
2004. 1, 2, 4, 5

[6] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis, “Cupy: A
numpy-compatible library for nvidia gpu calculations,” in Proceedings
of Workshop on Machine Learning Systems (LearningSys) in The
Thirty-first Annual Conference on Neural Information Processing
Systems (NIPS), 2017. 1, 2

[7] M. G. Crandall and P.-L. Lions, “Viscosity solutions of hamilton-
jacobi equations,” Transactions of the American mathematical society,
vol. 277, no. 1, pp. 1–42, 1983. 1

[8] E. Hopf, “The Partial Differential Equation ut+uux = µ?xx,” 1950.
[9] L. Evans and P. E. Souganidis, “Differential Games And Represen-

tation Formulas For Solutions Of Hamilton-Jacobi-Isaacs Equations,”
Indiana Univ. Math. J, vol. 33, no. 5, pp. 773–797, 1984. 2

[10] M. G. Crandall and P.-L. Lions, “Two Approximations of Solutions
of Hamilton-Jacobi Equations,” Mathematics of Computation, vol. 43,
no. 167, pp. 1–19, 1984. 2

[11] I. Mitchell, “Games of two identical vehicles,” Dept. Aeronautics and
Astronautics, Stanford Univ., no. July, pp. 1–29, 2001. 7

[12] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin, “A Time-Dependent
Hamilton-Jacobi Formulation of Reachable Sets for Continuous Dy-
namic Games,” IEEE Transactions on Automatic Control, vol. 50,
no. 7, pp. 947–957, 2005. 2, 6, 7

[13] I. Mitchell, “A Robust Controlled Backward Reach Tube with (Al-
most) Analytic Solution for Two Dubins Cars,” EPiC Series in
Computing, vol. 74, pp. 242–258, 2020. 2, 8

[14] M. G. Crandall, L. C. Evans, and P. L. Lions, “Some Properties of
Viscosity Solutions of Hamilton-Jacobi Equations,” Transactions of
the American Mathematical Society, vol. 282, no. 2, p. 487, 1984. 8

[15] P.-L. Lions, Generalized solutions of Hamilton-Jacobi equations.
London Pitman, 1982, vol. 69.

[16] R. Isaacs, Differential Games: A Mathematical Theory with Applica-
tions to Warfare and Pursuit, Control and Optimization. Kreiger,
Huntigton, NY, 1999. 2, 6, 7

[17] J. Lygeros, “On reachability and minimum cost optimal control,”
Automatica, vol. 40, no. 6, pp. 917–927, 2004. 2, 7

[18] L. Evans and P. E. Souganidis, “Differential games and representation
formulas for solutions of Hamilton-Jacobi-Isaacs equations,” Indiana
Univ. Math. J, vol. 33, no. 5, pp. 773–797, 1984.

[19] S. Osher and C.-W. Shu, “High-Order Essentially Nonoscillatory
Schemes for Hamilton-Jacobi Equations,” SIAM Journal of Numerical
Analysis, vol. 28, no. 4, pp. 907–922, 1991. 3, 4, 7

[20] G.-S. Jiang and D. Peng, “Weighted eno schemes for hamilton–jacobi
equations,” SIAM Journal on Scientific computing, vol. 21, no. 6, pp.
2126–2143, 2000. 4

[21] M. G. Crandall and A. Majda, “Monotone Difference Approximations
For Scalar Conservation Laws,” Mathematics of Computation, vol. 34,
no. 149, pp. 1–21, 1980. 5

[22] S. Osher and C.-W. Shu, “Efficient Implementation of Essentially
Non-oscillatory Shock-capturing Schemes,” Hampton, Virginia, Tech.
Rep. 2, 1988. 5

[23] C.-W. Shu and S. Osher, “Efficient Implementation of Essentially Non-
oscillatory Shock-capturing Schemes, II,” Journal of computational
physics, vol. 83, no. 1, pp. 32–78, 1989. 5

[24] S. E. Dreyfus, “Control Problems With Linear Dynamics, Quadratic
Criterion, and Linear Terminal Constraints,” Rand Corp, Santa Monica
Calif, Tech. Rep., 1966. 6


	Overview
	Background and Motivation
	The LevelSetPy Python Package
	Geometry of Implicit Surfaces and Layouts
	Grids Layout
	Implicit Surface Representations: Levelsets
	Calculus on Implicit Function Representations

	Spatial Discretization: Upwinding
	First-order accurate upwinding discretization
	ENO Polynomial Interpolation of Solutions
	HJ Weighted Essentially Nonoscillatory Solutions
	Lax-Friedrichs Monotone Difference Schemes

	Temporal Discretization: Method of Lines
	Higher-Order TVD-RK Time Discretizations

	Numerical Validation
	The Rockets Launch Problem

	Conclusion
	References

