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Outline

Talk Outline

System Identification in Reinforcement Learning (RL);

Robustness of Deep RL Policies:
o lterative Dynamic Game;
o Convergence analysis in Deep RL: A Mixed H,/Hx,
perspective.
@ Reduced-order modeling and morphological control of
emergent robot configurations;

(Abundant details in Appendices)
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Technical Overview
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Agent Controllable State (AC State)
State Representation in RL Agent Controllable State (AC State)
PCLAST

Iterative Dynamic Game
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State Representation in RL

Agent Controllable State (AC State)
Agent Controllable State (AC State)
PCLAST

Iterative Dynamic Game

Standard Reinforcement Learning
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Agent Controllable State (AC State)
State Representation in RL

Agent Controllable State (AC State)
PCLAST

Iterative Dynamic Game

Compact States without Exogenous Distractors in RL

Reward- Reward-
Relevant Irrelevant
Uncontrollable . %\:
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(a) GOAL: Letting in as much sunlight as possible.

(b) Optimal control only relies on information that is both

controllable and reward-relevant. Good world models
should ignore other factors as noisy distractors.

Denoised MDPs: Learning World Models Better Than the World Itself [5]
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Agent Controllable State (AC State)
State Representation in RL Agent Controllable State (AC State)
PCLAST

Iterative Dynamic Game

Compact States without Exogenous Distractors in RL

Environment with Exogenous State Observation Generalized Inverse Dynamics

Train @ model to predict the index of roll-in path

End:‘gjgousxv- AC?O" fg(idx (1/ o (l) ‘ (L'/)
a

VM T x’

~ &

v~ Uniform(¥,_1) a~ Uniform(A)

Policy cover for the last time step Action sp-aCe

Learning s with [S] whilst ignoring temporally correlated £? Source: [3, Fig. 1].
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Agent Controllable State (AC State)
State Representation in RL Agent Controllable State (AC State)

PCLAST

Iterative Dynamic Game

Literature comparison

1-Step AC-State

Algorithms PPE OSSR DBC CDL  Denoised-MDP

Inverse  (Ours)
Exogenous Invariant State v v v v v v v
Exogenous Invariant Learning v v X X X v v
Flexible Encoder v X v X v v v
YOLO (No Resets) Setting X v v 4 4 4 v
Reward Free v v X 4 v 4 v

Control-Endogenous Rep. v v X 4 4 X v
Emphasis on robustness to exogenous information. Comparison with baselines
including PPE [3], OSSR [2], DBC [6] , Denoised MDP [5] and One-Step

Inverse Models [4].
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Agent Controllable State (AC State)
Agent Controllable State (AC State)
PCLAST

Iterative Dynamic Game

State Representation in RL

Rewards-agnostic Exogenous State Invariance in RL

AC-State Discovers the
smallest control-endogenous
state s assuming factorized
dynamics

AC-State collects data with a
single random action followed

P

>

by a high-coverage endogenous
policy for k-1 steps
N Z . (ftxak) - predict first action
< AC-State
C from x_to reach x
t ik
Ap—Sta(e learns an encoder f @ (£x,)
for s = f(x) by optimizing a Lo
multi-step inverse model with
a bottleneck q
1\
NG

(fx,t+k)

7
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Agent Controllable State (AC State)
State Representation in RL Agent Controllable State (AC State)

PCLAST

Iterative Dynamic Game

Latent States Discovery — Multi-step Inverse Dynamics

-] f,-\% arg minfe]-'Et,k [cACS(f,X, a, t7k)+

Li(F,xe) + Lo(f xe4x)]

Lacs (f,x,a,t; k) = —log(P (at|f (xt), f (xe+4); k) (1)
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Agent Controllable State (AC State)
State Representation in RL Agent Controllable State (AC State)
PCLAST

Iterative Dynamic Game

AC State in Action

80
70+ o O
o © o o o
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2 50 o O  Autoencoder
5 401 O  Inverse
& sl & AC-State
20 O o (]
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. DD
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Training epochs
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Agent Controllable State (AC State)
State Representation in RL Agent Controllable State (AC State)

PCLAST

Iterative Dynamic Game

PCLAST: Agent Plannable Continuous Latent States

PcLast: Discovering Plannable Continuous Latent States

Anurag Koul ! Shivakanth Sujit"** Shaoru Chen' Ben Evans® LiliWu' Byron Xu' Rajan Chari'
Riashat Islam *¢ Raihan Seraj*¢ Yonathan Efroni” Lekan Molu' Miro Dudik' John Langford' Alex Lamb '
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Agent Controllable State (AC State)
State Representation in RL Agent Controllable State (AC State)

PCLAST

Iterative Dynamic Game

PCLAST Algorithm

Algorithm 1 n-Level Planner

Require: _“_ : H u Eﬂ
Current observation x; _”_ ”

Goal observation 4oa I ,I

Planning horizon H (@ Halhway (0 Roons (€S
Encoder ¢(-)

PCLAST map v/(-)

Latent forward dynamies (-, -)

Multi-Level discrete transition graphs {G; }1_, (d) Sawyer Reach Environment
Ensure: Action sequence {a; }/7 '
1: Compute current continuous latent state s, = &(x;) and
target latent state * = ¢(Zg0ai)-
{See Appendix E for details of high-level planner and
low-level planner.}
2: fori=n,n-1,...,2do
3:  § =high-level planner(s, §*, G;)
{Update waypoint using a hierarchy of abstraction. }
4: end for
5: {a; 5 = low-level planner(s,, §*, H, 6,4)
{Solve the trajectory optimization problem. }
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State Representation in RL

PCLAST Results

Agent Controllable State (AC State)

PCLAST
Iterative Dynamic Game

Agent Controllable State (AC State)

METHOD REWARD TYPE HALLWAY RooOMS SPIRAL SAWYER-REACH |
PPO DENSE 6.7+ 0.6 25wl 1525757 86.00 + 5.367
PPO + ACRO DENSE 10.0 +£4.1 233+94 233+11.8 84.00 + 6.066
PPO + PCLAST DENSE 66.7 + 18.9 43.3+19.3 61.7 £ 6.2 78.00 + 3.347
PPO SPARSE 1.7+£2.4 0.0£0.0 0.0£0.0 68.00 £ 8.198
PPO + ACRO SPARSE 21.7£8.5 5.0+4.1 1.7+ 8.5 92.00 + 4.382
PPO + PCLAST SPARSE 50.0 + 18.7 6.7+£6.2 46.7 £+ 26.2 82.00 + 5.933
CQL SPARSE 3:3i£:4.7. 0.0£0.0 0.0+£0.0 32.00 +5.93
CQL + ACRO SPARSE 19:0'4"7:1 33.3+125 21.7 £10.3 68.00 £ 5.22
CQL + PCLAST SPARSE 40.0 = 0.5 2334125 20.0+ 8.2 74.00 + 4.56
RIG NONE 0.0+£0.0 0.0+0.0 3.0+0.2 100.0 = 0.0
RIG + ACRO NONE 15.0 +3.5 40%1. 12.0 £ 0.2 100.0 = 0.0
RIG + PCLAST NoONE 10.0 £ 0.5 40+1.8 10.0 £ 0.1 90.0+5
LOW-LEVEL PLANNER + PCLAST NONE 86.7+3.4 69.3+ 3.4 50.0+ 4.3 *
n-LEVEL PLANNER + PCLAST NONE 97.78 £ 4.91 | 89.52 + 10.21 | 89.11 + 10.38 95.0 £ 1.54
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Agent Controllable State (AC State)
State Representation in RL Agent Controllable State (AC State)

PCLAST

Iterative Dynamic Game

Iterative Dynamic Game in RL
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Agent Controllable State (AC State)
State Representation in RL Agent Controllable State (AC State)

PCLAST

Iterative Dynamic Game

Inculcating robustness into multistage decision policies

state reward action
s |k s
R
_S.. | Environment |4——
1}
adversary
=
w———  system T
[r
U controller
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max_robust.mp4

Approach Problem Setup

Problem Setup

@ To quantify the brittleness, we optimize the stage cost

T

ma c(x¢, up) — v
v:Nw)G(\U Z&,_tl v 5(\,22

nominal adversarial

@ To mitigate lack of robustness, we optimize the cost-to-go

T-1
Ct(xta 7T7¢) = min maXx Z Et(xt) uta Vt) + LT(XT) )

Ut~ Vi) —0
@ and seek a saddle point equilibrium policy that satisfies
Ct(xta 7T*, w) S Ct(xt7 7T*, ¢*) S Ct(xta ™, w*)a
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Results

Results: Brittleness Quantification

unacceptable performance

Lekan Molu

adversary's policy. ¥ = 0.5
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max_robust.mp4

Results

Results: lterative Dynamic Game

2
End pose of the KUKA platform with our iDG formulation given different goal

states and v-values.
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http://ecs.utdallas.edu/~opo140030/iros18/iros2018.html#/3
http://ecs.utdallas.edu/~opo140030/iros18/iros2018.html#/3

Results

Mixed H,/H,, Policy Optimization in RL

This page is left blank intentionally.
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Talk Outline and Overview

Continuous-
Time
Stochastic

Policy m Policy Optimization and Stochastic Linear Control

Optimization

m Connections to risk-sensitive control;
m Mixed Ha/Hoo control theory.

gutline and m The case for convergence analysis in stochastic PO.

Overview

Lekan Molu

m Kleinman's algorithm, redux.
m Kleiman's algorithm in an iterative best response setting;
m PO Convergence in best response settings.

m Robustness margins in model- and sampling- settings.
m PO as a discrete-time nonlinear system;
m Kleiman and input-to-state-stability;
m Robust policy optimization as a small-input stable state
optimization algorithm

Lekan Molu Cantinyous- Fime Stoghastic Palicy Optimization



Credits

Continuous-
Time
Stochastic
Policy
Optimization

Leilei Cui

Lekan Molu

Zhong-Ping Jiang

Outline and
Overview

Postdoc, MIT Professor, NYU
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Research Significance

Continuous-
Time
Stochastic
Policy
Optimization

m (Deep) RL and modern Al

outtine and m Robotic manipulation (Levine et al., 2016), text-to-visual
Overview processing (DALL-E), Atari games (Mnih et al., 2013),
e.t.c.

Lekan Molu

m Policy optimization (PO) is fundamental to modern Al
algorithms’ success.

m Major success story: functional mapping of observations to
policies.

m But how does it work?

Lekan Molu Cantinyous- Fime Stoghastic Palicy Optimization



Policy Optimization — General Framework

Continuous-
Time

Stochnstic m PO encapsulates policy gradients (Kakade, 2001) or PG,
optf,f,'iifzﬁon actor-critic methods (Vrabie and Lewis, 2011), trust
A OVl region PO Schulman et al. (2015), and proximal PO

outine ang methods (Schulman et al., 2017).
utline an
Overview

m PG particularly suitable for complex systems.

minJ(K)
subject to K € K (1)

where £ = {Ky, Ko, -+, Kn}.

m J(K) could be tracking error, safety assurance,
goal-reaching measure of performance e.t.c. required to be
satisfied.

Lekan Molu Cantinyous- Fime Stoghastic Palicy Optimization



Policy Optimization — Open questions

Continuous-
Time
Stochastic
Policy
Optimization

m Gradient-based data-driven methods: prone to divergence

Lekan Molu from true System gradients

Qutline and m Challenge I: Optimization occurs in non-convex objective
verview
landscapes.

m Get performance certificates as a mainstay for control
design: Coerciveness property (Hu et al., 2023).
m Challenge Il: Taming PG's characteristic high-variance
gradient estimates (REINFORCE, NPG, Zeroth-order
approx.).

m Hello, (linear) robust (Hoo-synthesis) control!

Lekan Molu Cantinyous- Fime Stoghastic Palicy Optimization



Policy Optimization — Open questions

Continuous-
Time
Stochastic
Policy .
Optimization m Challenge Ill: Under what circumstances do we have

Lekan Molu convergence to a desired equilibrium in RL settings?

Outline and ] Cha.IIenge IV: Stochastic control, not deterministic control
settings.

m models involving round-off error computations in floating
point arithmetic calculations; the stock market; protein
kinetics.

m Challenge V: Continuous-time RL control.

m Very little theory. Lots of potential applications
encompassing rigid and soft robotics, aerospace or finance
engineering, protein kinetics.

Lekan Molu Cantinyous- Fime Stoghastic Palicy Optimization



Continuous-
Time
Stochastic
Policy
Optimization

Lekan Molu

Outline and
Overview

Literature
landscape

Fazel (2018)

Mohammadi
(TAC — 2020)

Zhang (2019)

Gravell (2021)
Zhang (2020)

Molu (2022)

Cui & Molu
(2023)

Cont. time Stochastic. LQR | Cont. Phase

(Kalman ‘61, (Kalman '60)
Luenberger ‘63)

No No Yes
Yes No Yes
Yes Yes (Gaussian) Yes
No Multiplicative Yes
No No Yes
Yes Yes (Brownian) Yes
Yes Yes (Brownian) Yes

Lekan Molu Cantinyous- Eime Stoghastic Policy Opti

(Non-exhaustive) Lit. Landscape on PO Theory

Yes

No
Yes

Yes

Finite/Infinite
Mixed H;/H_co | Horizon

Finite-horizon

Finite-Horizon

Inf-horizon

Inf-horizon

Rand-horizon
Inf-Horizon

Inf-Horizon




Model-based Policy Iteration

Continuous-

Time Algorithm 1: (Model-Based) PO via Policy Iteration

Stochastic

Policy Input: Max. outer iteration p, ¢ = 0, and an € > 0;
Optimization Input: Desired risk attenuation level v > 0;
Lellem Wil Input: Minimizing player’s control matrix R = 0.

Compute (Ko, Lg) € K; > From [24, Alg. 1];
Set P;{;’.DL = Q%: > See equation (9);

1

2

3

4 Compute Q% and A% > See equation (9);

5 Obtain P% by evaluating K, on (10);

6 | while ||PE — P9 ||r < edo
Model-based 7 Compute L, 1(K,) :=~v2DT PR ;
8 Solve (11) until | P} — PE% [|lr <
9 g+—qg+1
10 end )
11 | Compute K,y =R 'B"PF% o See (l1b);
end

Lekan Molu Cantinyous- Fime Stoghastic Palicy Optimization



Convergence of the Inner Loop Iteration

Continuous-

Time
Stochastic Theorem 3

Policy

SEEN  For a K € K, and for any (p, q) € Ny, there exists S(K) € R
Lekan Molu SUCh that

Tr(PE — PZ’Tl) < B(K)Tr(PE — PEY). (24)

Remark 2

As seen from Lemma 5, P — P9 = 0. By the norm on a

matrix trace (?, Lemma 13) and the result of Theorem 3, we
have ||Pk — PR llF < Tr(Px — PR7) < B(K)Tr(Pxk), ie.
PR exponentially converges to Pk in the Frobenius norm.

Lekan Molu Cantinyous- Fime Stoghastic Palicy Optimization



Robustness Analyses

Continuous-

tochastic Th 6
o m Define P = Py — Py ey

Policy
Optimization e .
and K = K — K. The inexact outer loop is

Lekan Molu . small-disturbance ISS. That
m Keep |K| < e, start with

a K € K: iterates stay in
K.

is, for any h >0 and
Ko € Kp, if||K|| < f(h),
there exist a KKL-function

PN ARG AYM  51(-,") and a Koo-function
'23) v1() such that

For any K € K, there exists HPE - P <

an e(K) > 0 such that for a 0 . -
perturbation K, K+ K € K, BullPgz =PIl p) + (K1)
as long as |K|| < e(K). (37)

Lekan Molu Cantinyous- Eime Stoghastic Palicy Optimization



Inner Loop Robustness

Continuous-
Time

Stochastic Theorem 7
Policy

SELERN  Assume ||L,(K,)|| < e for all g € N There exists
Lekan Molu /B(K) (= [07 1), and )\() S ]COOI SUCh that

q
L

’

1PRS — PEIIIF < BT H(K)Tr(PED) + ML) (42)

m From Theorem 7, as g — o0, Isﬁ’cl approaches the solution
Pk and enters the ball centered at PZ’?_ with radius

proportional to ||L|s.

m The proposed inner-loop iterative algorithm well
approximates PR7.

Lekan Molu Cantinyous- Eime Stoghastic Palicy Optimization



Results

Morphological Computation in Emergent Robotic Systems

This page is left blank intentionally.
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Soft Robotic Systems

Multiscale

MULTISCALE,

CONTINUUM

Mechanical
deformation

Credit: Microsoft CoPilot.
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Picture generated by Google Gemini

The Piecewise Constant Strain (PCS) Cosserat Model

Renda et al.
T-RO 2016

q-+
Jo

Ly
/ JTM.JdX
JOo

Ly
/ JTadygMaJdX | G+

M(q) Ci(q:9)
Ly . Ly
/ JTMJdX | g+ / JTDJI|Jq||,dX | -
JO JO
C2(q.9) D(q,9)
rLn
(1= ps/p) / JTMAd, X | Ady G - T (X)F,
0 o N——
F(q)
N(q)

Ly
- / JTVoFi = VoF, +adl (Fi— Fo)]dX =0,
J0

u(q) l

M(q)z +[Ci(q,2) + Ca(q,2) + D(q,2)| 2 =
7(q) + F(q) + N(q)Ad,'G.




SoRo’s control computational complexity is hard!

Structural Properties and Control of Soft Robots Modeled as
Discrete Cosserat Rods

Lekan Molu and Shaoru Chen

Abstract—Soft  robots approximate

featuring finite-
‘models small
deformations)

increasingly becoming paramount in

s. In this paper, we consider the
piecewise constant strain (PCS) discrete Cosserat model whose
dynamics admit the standard Newton-Euler dynamics for a
Kinetic model. Contrary to popular convention that soft robots
under these modeling assumptions admit similar mechanical
characteristics to rigid robots, the schemes employed to arrive

properties

snﬂ robots under finite deformation

to those for rigid robots. We set out
o first correct the fale premise behind this syllogism: from
first principles, we established the structural properties of
soft slender robots undergoing finite deformation under a
discretized PCS assumption; we then utilized these properties
to prove the stability of designed proportional-derivative
controllers for manipulating the strain states of a prototypical
soft robot under finite deformation. Our newly derived results
are illustrated by numerical examples on a single arm of the
Octopus robot and demonstrate the efficacy of our designed
controller based on the derived kinetic properties. This work
rectifies previously disseminated Kinetic properties of discrete
Cosserat-based soft robot models with greater accuracy in
proofs and clarity.

:.3‘

Nonlinear partial differential equations (PDES) are the
standard mathematical machinery for modeling continuum
structures with distributed mass. And for soft robots ex-
hibiting infinite degrees-of-freedom (DoF), nonlinear PDEs
readily come in handy. However, scanty theory exists for
nonlinear PDE analyses. To circumvent the complexity of

sis on spatially reduced models.

Tractable reduced-order mathematical models are typically
formulated by restricting the range of shapes of the con-
tinuum robot to a finite-dimensional functional space over

a curve that parameterizes the robot. This is equivalent
on the soft robot’s body and

te nodal point
approximating the dynamics
by an ODE. An aggregated ODE of all discretized sections
can then be used to model the dynamics of the entire
di

discrete Cosserat model of Renda et al. [18] whereupon
the nonlincar PDE that describes the robot’s kinetics in
exact form is abstracted to standard Newton-Euler ODEs via

COMPUTATION
GROWS
FACTORIALLY
WITH NUMBER
OF DISCRETIZE
SECTIONS




Enter Singularly Perturbed Systems

21 = flz1, 22,6, us,1), 21(to) = 21(0), 21 € RN,

62.2 = 9(21722767 ufvt)7 z?(tﬂ) = zQ(O)! zZ9 € RGN

General SPT formulation. Multiphysics, multiscale soft system.
z.l = .f(zlazQsos U,,-,t), zl(tO) = Z]_(O),
0 = g(zlv zZ2, 07 0:« t)

Picture credit: Google Gemini.

Sete to 0> Slow subsystem Assl,fmption 1 (Rleal and distinct root): Equation (5? has
the unique and distinct root z2 = ¢(21,t) (for a sufficiently

dz . smooth ¢(+)) so that
ﬁ=éf(zuzz+¢(Z1,t),éyu.~ut)- (8a) .
dz. lzs O 0=g(z1,(21,1),0,0,t) £ g(21,0,t), z1(to) = 21(0).
_Z=sﬂ_5_¢z‘ (8b) ©)
ar —dt  om "

= g(21, 22+ p(z1, 1), €, up, 1) — f%z'l't)zh (8¢) The slow subsystem therefore becomes

. 21 = f(z1,0(21,1),0,u,, 1) 2 fo(z),u,,t). (7)
Fast subsystem on time scale: T = t/e ' ne '



Singularly Perturbed Soft Cosserat Robot i

Aggregate the robot’s distributed

mass, M, inertia into a core active )
component, M;", and setthe

passive components as MM = M \ M

LP ¢ ¢
Then the mass and Coriolis forces adopts the following max Lmax Lmiﬂ
representation
LI’ 1
where MP = [Zrex JTMPJdX “eavies
e i Comprlessed

air

M(q) = (M*+ M?")(g), N = (N + N")(q).
F(q) = (F°+ F*)(q), D(q) = (D°+ D")(q)
Ci(q,4) = (C{ + CY)(q,9),

02(97 Q) = (CS + Cg)(‘]s q) Picture credit: Google Gemini.

elastomeric
skin



Dynamics Separation with Perturbation Parameter

The mass matrix then decomposes as Internal air

cavities

fast
M = Hpase 0 0 sill;w Comp:'ierssed
o 0 0 + fast | H ’
slow slow
———’
—

Soft
elastomeric
skin

MC(Q) M”(q)
M¢<(q) and MP(q) are invertible (Molu& Chen, CDC 2024)

Introducing the perturbation parameter, € = || MP||/||M¢|| We may define the matrix, MP = Ml'/e

(M4 eMP)2 =s+u,

So that we can write,

where
_ [sua] _ [ F°+ N°Ad,'G — [Cf + C5 + D]z
FP + N?Ad,'G — [C} + C} + DP)|zgow|
(13)

Sslow



Singularly perturbed soft robot form

Suppose that Fast subdynamics extraction
1P Yid - -
arr= My M) iAo 001 set T = t/e, with dT'/dt = 1/¢
M21 M22 M'.glﬂfml 0
) Then, .  _ LET™ _ ldzfﬂn[ 2 lz{
st dt  ~ e dT ¢ ast

Then, we may write .

and  €Zgow = Zgoy-

- .
Hee M 12 Zfast | _ Sfast +
Vid ; - Vi Tt So that,
0 M| 20w Sstow — €My H g Stast
/ -1 — 1 fast s
Usast 16 Zfast = €%fast(sf35t + ufﬂs‘) - Hfast sln;wz.slnw
Mp H_l ( ) ’ 1 1
Uslow — €LV Thpyg Ufast Zow = Hgow (Ssiow — Usiow) — My (Stast — Uast)




A backstepping nonlinear multi-scale controller

Theorem 1: The control law
@iha(tr) — Qras(ts) + @it 7)

is sufficient to guarantee an exponential stability of the origin
of @ = v such that for all ty > 0, gnu(ty) € S for a
compact set S C RN, That is, ggsi(t7) remains bounded as
ty — oo.

Where,

(07,6717 = [gh 2] where 6 = ez

Theorem 2: Under the tracking error e = ¢ — v and
matrices (K, K,) = (K,T, K‘;r) > 0, the control input
1 _
Ut = ZHﬁ\s([qi{}:’sll +er —2e; — K(,T(KqKqT) 'Kpe]
1,6
+ Mo Zlow — St 24

slow “slow

exponentially stabilizes the fast subdynamics (18).
Theorem 3: The control law
d
Uslow = Hslow(el —ey—ez+ qé'a_,() — Sslow

exponentially stabilizes the slow subdynamics.



A backstepping nonlinear multi-scale controller

4) Stability of the singularly perturbed interconnected
system: Let ¢ = (0, 1) and consider the composite Lyapunov
function candidate (2, Zsow) as @ weighted combination
of V5 and Vi ie. ,

Z(zfash zslnw) = (1 - 6)‘/2(zfusl) + EVK(Zslow)v 0<e<l
(35)

It follows that,

3 Zhast, Zotow) = (1 — €)[e] Kpé1 + e3 Kéo] + cej K, €3,
=-2(Va+V3) +2V2 <0 (36)

which is clearly negative definite for any e € (0,1). There-
fore, we conclude that the origin of the singularly perturbed
system is asymptotically stable under the control laws.

U(Ztast; Zslow) = (1 = €)Uast + EUslow- (37)



Runtime:

Numerical Results

: 18.0 mins
Strain regulation. Strain twist regulation.
N 1.0{
12/} —-— Ref. 1 S Fl{ef.
« B\ - G <051} == 4
S \ S 1
\ 0.0l —rem
10k rmnm e e O
0 20 40 0 20 40
0.50 _./_’.\;~_._.. ______ 0.50 If\\ —.— Ref. Pieces i R.unlime (mins)
II 1\ g Total | Fast | Slow| Hierarchical Single-layer PD control (hours)
> | .20.25¢ T Gy SPT (mins)
o — S \
025 Ref. \ 6 4 |2 [ 1801 51.46
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Fig. 2. Backstepping control on the singularly perturbed soft robot system
with 10 discretized pieces, divided into 6 fast and 4 slow pieces. For a
P

tip load of F} = 10 N, the backstepping gains were set as K, = 10,
K, = 2.0 for a desired joint configuration £% = [0,0,0, 1,0.5,0]T and
= 0gx that is uniform throughout the robot sections.

TIME TO REACH STEADY STATE.




Numerical Results — System Setup

~

The robot’s z-axis is offset in orientation from the
inertial frame by -90 deg so that a transformation
from the base to inertial frames is
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X
Fig. 1. Simplified configuration of an Octopus arm, reprinted from Molu Reynold’s # 0.82
and Chen [9]. .
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Numerical Results — System Setup
:

Reynold’s #

Young’s Mod. E 110kPa

Shear visc. J 3 kPa

Bending 2nd Inertia I, =1, = 7-,-7ﬂ‘1/4

Torsion 2" Inert I, = mrt)2

Material abscissa L = 2m

Poisson ratio p) 0.45

Mass density M = p - diag([l,.1,,I., A, A, A])

Drag stiffness matrix D = —p, v vDu/|y|



Strain regulation.

Strain twist regulation.
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control on the s

perturbed soft robot system with 10 pieces 4 slow and 6 fast sections.



