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Talk Outline

System Identification in Reinforcement Learning (RL);

Robustness of Deep RL Policies:

Iterative Dynamic Game;
Convergence analysis in Deep RL: A Mixed H2/H∞
perspective.

Reduced-order modeling and morphological control of
emergent robot configurations;

(Abundant details in Appendices)
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Standard Reinforcement Learning
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Compact States without Exogenous Distractors in RL

Denoised MDPs: Learning World Models Better Than the World Itself [5]
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Compact States without Exogenous Distractors in RL

Learning s with [S ] whilst ignoring temporally correlated ξ? Source: [3, Fig. 1].
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Literature comparison

Algorithms PPE OSSR DBC CDL Denoised-MDP
1-Step

Inverse

AC-State

(Ours)

Exogenous Invariant State ✓ ✓ ✓ ✓ ✓ ✓ ✓

Exogenous Invariant Learning ✓ ✓ ✗ ✗ ✗ ✓ ✓

Flexible Encoder ✓ ✗ ✓ ✗ ✓ ✓ ✓

YOLO (No Resets) Setting ✗ ✓ ✓ ✓ ✓ ✓ ✓

Reward Free ✓ ✓ ✗ ✓ ✓ ✓ ✓

Control-Endogenous Rep. ✓ ✓ ✗ ✓ ✓ ✗ ✓

Emphasis on robustness to exogenous information. Comparison with baselines
including PPE [3], OSSR [2], DBC [6] , Denoised MDP [5] and One-Step

Inverse Models [4].
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Rewards-agnostic Exogenous State Invariance in RL
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Latent States Discovery – Multi-step Inverse Dynamics

f̂ ≈ argminf ∈F Et,k

[
LACS (f , x , a, t, k) +

LB(f , xt) + LB(f , xt+k)
]

LACS (f , x , a, t; k) = − log(P (at |f (xt), f (xt+k); k)) (1)
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AC State in Action
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PCLAST: Agent Plannable Continuous Latent States
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Iterative Dynamic Game in RL
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Inculcating robustness into multistage decision policies
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Problem Setup

Problem Setup

To quantify the brittleness, we optimize the stage cost

max
vt∼ψ∈Ψ




T∑

t=0

c(xt ,ut)︸ ︷︷ ︸
nominal

−γ g(vt)︸ ︷︷ ︸
adversarial




To mitigate lack of robustness, we optimize the cost-to-go

ct(xt , π, ψ) = min
ut∼π

max
vt∼ψ

(
T−1∑

t=0

ℓt(xt ,ut , vt) + LT (xT )

)
,

and seek a saddle point equilibrium policy that satisfies

ct(xt , π∗, ψ) ≤ ct(xt , π∗, ψ∗) ≤ ct(xt , π, ψ∗),
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Results: Brittleness Quantification

γ

J
∗ γ

J
∗

γ∗

J
∗

∞

γ
∗

unacceptable performance
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Results: Iterative Dynamic Game

x⋆1

x⋆2
End pose of the KUKA platform with our iDG formulation given different goal

states and γ-values.
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Talk Outline and Overview

Policy Optimization and Stochastic Linear Control

Connections to risk-sensitive control;
Mixed H2/H∞ control theory.

The case for convergence analysis in stochastic PO.

Kleinman’s algorithm, redux.
Kleiman’s algorithm in an iterative best response setting;
PO Convergence in best response settings.

Robustness margins in model- and sampling- settings.

PO as a discrete-time nonlinear system;
Kleiman and input-to-state-stability;
Robust policy optimization as a small-input stable state
optimization algorithm
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Research Significance

(Deep) RL and modern AI

Robotic manipulation (Levine et al., 2016), text-to-visual
processing (DALL-E), Atari games (Mnih et al., 2013),
e.t.c.

Policy optimization (PO) is fundamental to modern AI
algorithms’ success.

Major success story: functional mapping of observations to
policies.

But how does it work?

Lekan Molu Continuous-Time Stochastic Policy Optimization 20/31
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Policy Optimization – General Framework

PO encapsulates policy gradients (Kakade, 2001) or PG,
actor-critic methods (Vrabie and Lewis, 2011), trust
region PO Schulman et al. (2015), and proximal PO
methods (Schulman et al., 2017).

PG particularly suitable for complex systems.

minJ(K )

subject to K ∈ K (1)

where K = {K1,K2, · · · ,Kn}.
J(K ) could be tracking error, safety assurance,
goal-reaching measure of performance e.t.c. required to be
satisfied.
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Policy Optimization – Open questions

Gradient-based data-driven methods: prone to divergence
from true system gradients.

Challenge I: Optimization occurs in non-convex objective
landscapes.

Get performance certificates as a mainstay for control
design: Coerciveness property (Hu et al., 2023).

Challenge II: Taming PG’s characteristic high-variance
gradient estimates (REINFORCE, NPG, Zeroth-order
approx.).

Hello, (linear) robust (H∞-synthesis) control!
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Policy Optimization – Open questions

Challenge III: Under what circumstances do we have
convergence to a desired equilibrium in RL settings?

Challenge IV: Stochastic control, not deterministic control
settings.

models involving round-off error computations in floating
point arithmetic calculations; the stock market; protein
kinetics.

Challenge V: Continuous-time RL control.

Very little theory. Lots of potential applications
encompassing rigid and soft robotics, aerospace or finance
engineering, protein kinetics.
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Model-based Policy Iteration
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Convergence of the Inner Loop Iteration

Theorem 3

For a K ∈ K̆, and for any (p, q) ∈ N+, there exists β(K ) ∈ R
such that

Tr(Pp
K − Pp,q+1

K ,L ) ≤ β(K )Tr(Pp
K − Pp,q

K ,L). (24)

Remark 2

As seen from Lemma 5, Pp
K − Pp,q

K ,L ⪰ 0. By the norm on a
matrix trace (?, Lemma 13) and the result of Theorem 3, we
have ∥PK − Pp,q

K ,L∥F ≤ Tr(PK − Pp,q
K ,L) ≤ β(K )Tr(PK ), i.e.

Pp,q
K ,L exponentially converges to PK in the Frobenius norm.
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Robustness Analyses

Define P̃ = PK − P̂K

and K̃ = K − K̂ .

Keep |K̃ | < ϵ, start with
a K ∈ K: iterates stay in
K.

Lemma 7 (Lemma 10, C&M,
’23)

For any K ∈ K, there exists
an e(K ) > 0 such that for a
perturbation K̃ , K + K̃ ∈ K,
as long as ∥K̃∥ < e(K ).

Theorem 6

The inexact outer loop is
small-disturbance ISS. That
is, for any h > 0 and
K̂0 ∈ Kh, if ∥K̃∥ < f (h),
there exist a KL-function
β1(·, ·) and a K∞-function
γ1(·) such that

∥Pp

K̂
− P⋆∥ ≤

β1(∥P0
K̂
− P∗∥, p) + γ1(∥K̃∥).

(37)
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Inner Loop Robustness

Theorem 7

Assume ∥L̃q(Kp)∥ < e for all q ∈ N+. There exists
β̂(K ) ∈ [0, 1), and λ(·) ∈ K̆∞, such that

∥P̂p,q
K ,L − Pp,q

K ,L∥F ≤ β̂q−1(K )Tr(Pp,q
K ,L) + λ(∥L̃∥∞). (42)

From Theorem 7, as q →∞, P̂p,q
K ,L approaches the solution

PK and enters the ball centered at Pp,q
K ,L with radius

proportional to ∥L̃∥∞.

The proposed inner-loop iterative algorithm well
approximates Pp,q

K ,L.
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The Piecewise Constant Strain (PCS) Cosserat Model

Picture generated by Google Gemini

Renda et al. 
T-RO 2016

Octopus robot. Courtesy: IEEE Spectrum
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SoRo’s control computational complexity is hard!
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Enter Singularly Perturbed Systems

General SPT formulation.

Set      to  0 → Slow subsystem

Multiphysics, multiscale soft system.
 

Picture credit: Google Gemini.

Fast subsystem on time scale: 
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Singularly Perturbed Soft Cosserat Robot
Aggregate the robot’s distributed 
mass,       , inertia into a core active 
component,              , and set the 
passive components as                                            

Then the mass and Coriolis forces adopts the following 
representation

Picture credit: Google Gemini.
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Dynamics Separation with Perturbation Parameter
The mass matrix then decomposes as

(Molu & Chen, CDC 2024)

Introducing the perturbation parameter, We may define the matrix, 

So that we can write,
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Singularly perturbed soft robot form
Suppose that 

Then, we may write

Fast subdynamics extraction

Set 

Then,  

So that,

and 
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A backstepping nonlinear multi-scale controller

Where,
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A backstepping nonlinear multi-scale controller
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Numerical Results
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Numerical Results – System Setup
The robot’s  z-axis is offset in orientation from the 
inertial frame by  -90 deg so that a transformation 
from the base to inertial frames is

Tip wrench at                       is ,

Param Symbol Value

Reynold’s # 0.82

Young’s Mod. E 110kPa

Shear visc. J 3 kPa
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Numerical Results – System Setup
Param Symbol Value

Reynold’s # 0.82

Young’s Mod. E 110kPa

Shear visc. J 3 kPa

Bending 2nd Inertia

Torsion 2nd Inert

Material abscissa

Poisson ratio 0.45

Mass density

Drag stiffness matrix
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