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Exogenous Markov Decision Process (Exo-MDP)
Machinery

Consider the tupleM := (X ,Z,A,T ,R,H)

Starting distribution µ ∈ ∆(Z);
Agent receives observations {xh}Hh=1 ∈ X from the emission
function q : Z → ∆(X );
Agent transitions between latent states via
T : Z ×A → ∆(S);

And rewards by R : X ×A → ∆([0, 1])

Trajectories: (z1, x1, a1, r1, · · · , zH , aH , rH) from repeated
interactions;

z1 ∼ µ1(·), zh+1 ∼ T (·|zh, ah), xh ∼ q(·|zh) and
rh ∼ R(xh, ah, xh+1) for all h ∈ [H].

Define supp(q(·|z)) = {x ∈ X |q(x |z) > 0} for any z .

Lekan Molu Embodied Intelligence in Open Embodiments



24/31

Exo-MDP Machinery

Block MDP assumption supp(q(·|z1)) ∩ sup(q(·|z2)) = ∅ for all
z1 ̸= z2.

Agent chooses a ∼ π(zh|xh)
There exists non-stationary
episodic policies
ΠNS := ΠH ⊇ (π1, · · · , πH);

Optimal policy
π⋆ = argmaxVπ∈ΠNS

(π);

For
Vπ∈ΠNS

=
∑

h = 1H rh.

EXO-BMDP: Essentially
a Block MDP [1] such
that the latent states
admits the form
z = (s, e), where s ∈ S,
e ∈ E .

µ(z) = µ(s)µξ and
T (z ′|z , a) =
T (s ′|s, a)Te(e

′|e)
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AC State Algorithm
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AC State in Action

Exogenous distractors riddance.
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Agent Controllable States Representation
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PCLAST Segmentation Results
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PCLAST Segmentation Results

Lekan Molu Embodied Intelligence in Open Embodiments



30/31

PCLAST – Cheetah Environment
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Morphological Computation
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SoRo Outline
Morphological Computation

Hierarchical Decomposition of Dynamics
References
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SoRo Outline
Morphological Computation

Hierarchical Decomposition of Dynamics
References

Morphological Computation – Overview

The principle of morphological computation in nature

Morphology: shape, geometry, and mechanical properties.
Computation: sensorimotor information transmission among
geometrical components.

Morphology and computation in artificial robots

Cosserat Continua and reduced soft robot models.
Reductions: Structural Lagrangian properties and control.

Towards real-time strain regulation and control

Simplexity: Hierarchical and fast versatile control with
reduced variables.
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Morphology and computation

Morphology: Emergent behaviors of natural organisms from
complex sensorimotor nonlinear mechanical feedback from the
environment.

Shape affecting behavioral response.

Geometrical Arrangement of motors such that processing and
perception affect computational characteristics.

Mechanical properties that allow the engineering of emergent
behaviors via adaptive environmental interaction.

Computation: The information transformation among the
system geometrical units, upon environmental perception, that
effect morphological changes in shape and material properties.
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MC in vertebrates – a case for soft designs

An adult human skeleton ≊ 11% of
the body mass. ©Brittanica

The arrangement and
compliance of body parts,
perception, and computation
creates emergence of complex
interactive behavior.

Soft bodies seem critical to the
emergence of adaptive natural
behaviors.

Morphological computation is
crucial in the design of robots
that execute adaptive natural
behavior.
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Simplexity in Morphological Computation

Simplexity: Exploiting structure for effective control.

The geometrical tuning of the morphology and neural circuitry
in the brain of mammals that simplify the perception and
control of complex natural phenomena.

Not exactly simplified models or reduced complexity.

But rather, sparse connections and finite variables to execute
adaptive sensorimotor strategies!

Example: Saccades (focused eye movements) are controlled
by (small) Superior Colliculus in the human brain.

Plug: Complex neural circuitry; simple control systems!
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Simplexity: The Central Pattern Generator

A neural mechanism (in vertebrates) that generates motor
control with minimal parameters.

CPG: Neurons and synapses couple to generate effective
motor activation for rhythmic environmental motion.

In Lampreys, only two signals trigger swimming motion, for
example!

This CPG enables indirect use of brain computational power
via nonlinear feedback from stretch receptor neurons on
Lamprey’s skin.
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Saccades and the Superior Colliculus

©Anatomical Justice.
Credit: Vision and Learning Center.
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Morphing in Invertebrates: Cephalopods

Cuttlefish. ©Monterey Bay Museum Octopus. ©Smithsonian Magazine
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The Octopus and Cuttlefish

No exoskeleton, or spinal cord.

A muscular hydrostat: transversal, longitudinal, and oblique
muscles along richly innervated arms and mechanoreceptors:

Allows for bending, stretching, stiffening, and retraction.

Diverse compliance across eight arms imply sophisticated
motion strategies in the wild!

Simplexity enhanced by a peripheral nervous system and a
central nervous system.
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Soft Robot Mechanism in Focus

A continuum soft robot whose mechanics can be

well-described with Cosserat rod theory. Reprinted from

((author?) [2])

One dimension is
quintessentially longer than
the other two.

Characterized by a central
axis with undeformable discs
that characterize deformable
cross-sectional segments.

Strain and deformation, via
e.g. Cosserat rod theory,
enables precise
finite-dimensional
mathematical models.
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A Finite and Reliable Model

A soft robot’s usefulness is
informed by control system
that melds its body
deformation with internal
actuators.

By design, this calls for a
high-fidelity model or a
delicate balancing of
complex morphology and
data-driven methods.

Non-interpretable; non-reliable.

×Continuous coupled
interaction between the
material, actuators, and external
affordances.
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The case for model-based control

Soft robots are infinite degrees-of-freedom continua i.e., PDEs
are the main tools for analysis.

Nonlinear PDE theory is tedious and computationally
intensive.

Notable strides in reduced-order, finite-dimensional
mathematical models that induce tractability in continuum
models.
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Tractable reduced-order models

Morphoelastic filament theory: [8; 5; 3];

Generalized Cosserat rod theory: [14; 1];

The constant curvature model: [4];

The piecewise constant curvature model: [15; 9]; and

Ordinary differential equations-based discrete Cosserat
model: [11; 10].
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Cosserat-based piecewise constant strain model

A discrete Cosserat model: (author?) [10].

Shapes defined by a finite-dimensional functional space,
parameterized by a curve, X : [0, L]..

Assumes constant strains between finite nodal points on
robot’s body.

Strain-parameterized dynamics on a reduced special
Euclidean-3 group (SE(3)).
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The piecewise constant strain model

Credit: [10].

C-space: g(X ) : X →
SE(3) =

(
R(X ) p(X )
0⊤ 1

)
.

Strain and twist vectors:

{η, ξ} ∈ R6.

{η, ξ} := {q, q̇}

Strain field:
η̆(X ) = g−1∂g/∂X .

Twist field:
ξ̆(X ) = g−1∂g/∂t.
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The piecewise constant strain model

X ∈ [0, L] is divided into N intervals: [0, L1], · · · , [LN−1, LN ].

In [10]’s proposition, the robot’s mass divides into N discrete sections
{Mn}Nn=1;

Each with constant strain ηn

Strain field: η̆(X ) = g−1∂g/∂X .

Twist field: ξ̆(X ) = g−1∂g/∂t.
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Dynamic equations

From the continuum equations for a cable-driven soft arm [[12]],
we can derive the following dynamic equation [[10]]:

[∫ LN

0

JTMaJdX
]

︸ ︷︷ ︸
M(q)

q̈ +

[∫ LN

0

JTad⋆Jq̇MaJdX
]

︸ ︷︷ ︸
C1(q,q̇)

q̇ +

[∫ LN

0

JTMaJ̇dX
]

︸ ︷︷ ︸
C2(q,q̇)

q̇

+

[∫ LN

0

JTDJ∥Jq̇∥pdX
]

︸ ︷︷ ︸
D(q,q̇)

q̇ − (1− ρf /ρ)

[∫ LN

0

JTMAd−1
g dX

]

︸ ︷︷ ︸
N(q)

Ad−1
gr G

− J(X̄ )TFp︸ ︷︷ ︸
F (q)

−
∫ LN

0

JT [
∇xFi −∇xFa + ad⋆ξn (Fi −Fa)

]
dX

︸ ︷︷ ︸
τ (q)

= 0, (1)
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Structural properties – mass inertia operator

M(q)q̈ + [C1(q, q̇) + C2(q, q̇)] q̇ = F (q) + N(q)Ad−1
gr G + τ(q)− D(q, q̇)q̇.

(2)

Property 1 (Boundedness of the Mass Matrix)

The mass inertial matrix M(q) is uniformly bounded from below by mI
where m is a positive constant and I is the identity matrix.

Proof of Property 1.

This is a restatement of the lower boundedness of M(q) for fully
actuated n-degrees of freedom manipulators [[13]].
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Structural properties – parameters Identification

Property 2 (Linearity-in-the-parameters)

There exists a constant vector Θ ∈ Rl and a regressor function
Y (q, q̇, q̈) ∈ RN×l such that

M(q)(̈q)+ [C1(q, q̇) + C2(q, q̇) + D(q, q̇)] q̇ − F (q)N(q)Ad−1
gr G

= Y (q, q̇, q̈)Θ. (3)
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Structural properties – skew symmetry of system inertial
forces

Property 3 (Skew symmetric property)

The matrix Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)] is
skew-symmetric.
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Skew-symmetric of robot’s mass and Coriolis forces

By Leibniz’s rule, we have

Ṁ(q)=
d

dt

(∫ LN

0
JTMaJdX

)
=

∫ LN

0

∂

∂t

(
JTMaJ

)
dX

≜
∫ LN

0

(
J̇TMaJ + JTṀaJ + JTMaJ̇

)
dX . (4)

Therefore, Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)] becomes
∫ LN

0

(
J̇⊤MaJ + J⊤ṀaJ + J⊤MaJ̇

)
dX − 2

∫ LN

0

(
J⊤ad⋆Jq̇MaJ + J⊤MaJ̇

)
dX

(5)

≜
∫ LN

0

(
J̇⊤MaJ + J⊤ṀaJ − J⊤MaJ̇

)
dX − 2

∫ LN

0

J⊤ad⋆Jq̇MaJdX . (6)
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Skew-Symmetric Property Proof

Similarly, −
[
Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)]

]⊤
expands as

− Ṁ⊤(q) + 2
[
C⊤

1 (q, q̇) + C⊤
2 (q, q̇)

]
=

∫ LN

0

dX⊤
(
−J⊤MaJ̇ − J⊤ṀaJ − J̇⊤MaJ

)
+ 2

∫ LN

0

dX⊤
(
J⊤MaadJq̇J + J̇⊤MaJ

)

≜
∫ LN

0

(
J⊤MaJ̇ − J̇⊤MaJ − J⊤ṀaJ

)
dX − 2

∫ LN

0

J⊤ad⋆Jq̇MaJdX (7)

which satisfies the identity:

Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)] =

−
[
Ṁ(q)− 2 [C1(q, q̇) + C2(q, q̇)]

]⊤
. (8)

A fortiori, the skew symmetric property follows.
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MC Takeaways: Simplexity

Simplexity: Reliance on a few parameters to model an
infinite-DoF system:

M(q)q̈ + [C1(q, q̇) + C2(q, q̇)] q̇ = F (q) + N(q)Ad−1
gr
G + τ(q)

−D(q, q̇)q̇.

Simplexity: From PDE to ODE, i.e. inifinite-dimensional
analysis (Continuum PDE) to finite-dimensional ODE!
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Control exploiting structural properties

Regarding the generalized torque τ (q) as a control input, u(q, q̇),
feedback laws are sufficient for attaining a desired soft body
configuration.

Theorem 1 (Cable-driven Actuation)

For positive definite diagonal matrix gains KD and Kp, without
gravity/buoyancy compensation, the control law

u(q, q̇) = −Kpq̃ −KD q̇ − F (q) (9)

under a cable-driven actuation globally asymptotically stabilizes
system (2), where q̃(t) = q(t)− qd is the joint error vector for a
desired equilibrium point qd .

Lekan Molu Embodied Intelligence in Open Embodiments 30/31



28/59

SoRo Outline
Morphological Computation

Hierarchical Decomposition of Dynamics
References

Model Types
Cosserat models
Singular Perturbation Theory: Overview

Computational Control exploiting structural properties

Corollary 2 (Fluid-driven actuation)

If the robot is operated without cables, and is driven with a dense
medium such as pressurized air or water, then the term F (q) = 0
so that the control law u(q, q̇) = −Kpq̃ −KD q̇ globally
asymptotically stabilizes the system.

Proof.

Proofs in Section V of (author?) [7].
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Robot parameters

Tip load in the +y direction
in the robot’s base frame.

Poisson ratio: 0.45;
M = ρ[Ix , Iy , Iz ,A,A,A] with
ρ = 2, 000kgm−3;

D = −ρwν
TνD̆ν/|ν|.

X ∈ [0, L] discretized into 41
segments.
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Computational Control exploiting structural properties

0.0 0.5 1.0 1.5 2.0 2.5
Total RKF Iterations (X 100)
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0.6

0.8
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1.2

̇
ξ
y Kp: 4.0, KD: 5.5, y

p: 10N.

PD Velocity Controller
Ref.
Sec. 1
Sec. 2
Sec. 3
Sec. 4

Cable-driven, strain twist setpoint
terrestrial control.

2 4 6 8 10
Total RKF Iterations (X 100)

−0.02

−0.01

0.00

0.01

0.02

0.03

0.04
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̇
ξ
y
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Fluid-actuated, strain twist setpoint
terrestrial control.
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Computational Control exploiting structural properties

2 4 6 8 10
Total RKF Iterations (X 100)

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

̇
ξ
y

Kp: 4.0, KD: 0.5, y
p: 10N.

PD Velocity Controller
Ref.
Sec. 1
Sec. 2
Sec. 3
Sec. 4

Fluid-actuated, strain twist setpoint
underwater control.
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̇
ξ
y
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Cable-driven, strain twist setpoint
regulation.
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Computational Control exploiting structural properties
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Total RKF Iterations (X 100)
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Sec. 3
Sec. 4
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Cable-based position control with a
small tip load, 0.2N.
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Exploiting Mechanical Nonlinearity for Feedback!

This page is left blank intentionally.
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Hierarchical Dynamics and Control

Reaching steps towards the real-time strain control of
multiphysics, multiscale continuum soft robots.

Separate subdynamics — aided by a perturbing time-scale
separation parameter.

Respective stabilizing nonlinear backstepping controllers.

Stability of the interconnected singularly perturbed. system.

Fast numerical results on a single arm of the Octopus robot
arm.
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Decomposition of SoRo Rod Dynamics

Mcore
i : composite mass distribution as a result of microsolid

i ′s barycenter motion;

Mpert: motions relative to Mcore
i , considered as a

perturbation;

M = Mpert ∪Mcore.

Introduce the transformation: [q, q̇] = [q, z ], rewrite (2):

M(q)ż + [C1(q, z) + C2(q, z) + D(q, z)] z − F (q)− N(q)Ad−1
gr G = τ(q)
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Dynamics separation

Suppose that Mp =
∫ Lpmax

L
p
min

J⊤MpertJdX , and Mc =
∫ Lcmax
Lcmin

J⊤McoreJdX , then,

M(q) = (Mc + Mp)(q), N = (Nc + Np)(q), (10a)

F (q) = (F c + F p)(q), D(q) = (Dc + Dp)(q) (10b)

C1(q, q̇) = (C c
1 + C p

1 )(q, q̇), (10c)

C2(q, q̇) = (C c
2 + C p

2 )(q, q̇). (10d)
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Dynamics Separation

Furthermore, let

M =

[H 0
0 0

]

︸ ︷︷ ︸
Mc (q)

+

[
0 Hfast

slow

Hfast
slow

⊤ Hslow

]

︸ ︷︷ ︸
Mp(q)

, (11)

where Hfast
slow denotes the decomposed mass of the perturbed sections of the

robot relative to the core sections.

Let robot’s state, x = [q⊤, z⊤]⊤ decompose as q = [q⊤
fast, q

⊤
slow]

⊤ and
z = [z⊤

fast, z
⊤
slow]

⊤,

Define M̄p = Mp/ϵ, and let u = [u⊤
fast, u

⊤
slow]

⊤ be the applied torque.
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SoRo Dynamics Separation

(Mc + ϵM̄p)ż = s + u, (12)

where

s =

[
sfast
sslow

]
=

[
F c + NcAd−1

gr G − [C c
1 + C c

2 + Dc ]zfast
F p + NpAd−1

gr G − [C p
1 + C p

2 + Dp]zslow

]
. (13)

Since Hfast is invertible, let

M̄p =

[
M̄p

11 M̄p
12

M̄p
21 M̄p

22

]
and ∆ =

[
0 0

M̄p
21H−1

fast 0

]
. (14)
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SoRo Dynamics Separation

Premultiplying both sides by I − ϵ∆, it can be verified that

[Hfast M̄p
12

0 M̄p
22

] [
żfast
ϵżslow

]
=

[
sfast

sslow − ϵM̄p
21H−1

fastsfast

]
+

[
ufast

uslow − ϵM̄p
21H−1

fastufast

]

(15)

which is in the standard singularly perturbed form (??):

ż1 = f (z1, z2, ϵ, us , t), z1(t0) = z1(0), z1 ∈ R6N , (16a)

ϵż2 = g(z1, z2, ϵ, uf , t), z2(t0) = z2(0), z2 ∈ R6N (16b)
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SoRo Fast Subsystem Extraction

On the fast time scale T = t/ϵ, with dT/dt = 1/ϵ so that,

żfast =
dzfast
dt

≡ 1

ϵ

dzfast
dT

≜ 1

ϵ
z ′
fast

; and

ϵżslow = z ′
slow.

Fast subdynamics:

z ′
fast = ϵH−1

fast(sfast + ufast)−H−1
fastHfast

slowz ′
slow, (17a)

z ′
slow = H−1

slow(sslow − uslow)−H−1
fast(sfast − ufast) (17b)

where the slow variables are frozen on this fast time scale.
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SoRo Slow Subsystem Extraction

We let ϵ→ 0 in (15), so that what is left, i.e.,

żslow = H−1
slow(sslow + uslow) (18)

constitutes the system’s slow dynamics; where the fast
components are frozen on this slow time scale.
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Control of the Fast Strain Subdynamics

Consider the transformation:

[
θ
ϕ

]
=

[
qfast

zfast

]
so that

θ′ = ϵzfast ≜ ν := A virtual input.

Let {qd
fast, q̇

d
fast} = {ξd1 , . . . , ξdnξ ,ηd

1 , . . . ,η
d
nξ
}fast be the

desired joint space configuration for the fast subsystem.

Theorem 3 ([6])

The control law

ufpos = qd
fast(tf )− qfast(tf ) + q ′d

fast(tf )

is sufficient to guarantee an exponential stability of the origin of
θ′ = ν such that for all tf ≥ 0, qfast(tf ) ∈ S for a compact set
S ⊂ R6N . That is, qfast(tf ) remains bounded as tf →∞.
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Control of the Fast Strain Subdynamics

Proof Sketch 1 (Proof of Theorem 3)

e1 = θ − qd
fast, =⇒ e ′

1 = θ′ − q ′d
fast ≜ ν − q ′d

fast. (19)

Choose V1(e1) =
1

2
e⊤
1 Kpe1 (20)

Then, V ′
1 = e⊤

1 Kpe ′
1 = e⊤

1 Kp(ν − q ′d
fast). (21)

For ν = q ′d
fast − e1, V ′

1 = −e1Kpe1 ≤ 2V1.
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Stability Analysis of the Fast Velocity Subdynamics

Theorem 4 ([6])

Under the tracking error e2 = ϕ− ν and matrices
(Kp,Kq) = (K⊤

p ,K⊤
q ) > 0, the control input

ufvel =
1

ϵ
Hfast[q ′′d

fast + e1 − 2e2 −K⊤
q (KqK⊤

q )−1Kpe1]

+
1

ϵ
Hfast

slowz ′
slow − sfast (22)

exponentially stabilizes the fast subdynamics (17).

Lekan Molu Embodied Intelligence in Open Embodiments 30/31



46/59

SoRo Outline
Morphological Computation

Hierarchical Decomposition of Dynamics
References

Hierarchical Control
Fast Strain Subdynamics
Fast Strain Velocity (Twist) Subdynamics
Slow subdynamics
Interconnected System

Stability Analysis of Fast Velocity Subdynamics

Proof Sketch 2 (Sketch Proof of Theorem 4)

Recall from the position dynamics controller:

e ′
1 = θ′ − q ′d

fast ≜ zfast − q ′d
fast + (ν − ν) (23a)

= (ϕ− ν) + (ν − q ′d
fast) ≜ e2 − e1. (23b)

It follows that

e ′
2 = ϕ′ − ν ′ = z ′

fast + e ′
1 − q ′′d

fast (24)

= H−1
fast

[
ϵufast + ϵsfast −Hfast

slowz ′
slow

]
+ (e2 − e1)− q ′′d

fast.
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Stability Analysis of the Fast Velocity Subdynamics

Proof Sketch 3 (Sketch Proof of Theorem 4)

For diagonal matrices Kp,Kq with positive damping, let us choose the
Lyapunov candidate function

V2(e1, e2) = V1 +
1

2
e⊤
2 Kqe2 =

1

2
[e1 e2]

[
Kp 0
0 Kq

] [
e1
e2

]
.

If q̃fast = qfast − qd
fast and q̃′

fast = q′
fast − q′d

fast, then the controller

ufvel =
1

ϵ
Hfast[q′′d

fast − q̃fast − 2q̃′
fast − K⊤

q (KqK⊤
q )−1Kp q̃fast]

+
1

ϵ
Hfast

slowz ′
slow − sfast,

exponentially stabilizes the system;
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Stability Analysis of the Fast Velocity Subdynamics

Proof Sketch 4 (Sketch Proof of Theorem 4)

since it can be verified that

V ′
2 = e⊤

1 Kp(e2 − e1)

− e⊤
2 Kq

(
e2 −K⊤

q (KqK⊤
q )−1Kpe1

)
(25a)

= −e⊤
1 Kpe1 − e⊤

2 Kqe2 (25b)

≜ −2V2 ≤ 0. (25c)
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Stability analysis of the slow subdynamics

Set e3 = zslow − ν so that ė3 = żslow − ν̇. Then,

ė3 = żslow − q̈d
fast + (e2 − e1), (26a)

= H−1
slow(sslow + uslow)− q̈d

fast + (e2 − e1). (26b)

Theorem 5

The control law

uslow = Hslow(e1 − e2 − e3 + q̈d
fast)− sslow (27)

exponentially stabilizes the slow subdynamics.
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Stability analysis of the slow subdynamics

Proof.

Consider the Lyapunov function candidate

V3(e3) =
1

2
e⊤
3 Kre3 where Kr = K⊤

r > 0. (28)

It follows that

V̇3(e3) = e⊤
3 Kr ė3 (29a)

= e⊤
3 Kr

[
H−1

slow(sslow + uslow)− q̈d
fast + e2 − e1

]
. (29b)

Substituting uslow in (27), it can be verified that

V̇3(e3) = e⊤
3 Kre3 ≜ −2V3(e3) ≤ 0. (30)

Hence, the controller (27) stabilizes the slow subsystem.
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Stability of the singularly perturbed interconnected system

Let ε = (0, 1) and consider the composite Lyapunov function candidate
Σ(zfast, zslow) as a weighted combination of V2 and V3 i.e. ,

Σ(zfast, zslow) = (1− ε)V2(zfast) + εV3(zslow), 0 < ε < 1. (31)

It follows that,

Σ̇(zfast, zslow) = (1− ε)[e⊤
1 Kp ė1 + e⊤

2 Kq ė2] + εe⊤
3 Kr ė3,

= −2(V2 + V3) + 2εV2 ≤ 0 (32)

which is clearly negative definite for any ε ∈ (0, 1). Therefore, we conclude that
the origin of the singularly perturbed system is asymptotically stable under the
control laws.

u(zfast, zslow) = (1− ε)ufast + εuslow. (33)
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Asynchronous, time-separated control
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Runtime: 18.0 mins

Ten discretized PCS sections: 6 fast, 4 slow subsections. F y
p = 10N,

with Kp = 10, Kd = 2.0 for ηd = [0, 0, 0, 1, 0.5, 0]⊤ and ξd = 06×1.
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Five-axes control
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Time Response Comparison with Non-hierarchical
Controller

Pieces Runtime (mins)

Total Fast Slow Hierarchical
SPT
(mins)

Single-layer PD control (hours)

6 4 2 18.01 51.46

8 5 3 30.87 68.29

10 7 3 32.39 107.43

Table: Time to Reach Steady State.
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Contributions

Layered singularly perturbed techniques for decomposing
system dynamics to multiple timescales.

Stabilizing nonlinear backstepping controllers were introduced
to the respective subdynamics for fast strain regulation.
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Discussions

Leverage the multiphysics of (often) heterogeneous soft
material components;

Neat manipulation strategies for motion is a multiscale
problem that requires imbuing geometric mathematical
reasoning into the control strategies for desired movements.

Challenge: Merging the long-term planning horizon of spatial
perception tasks with the fast time-constant (typically
milliseconds or microseconds) requirements of the precise
control of soft, compliant pneumatic/mechanical systems
across multiple time-scales;

Lekan Molu Embodied Intelligence in Open Embodiments 30/31



57/59

SoRo Outline
Morphological Computation

Hierarchical Decomposition of Dynamics
References

Hierarchical Control
Fast Strain Subdynamics
Fast Strain Velocity (Twist) Subdynamics
Slow subdynamics
Interconnected System

Discussions

Process spatial information (Lagrangian) often within a
long-time horizon context (Eulerian) for the real-time control
or planning across multiple time-scales.
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