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The Piecewise Constant Strain (PCS) Cosserat Model
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SoRo0’s control computational complexity is hard!

Structural Properties and Control of Soft Robots Modeled as
Discrete Cosserat Rods

Lekan Molu and Shaoru Chen

Abstract—Soft  robots featuring approximate finite-
dimensional reduced-order models (undergoing small
deformations) are increasingly becoming paramount in

literature and applications. In this paper, we consider the
piecewise constant strain (PCS) discrete Cosserat model whose
dynamics admit the standard Newton-Euler dynamics for a
kinetic model. Contrary to popular convention that soft robots
under these modeling assumptions admit similar mechanical
characteristics to rigid robots, the schemes employed to arrive
at the properties for soft robots under finite deformation
show a far dissimilarity to those for rigid robots. We set out
to first correct the false premise behind this syllogism: from
first principles, we established the structural properties of
soft slender robots undergoing finite deformation under a
discretized PCS assumption; we then utilized these properties
to prove the stability of designed proportional-derivative
controllers for manipulating the strain states of a prototypical
soft robot under finite deformation. Our newly derived results
are illustrated by numerical examples on a single arm of the
Octopus robot and demonstrate the efficacy of our designed
controller based on the derived kinetic properties. This work
rectifies previously disseminated kinetic properties of discrete
Cosserat-based soft robot models with greater accuracy in
proofs and clarity.

Nonlinear partial differential equations (PDEs) are the
standard mathematical machinery for modeling continuum
structures with distributed mass. And for soft robots ex-
hibiting infinite degrees-of-freedom (DoF), nonlinear PDEs
readily come in handy. However, scanty theory exists for
nonlinear PDE analyses. To circumvent the complexity of
PDE analyses, researchers have so far exploited approximate
finite-dimensional ordinary differential equations (ODEs) [7]
for analysis on spatially reduced models.

Tractable reduced-order mathematical models are typically
formulated by restricting the range of shapes of the con-
tinuum robot to a finite-dimensional functional space over
a curve that parameterizes the robot. This is equivalent
to taking finite nodal points on the soft robot’s body and
approximating the dynamics along discretized nodal sections
by an ODE. An aggregated ODE of all discretized sections
can then be used to model the dynamics of the entire
discretized continuum robot. A paramount example is the
discrete Cosserat model of Renda et al. [18] whereupon
the nonlinear PDE that describes the robot’s kinetics in
exact form is abstracted to standard Newton-Euler ODEs via
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Enter Singularly Perturbed Systems
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Assumption 1 (Real and distinct root): Equation (5) has
the unique and distinct root zo = ¢(21,t) (for a sufficiently
smooth ¢(+)) so that

0= g(z1:¢(zlat):0:0:t) < g(zlnozt): zl(t{]) - zl(o)'
(6)

The slow subsystem therefore becomes

2.:1 :f(z1?¢(z1?t)?0?u3:t) éfs(zlzus:'t)' (7)



Singularly Perturbed Soft Cosserat Robot
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Dynamics Separation with Perturbation Parameter

The mass matrix then decomposes as :
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M¢(q) and MP(q) are invertible (Molu& Chen, CDC 2024)
Introducing the perturbation parameter, €= ||Mp||/|TMC|| We may define the matrix, MP = MP /¢

(M€ +eMP)z = s + u,

So that we can write,
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Singularly perturbed soft robot form
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Fast subdynamics extraction
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A backstepping nonlinear multi-scale controller

Theorem [1: The control law

qﬁst(tf) — qfast(tf) + Qt{fst(tf)

1s sufficient to guarantee an exponential stability of the origin
of @ = v such that for all t; > 0, gn«(tf) € S for a
compact set S C RSV, That is, g (¢ ) remains bounded as
Ly — o0.

Where,

[BT? qu]T - [qf—gst?zf—arst]—r where ¢’ :_{Ezfaﬂt'

Theorem 2: Under the tracking error e = ¢ — v and
matrices (K, K,;) = (K, , K, ) > 0, the control input
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exponentially stabilizes the fast subdynamics (18).

Theorem 3: The control law

vl
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exponentially stabilizes the slow subdynamics.



A backstepping nonlinear multi-scale controller

4) Stability of the singularly perturbed interconnected
system.: Let ¢ = (0, 1) and consider the composite Lyapunov
function candidate >(2f,, Zsg0w) as a weighted combination

of V, and V3 1e. ,

2(zfast; zslow) — (1 — E)Vé(zfast) + EV'%(ZSIOW): 0<e<l.
(35)

It follows that,

Z(zfast, Zslow) = (1 — E)[elTKpél + e;Kqég] + EE;KTég,
= —-2(Vo + V3) + 2V, <0 (36)

which is clearly negative definite for any ¢ € (0,1). There-
fore, we conclude that the origin of the singularly perturbed
system 1s asymptotically stable under the control laws.

u(zfast-,- zslow) — (1 - 5)Ufast + EUslow - (37)



Numerical Results

Runtime: 18.0 mins

Strain regulation.

Strain twist regulation.
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Fig. 2. Backstepping control on the singularly perturbed soft robot system
with 10 discretized pieces, divided into 6 fast and 4 slow pieces. For a
tip load of F7 = 10 N, the backstepping gains were set as K, = 10,
K, = 2.0 for a desired joint configuration £ = [0,0,0,1,0.5,0] " and
nd = 0gx 1 that is uniform throughout the robot sections.



Numerical Results — System Setup

e

The robot’s z-axis is offset in orientation from the
inertial frame by -90 deg so that a transformation
from the base to inertial frames is

0 -1 0 0
1 0 o0 0
I =10 0 1 0
0 0 0 1

Tipwrenchat X = L is,

.T'p:diag(RT(L),RT(L))(U3><1 0 10 O)T

X
Fig. 1. Simplified configuration of an Octopus arm, reprinted from Molu ReynOld 'S H# 0.82
and Chen [9].
Young’s Mod. E 110kPa

Shear visc. J 3 kPa



Numerical Results — System Setup

e

Reynold’s # 0.82

Young’s Mod. E 110kPa

Shear visc. J 3 kPa

Bending 2nd Inertia Iy — Iz — ?TT4/4

Torsion 2" |nert I, = ?TT4/'2

Material abscissa L = 9m

Poisson ratio P 0.45

Mass density M = p - diag([I,.I, 1., A A, A])

Drag stiffness matrix D= —P-wUT pf)y/ V|




Strain regulation.

Iterations

Fig. 3. Backstepping control on the singularly
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perturbed soft robot system with 10 pieces 4 slow and 6 fast sections.

Strain twist regulation.
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Conclusion

* Thank you!
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