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Abstract. Intensity-Modulated Radiation Therapy (IMRT) is a method for treat-
ing cancers by aiming radiation to cancer tumor while minimizing radiation to
organs-at-risk. Usually, radiation is aimed from a particle accelerator, mounted
on a robot manipulator. Computationally finding the correct treatment plan for a
target volume is often an exhaustive combinatorial search problem, and traditional
optimization methods have not yielded real-time feasible results. Aiming to auto-
mate the beam orientation and intensity-modulation process, we introduce a novel
set of techniques leveraging (i) pattern recognition, (ii) monte carlo evaluations,
(iii) game theory, and (iv) neuro-dynamic programming. We optimize a deep
neural network policy that guides Monte Carlo simulations of promising beam-
lets. Seeking a saddle equilibrium, we let two fictitious neural network players,
within a zero-sum Markov game framework, alternatingly play a best response to
their opponent’s mixed strategy profile. During inference, the optimized policy
predicts feasible beam angles on test target volumes. This work merges the beam
orientation and fluence map optimization subproblems in IMRT sequential treat-
ment planning system into one pipeline. We formally introduce our approach, and
present numerical results for coplanar beam angles on prostate cases.

1 Introduction

In this paper, we will present the preliminary results of a multi-disciplinary research
project to design a real-time feasible treatment planning optimization in intensity-
modulated radiation therapy (IMRT). IMRT is a cancer treatment method that delivers
geometrically-shaped, high-precision x-rays or electron beams to tumors by modulating
the intensity of the radiation beam. A multileaf collimator shapes a conventional geo-
metrical field, and the intensity of the geometric field shape is varied bixel-wise in order
to modulate the “fluence” profile around a tumor. This is done while the patient lies in
a supine position on a treatment table. Before treatment, a doctor contours the critical
structures (or tumors) and organs-at-risk (OARs) within a target volume (region of
the patient’s computed tomography (CT) or magnetic resonance (MRI) scan that contains
the tumor and other organs) and then prescribes doses that must be delivered. Each beam
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to be delivered consists of beamlets, aimed from the same angle, where each beamlet
may be of a different intensity from that of its neighbors. Radiation intensities may
be delivered from about 5 − 15 different beam orientations with multiple collimator
units. The process of choosing what beam angle is best for delivering beamlet intensities
is termed beam orientation optimization (BOO), while the process of determining
what intensity meets a prescribed fluence profile by a doctor is termed fluence map
optimization (FMO). Commonly, the set of beams is constrained to lie in a single plane
passing through the critical structures.

When just the robot’s tool frame is used to adjust the fluence intensity, we have
coplanar beams. In this work, we focus on finding good coplanar beams in BOO
problems as commonly, only coplanar beams are employed [1]. We consider fictitious
self-play as a practical application for developing an effective beam orientation selection
strategy in a scenario involving two rational decision-making agents that: i) do not
communicate their policies to each other (i.e. the game is non-cooperative), and ii)
behave reactively in order to adequately explore the state space.
Contributions: We transform the BOO problem into a game planning strategy. Coupled
with neural fictitious self-play, we refine the predictions from a neural network policy to
drive the weights of the policy to a saddle equilibrium [2]. To this end,

• we devise a tree lookout strategy for games with large state spaces to guide transition
from one beam angle set to another;

• the sparse tree lookout strategy is guided by a deep neural network policy, which
produces a utility (or value) function that characterizes the policy’s preference for
an outcome, and a subjective probability distribution, which describes the policy’s
belief about all relevant unknown factors at each time step;

• in a zero-sum two-player Markov decision game of perfect information, either player
finds an alternating best response to the current player’s average strategy; this is to
drive the policy’s weights toward an approximate saddle equilibrium [3];

• this aids the network in finding an approximately optimal beam angle candidate set
that meets the doctor’s dosimetric requirements.

This work presents the first comprehensive description of Monte-Carlo Tree Search
(MCTS) within the framework of BOO. It adds new pseudocode that transforms BOO
into a game planning strategy. The game recovers an approximately optimal set of
beamlets and an optimized fluence during TP.

There has been related work on beam orientation optimization. Craft [4] locally tuned
a beam angle set within the system’s continuous state space using linear programming
duality theory, and found that the BOO problem for a simple 2D pancreatic case has
about 100 minima when the optimization is warm-started from 100 different beam angles.
Building on Craft’s work, Bertsimas et. al [5] resolved to a two meta-step algorithm:
dynamically selecting beam angle candidates within the phase space via local minimum
search with gradient descent, then exploring a different portion of the solution space
by taking finite steps of simulated annealing. While [5] use global and local search
with improvements in solutions obtained from equispaced angles, this method has the
drawback of presenting the objective function as convex and assuming the doctor’s
preferences can be represented as a set of linear constraints. Jia et. al [6] split the
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problem into two subproblems: first progressively identifying non-consequential beam
angles by evaluating a multi objective function, and then optimizing the fluence on
beam angles that are assigned a high confidence by a dosimetric objective function.
Heuristic search strategies have also previously developed e.g. [7–9]. Li et al. [10] used
a genetic algorithm fitness metric to select a beams subset from a discrete candidate
set of beam angles; a conjugate-gradient dose objective then optimized the intensity
of the chosen beams. Other work treat IMRT treatment planning (TP) as an inverse
optimization problem, with techniques ranging from adaptive l21 optimization [6], mixed
integer linear programming [11–13] and simulated annealing [1, 14].

2 Methods and Materials

For games with perfect information, there is an optimal value function, v?(s), that decides
the game’s outcome for every possible state, s ∈ S , under perfect play. One could devise
a planning strategy that guides the search for optimistic beam angle configurations
within the setup’s phase space by using a probability distribution, p(s, a), over a set of
deterministic pure strategies for the tree.

The search for an approximately optimal beam angle set is performed by optimizing
the parameters of a function approximator ψ, (here, a deep neural network, with multiple
residual blocks as in [15]) that approximates a policy π. The policy guides simulations
of ‘best-first’ beam angle combinations for a sufficiently large number of iterations –
essentially a sparse lookout simulation that selectively adjusts beams that contribute the
least to an optimal fluence. Successor nodes beneath a terminal node are approximated
with a value, v(s), to assure efficient selectivity. We maintain a probability distribution
over possible states, based on a set of observation probabilities for the underlying Markov

Fig. 1: [Left]: Concatenation of the target volume masks and the beam angles before feeding the
input planes to the residual tower neural network. The first six planes (top-most mask of left figure)
contain the delineated organs and the PTV. This is concatenated with a block of m beams from
the current time step, regressed to the previous 5 time steps (here, 5 was heuristically chosen).
[Right]:ø Each beam angle in a beam block is represented as shown. Together with the target
volume, these form an input plane of size 36× N ×W ×H to the policy/value neural network
tower of residual blocks.
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Decision Process (MDP). Let us now formalize definitions and notations used throughout
the rest of this document.

2.1 Notations and Definitions

The state of the dynamical system will be denoted by s ∈ S; it is to be controlled by a
discrete action a ∈ A. States evolve according to the (unknown) dynamics p(st+1|st, at),
which we want to learn. The learning problem is posed within a discrete finite-time
horizon, T , while a beam angle combination search task can be defined by a reward
function, r(st, at), which can be found by recovering a policy, p(at|st;ψ), that specifies
a distribution over actions conditioned on the state, and parameterized by the weights
of a neural network, a tensor ψ. Without loss of generality, we denote the action con-
ditional p(at|st, ψ) as πψ(at|st). Recovering the optimal weights may consist of the

Notation Definition/Examples Notation Definition/Examples

m
dimensionality of a node’s beam set,
e.g. m = 5

n
dimension of discretized beam angles,
e.g. n = 180 for 4◦ angular resoultion

Θ
discretized beam angle set e.g. equally
spaced angles between 0◦ and 360◦,
spaced apart at 4◦

at ∈ A

control or action, at ∈ A at time step
t ∈ [1, T ] used in determining the prob-
ability of transitioning from a beam an-
gle subset to another withinΘ

θj ⊆ Θ beam angles selected fromΘ e.g. θk ∈
Rm

st ∈ S

markovian system state at time step, t ∈
[1, T ] e.g. patient contour, beam angle
candidates; dimensionality 2, 727, 936
to 3, 563, 520

γ discount factor e.g. 0.99 fψ
parametric function approximator (deep
neural network policy) for state st

vψ(s)
value estimate of state, st, as predicted
by fψ

p(s)
probability distribution over current
state, s generated by neural network pol-
icy

Q(s, a)

action-state values that encode the
“goodness” of a beam-angle set, θk ∈
Rm, where m is the number of beams
considered for a fluence generation, e.g.
m = 5

BXt

a concatenation of beams in considera-
tion at time step, t, as a block of beams
being fed to the neural network policy

Dij(θk)

dose matrix containing dose influence
to voxel i from beam angle, θk, ∀ k ∈
{1, 2, . . . , n} where n is range of the
beam set B

Dt
dose mask for target volume in consider-
ation at time step , t

Table 1: Table of notations commonly used in this article
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maximization problem

ψ? = arg max
ψ

T∑
t=1

E(st,at)∼p(st,at|ψ) [r(st, at)] .

Definition 1. A beam block is a concatenation of beams, {θ1, θ2, . . . , θm} as a tensor
of dimension m×N ×H ×W (see Fig. 1 and Table 1) that together with the patient’s
ct mask form the state, st, at time step, t.

Definition 2. Every node of the tree, x, has the following fields: (i) a pointer to the
parent that led to it, x.p; (ii) the beamlets, xb, stored at that node where b = {1, . . . ,m};
(iii) a set of move probabilities prior, p(s, a); (iv) a pointer, x.r, to the reward, rt, for the
state st; (v) a pointer to the state-action value Q(s, a) and its upper confidence bound
U(s, a) (7) (vi) a visit count, N(s, a), that indicates the number of times that node was
visited; and (vii) a pointer x.childi to each of its children nodes.

We want an adaptive allocation rule for determining the transition between states
since we do not know what node may yield the best bandit, as a player might be biased
towards always selecting the beams set with the maximum value. Therefore, we define
the state broadly enough to capture all subjective unknowns that might influence the
payoff/reward to be received by a rational decision-making agent; we then leverage
the upper confidence bound algorithm of Agrawal et al. [16] to assure an asymptotic
logarithmic regret behavior. We attach a regret term U(n(s)) to the Q-value so as
to ensure the optimal beam does not evade the simulation i.e., Q(s, a) − U(n(s)) ≤
Q(s, a) ≤ Q(s, a) + U(n(s)); the width of this confidence bound guides the exploration
strategy for states that are momentarily unpromising in values but may later emerge as
promising states. Other notations used in the article are delineated in Table 1.

2.2 Data Preprocessing

Patient Mask. We obtained 77 anonymized patient CT scans and their associated dose
matrices. The scans relate to prostate cases used in previous treatment plans. Six organs
are present within the scans: the patients’ body, bladder, left and right femoral heads,
rectum, and the planning target volume (PTV) or tumor. Each patient’s scan, D, is
represented in 3D as N ×W × H, where N is the total number of slices, W and H are
the respective slice width and height. We resized each slice to a square-shaped 2D matrix
of size 64× 64. We generate 3D images that represent the orientation of the robot with
respect to the patient for each discretized beam angle.

2.3 Neural Network Architecture

In addition to the resized masks, D, we define five feature planes, Xt as a block of beam
configurations, BXt , where BXt denotes the beam angles that generate the current fluence.
For five beams for the fluence’s geometric shape for example, BXt would contain the
3D images of the beams being considered at time step t. We augment the state with a
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memory of five previously used beam blocks, {BXt , . . . ,BXt−5
}, in order to mitigate the

uncertainty of decisions under this incomplete MDP formulation.
The dose masks and beam blocks are as shown in Fig. 1. The input planes to the

network are sized as T × N × H ×W where T is the total number of input planes
(T = 6 structures + 5 beams + 5 × 5 regressed beams = 36). Thus, the input to the
network are arranged as: st = [Dt,BXt ,BXt−1

,BXt−2
,BXt−3

,BXt−4
,BXt−5

]. We use a
modern neural network architecture with many residual blocks [15] so that each layer of
the network fits a residual nonlinear mapping to its input data. We end up with a deeply
stacked network whose input features, st, are processed by 34 residual blocks described
as follows: (i) a 3D convolution with 64× l filters, a square kernel of width 7, and double
strided convolutions, where l is the depth of the stack in the network; (ii) a 3D batch
normalization layer [17]; (iii) nonlinear rectifiers [18]; (iv) a 3D convolution of 64× l
filters; (v) a 3D batch normalization layer; (vi) a skip connection from the input to the
block, in order to facilitate efficient gradients’ propagation; and (vii) nonlinear rectifiers.

We split the output of the network into two heads: (i) the first head is a probability
distribution over which angle in the current beam block contributes the least to an
optimal fluence cost at the current time step; (ii) the second head estimates the value of
the subtree beneath the current node. The probabilty head is comprised of two residual
blocks, each containing the following modules: (i) a 3D convolution of 64 × l filters,
followed by a square kernel of size 1, and a single strided convolution; (ii) a 3D batch
normalization layer; (iii) nonlinear rectifiers; (iv) a 3D convolution of 64× l filters (v) a
3D batch normalization layer; (vi) a skip connection from the input to the block (vii)
nonlinear rectifiers (viii) a fully connected layer that maps the resulting output to the
total number of discretized beam angle grids; and (ix) a softmax layer then maps the
neuron units to logit probabilities pi(s|a) for all beam angles.

The value head applies the following transformation modules: (i) a 3D convolution
of 64× l filters, a square kernel of size 1, and a single strided convolution; (ii) a 3D batch
normalization layer; (iii) nonlinear rectifiers; (iv) a second 3D convolution of 64 × l
filters; (v) a 3D batch normalization layer; (vi) a skip connection from the input to the
block (vii) nonlinear rectifiers and a sequential layer consisting of

• a linear layer mapping the output of the above connections to a hidden 512-layer
• followed by a linear layer mapping to a 256 hidden unit, then rectified nonlinearities
• followed by a linear layer mapping to a scalar value, then rectified nonlinearities
• and a tanh nonlinearity that maps the output to the closed interval [−1, 1].

The network’s parameters were initialized using the proposal in [19]. The value and
probability distribution heads are inspired from Bayesian decision theory, where it is
expected that a rational decision-maker’s behavior is describable by a utility function,
(or value function) – a quantitative characterization of the policy’s preferences for
an outcome – and a subjective probability distribution, which describes the policy’s
belief about all relevant unknown factors. When new information is presented to the
decision-maker, the subjective probability distribution gets revised. Decisions about the
optimal beam angle combination at the current time step are made under uncertainty;
so we use a probability model to choose among lotteries (i.e., probability distributions
over all discretized beam angles in the setup). Each state during our learning process
is constructed by appending the beam block at the current time step to a history of
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beam blocks for the previous five time steps using a FIFO policy. Specifically, when we
transition to a new state, the beam block that has been in the state set for the longest
time (i.e., at the head of the queue) is deleted first, and the new state’s beam block is
enqueued at the tail as in a queue data structure. This is so as to minimize the partial
observability of the system.

2.4 Fluence Map Optimization

Suppose X is the total number of discretized voxels of interest (V OIs) in a target
volume, and B1 ∪ B2 ∪ . . . ∪ Bn ⊆ B represents the partition subset of a beam B, where
n is the total number of beams from which radiation can be delivered. Let Dij(θk) be
the matrix that describes each dose influence, di, delivered to a discretized voxel, i, in a
volume of interest, V OIh (h = 1, . . . ,X ), from a beam angle, θk, k ∈ {1, . . . , n}. One
can compute the matrix Dij(θk) by calculating each di for every bixel, j, at every ϕ◦,
resolution, where j ∈ Bk. Doing this, we end up with an ill-conditioned sparse matrix,
Dij(θk), which consists of the dose to every voxel, i, incident from a beam angle, θk at
every 360◦/ϕ◦ (in our implementation, we set ϕ to 4◦).

For a decision variable, xj , representing the intensities of beamlets, it is trivial to
find the dose influence, di, that relates the bixel intensities, xj , to the voxels of interest,
V OIh. The fluence problem is to find the values of xj for which di to the tumor is
maximized, while simultaneously minimizing the di to critical structures. For the voxels
in the target volume, a weighted quadratic objective minimizes the l2 distance between
a pre-calculated dose Ax (where x represents the vectorized bixels, xj), and a doctor’s
prescribed dose, b, while a weighted quadratic objective maximizes the l2 distance
between Ax and b. The pre-calculated dose term is given by Ax = {

∑
s
ws
vs
Dsijxs | Dij ∈

Rn×l, n > l}, which is a combination of the dose components that belong to OARs and
those that belong to PTVs. Let ws = {ws, w̄s} represent the respective underdosing and
overdosing weights for OARs and PTVs, and vs represent the total number of voxels in
each structure. We define the following cost

1

vs

∑
s∈OARs

‖(bs − wsDsijxs)+‖22 +
1

vs

∑
s∈PTVs

‖(w̄sDsijxs − bs)+‖22 (1)

where the underdosing weights are typically set as ws = 0 to deliver minimal dose to
critical structures, while the overdosing weights are chosen to deliver the prescribed
dose to the tumor; (·)+ is a Euclidean projection onto the nonnegative orthant R+. We
can rewrite the above objective, subject to nonnegative bixel intensity constraints, as the
minimization problem

min
1

2
‖Ax− b‖22 subject to x ≥ 0.

The Lagrangian thus becomes

L(x,λ) =
1

2
‖Ax− b‖22 − λT x,
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where λ ∈ Rn is a multiplier. This problem can be solved with dual gradient descent
(DGD), but DGD has the drawback that the primal and dual updates are not robust to ob-
jective’s constraints [20]. The alternating direction method of multipliers (ADMM) [20]
tackles the robustness problem by adding a quadratic penalty term to the Lagrangian and
alternatingly updating the x and λ variables in a “broadcast and gather” process. This
turns out to be attractive since we will be solving a large-scale learning problem for the
optimal beam angle set combination. Introducing an auxiliary variable z, we have

min
x

1

2
‖Ax− b‖22, subject to z = x, z ≥ 0,

so that the Lagrangian can be written as,

min
x,z

1

2
‖Ax− b‖22 − λT (z− x) +

ρ

2
‖z− x‖22, (2)

where ρ > 0 is an ADMM penalty parameter. Minimizing (2) w.r.t x, the x subproblem
of (2) yields

min
x

1

2
xT (ATA + ρI)x + (λT − AT b− ρzT )x,

so that the x-update (due to the convex quadratic nature of the problem) becomes,

xk+1 =
(
ATA + ρI

)−1 (
AT b+ ρzk − λk

)
. (3)

Similarly, the z-update for (2) can be found by the z-minimization subproblem

min
z
−λT z +

ρ

2
‖z− x‖22 := min

z

ρ

2
‖z− x− 1

ρ
(λ)‖22.

Using the soft-thresholding operator, Sλ/ρ, we find that

zk+1 = Sλ/ρ
(
xk+1 + λk

)
, (4)

where Sλ/ρ(τ) = (x− λ/ρ)+ − (−τ − λ/ρ)+. λ is updated as

λk+1 = λk − γ(zk+1 − xk+1), (5)

and γ controls the step length. The inverse operation in (3) can be carried out with any
iterative solver, e.g. conjugate gradient. We use an over-relaxation parameter, αk = 1.5,
and set the quadratic penalty to ρ = 1.5, in the z and λ updates: αkA xk+1− (1−αk)zk.
The stopping criterion is met when the primal and dual residuals are sufficiently small,
i.e.,

rk = ‖xk − zk‖2 ≤ εpri and sk = ‖ − ρ (zk+1 − zk)‖2 ≤ εdual,

with,
εpri =

√
ρεabs + εrel max{‖xk‖2, ‖ − z‖2}, and

εdual =
√
nεabs + εrel(ρλk), (6)

where εpri > 0, εdual > 0 are the primal and dual feasibility tolerances for the primal
and dual feasibility conditions (see [20, §3.3]). In this work, we set εabs = 10−4 and
εrel = 10−2.
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2.5 Game Tree Simulation

Consider bd possible move sequences of a robot-patient setup, where b is the number
of beam angles chosen to construct a fluence, and d is the total number of discretized
beam angle set. Suppose b = 180 and d = 5, we have 1805 possible search directions,
rendering exhaustive search infeasible. Therefore, we leverage Monte Carlo simulations,
encouraged by their recent success in large games [21–23], to break the curse of dimen-
sionality [24]. MCTS combines traditional min-max evaluation of a tree’s leaves with
Monte Carlo evaluations [25]. MCTS iteratively runs random simulations from a tree’s
root position through its children nodes by randomly choosing actions until arrival at a
terminal state. A back-up operator progressively averages the outcome of many random
simulations to min-max as the amount of simulation expands. Thus MCTS solves a
min-max [2] problem by default.

We iteratively sample beam angles – performing a lookahead search from the current
state at a fixed depth. We restrict samples to 90 discretized beams in Θ. We then
progressively add children nodes using an expand policy (alg. 1), guided by move
probabilities p(s, a), generated by a network policy fψ , that either recursively expands
the current node or rolls out the current simulation to completion.

As we recursively traverse the edges of the tree, we need to prevent “angle collisions”.
To avoid this, we introduce a minimum pairwise distance, d̄i ∈ R+ between beamlets,
defined as ‖θi − θj‖ ≥ d̄i, ∀ {j ∈ m \ i}, with d̄i = 20◦. Repeatedly performing
roll-outs, a history of state-action value pairs along the tree’s edges is kept. This ensures
we can bias an action selection based on old actions that were chosen – aiding faster
convergence if the same state is encountered more than once, because we can bias an
action selection based on old actions that were chosen. We compute the mean outcome of
every simulation through state s in which action a is selected, i.e., the tree’s Q(s, a)-value,

as Q(s, a) =
1

N(s, a)

∑n(s)
i=1 Ii(s, a)ζi, where Ii(s, a) is an indicator function given by

Ii(s, a) =

{
1, if a was selected on the i’th policy rollout
0, otherwise,

and N(s, a) =
∑n(s)
i=1 Ii(s, a) is the total number of simulations in which action a was

selected in state s, n(s) is the total number of times a game is played through state s, and
ζi is the outcome of the ith simulation played out from s.

During simulation, each state and action in the search tree are updated as:

n(st)← n(st) + 1; N(st, at)← N(st, at) + 1; Q(st, at)← Q(st, at)± r(st, at),

where r(st, at) is the reward/cost gained or incurred by the agent after action a in
state st. After each simulation, a ‘best move’ for the current beam block is selected.
We exponentiate the move probabilities by a temperature slightly larger than unity to
encourage diversity in early play as follows, p(a|s0;ψ) = N(s0,a)1/τ∑

bN(s,b)1/τ , where τ is the
temperature factor that diversifies the move probabilities. The modified UCT algorithm
applied to optimal beam angle selection is presented in algorithm 1.
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Algorithm 1 Deep BOO Monte Carlo Tree Search

function MCTS(s0, c)
s0 ← x0(s0)
while search time < budget

do
x̄← EXPAND POLICY(x0, c)
x̄.r ← FMO POLICY(x̄)
BACKUP(x̄, x̄.r)

end while
return BEST CHILD(x0)

end function

function SELECT MOVE(x, c)
if p1 to play then

return argmaxx̄∈xQ(x̄) +K(x̄)
else

return arg minx̄∈x Q(x̄)−K(x̄)
end if

end function

function EXPAND POLICY(x, c)
while x nonterminal do

if x not f.expanded then
return EXPAND (x, c)

else
x← x[BEST CHILD(x)]

end if
end while
return x

end function

function FMO POLICY(x)
return r = −h?(x(s)|·)

end function

function FULLY EXPANDED(x,d)
di ← pairwise distance(x.s)
min elem← min(d)
if min elem < d then

return True
else

return False
end if

end function

function EXPAND(x, c)
ā = SELECT MOVE(x, c)
sample θ̄ with x.p(s, a)
update θ̄ ← θ̄ + ā
with πt−1, create x̄.p(s̄, ā)
while not x̄ ∈ x do

add x̄ to x
end while
return x̄

end function

function BACK UP(x, x̄.r)
while x̄ not null do

N(x̄)← x̄ + 1
Q(x̄)← Q(x̄) + x̄.r
x̄ = parent of x̄

end while
end function

function BEST CHILD(x)
if p1 to play then

return arg min children of x
else

return arg max children of x
end if

end function

where K(x̄) = c

√
2 ln n(x̄.s)
N(x̄.s, a)

and x̄ ∈ x implies x̄ ∈ children of x.

Definition 3. We define an upper confidence bound, U(s, a), on Q(s, a) that adds an
exploration bonus that is highest for seldomly visited state-action pairs so that the tree
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expansion policy selects the action a? that maximizes the augmented value:

Q̄(s, a) = Qj(s, a) + c

√
2 ln n(s)

N(s, a)
, where a? = arg max

a
Q̄(s, a). (7)

Q̄(s, a) is the highest average observed reward from node j – encouraging exploitation
of the current node, and ln n(s) is the natural logarithm of the total number of roll-outs
through state s. The second term in (7) encourages exploration of other beam angles and
c is a scalar exploration constant.

Note that (7) is a version of the UCB1 algorithm [26]. We continually update the weights
of the neural network policy in a separate thread, writing the weights to a shared memory
buffer for the MCTS to read from, i.e., the search thread uses the previous iteration of
the trained network policy to to run the policy improvement procedure. When angles
are at the edges i.e., 0◦ or 360◦ and an angle change outside the range 0 ≤ θ ≤ 360 is
recommended, we “wrap” around to enforce cyclicity. Note that the EXPAND POLICY
and FMO POLICY procedures of Algorithm 1 can be seen as a form of Add/Drop
simulated annealing as described in [1]. While the FMO POLICY procedure returns the
node with the optimal fluence cost, the BEST CHILD procedure compares the quality
of all beam angle sets in the children of the tree’s root node.

2.6 Self-Play Neuro-Dynamic Programming

We continually play a zero-sum FSP game between two neural networks. Without loss
of generality, we will call the first player, p1, and the second player, p2. Player p1

chooses its action under a (stochastic) strategy, πp1 = {πp10 , πp11 , . . . , πp1T } ⊆ Πp1

that seeks to minimize the outcome ζ, while p2’s actions are governed by a policy
πp2 = {πp20 , πp21 , . . . , πp2T } ⊆ Πp2 that seeks to maximize ζ in order to guarantee an
equilibrium solution for a game without saddle point. Πpi is the set of all possible
non-stationary Markovian policies. Each player bases its decision on a random event’s
outcome – obtained from a mixed strategy determined by averaging the outcome
of individual plays. Together, both players constitute a two-player stochastic action
selection strategy, π(s, a) = {πp1 ,πp2} that gives the probability of selecting moves
in any given state. Suppose the game simulation starts from an initial condition s0, one
may write the optimal reward-to-go value function for state s in stage t, with horizon
length T as

V ∗t (s) = inf
πp1∈Πp1

sup
πp2∈Πp2

E

[
T−1∑
i=t

Vt(s0, f(st, πp1 , πp2))

]
,

s ∈ S, t = 0, . . . , T − 1

where the terminal value V ∗T (s) = 0, ∀ s ∈ S; πp1 and πp2 contain the action/control
sequences {ap1t }0≤t≤T and {ap2t }0≤t≤T . The saddle point strategies for an optimal
control sequence pair {ap

∗
1
t , a

p∗2
t } can be recursively obtained by optimizing a state-action
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value cost, Qt(s, a), as follows

V ∗t (s) = Q∗t (st, π
p1
t , π

p2
t ) = min

πp1∈Πp1
max

πp2∈Πp2
Q?t (st, πp1 , πp2)

∀st ∈ S, πp1 ∈ Πp1 , πp2 ∈ Πp2 . (8)

such that
v?p1 ≤ v

? ≤ v?p2 ∀ {πp1t , π
p2
t }0≤t≤T .

where v?pi are the respective optimal values for each player.Q(s, a) can be recovered from
the cummulative reward function, R(s, a) and probability transition function, P (s, a) as

Q∗t (st, π
p1
t , π

p2
t ) = R(s, a) + γ

∑
x∈S

P (s, a)(x)V ?t+1(x).

Under ideal conditions, it is desirable to determine the optimal value function under
perfect play; however, given the curse of dimensionality for BOO problems, the best we
can hope for is an approximately optimal value v?ψ(s) by continually estimating the value
function vpψ(s), e.g. , using a policy parameterized by a large function approximator
such as deep neural networks fψ to approximate the optimal value so that vψ(s) ≈
vpψ(s) ≈ v?(s). Here ψ are Lipschitz basis functions that are parameters of the function
approximator.

The network, fψ , predicts a probability distribution over all beam angle configura-
tions, pa = p(s, a), and a value, vψ(s) – an estimate that the current beam angle set θ may
be the optimal beam set. For a game, Γ , suppose that y = {y1, . . . , ym|

∑m
i=1 yi = 1}

and z = {z1, . . . , zn|
∑n
i=1 zi = 1} are the respective probability distributions for play-

ers p1 and p2, , defined on the n andm−dimensional simplices respectively. The average
value of the game will correspond to player p1 minimizing a cost J (y, z) = yT Γz and
player p2 maximizing J (y, z). Each player’s action is governed by a mixed strategy –
obtained by adding a Gaussian random walk sequence with standard deviation 2 to the
prior probability distribution predicted by the neural network policy or computed by the
tree policy; this is then normalized by the sum of the resulting noised distribution. Play-
ers p1, and p2’s strategies are independent random variables, repeatedly implemented
during game simulations. As the number of times the game is played gets larger, the
frequency with which different actions for p1 and p2 are chosen will converge to the
probability distribution that characterize their random strategies [27, pp.24].

The network policy, π(·|ψt), and search tree, Γ (πψ(·)), are optimized in separate
concurrent threads; to assure non-blocking of search and network optimization pro-
cesses, the network’s weights were written to a shared memory map, where they are
asynchronously updated by gradient descent, while the tree search thread ran in a parallel
thread from a previous iteration of the network policy, π(·|ψt−1). At the end of a full
MDP iteration, we compare the value predicted by either player, average their mixing
strategies and update the gradients of the loss function with respect to the values.We train
the probability distribution over current beams by maximizing the similarity between the
computed search probabilities π and the predicted distribution p (by the search process)

with the cross-entropy loss: ∆ψp =
log ∂pψ(a|s)

∂ψ
(πT p), and we take the network
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Fig. 2: Separated target volume organs and PTV masks.

weights’ induced tensor norm (given its robustness to the assymetrical network modular
weights). Altogether, we minimize the combined loss, l = (ζ−v)2−πT log(p)+λ‖ψ‖22,
where λ (set to 1.5) controls regularization of the network weights to avoid overfitting.
The cross entropy term was weighted by 0.9, and the mean square error (mse) loss by
0.01 to keep the overall loss in the direction of persistent reduction in training error.
These values were found by empirical evaluations of the loss surface.

3 Results

This section presents results on 3D prostate cases. We start the training process by
randomly adding five beam blocks to the state queue as described in §2. The input
planes are then passed through the tower residual network, from which probability
distributions and a value are predicted. We add a random walk sequence to this pure
strategy, generating a mixed strategy, and subsequently construct the tree. This mixed
strategy guides search for approximately optimal beam angles. When a move is selected,
the current node is expanded, resulting in a new set of beamlets. The fluence map is
found via (1), and the reward for maximizing player, or the cost of the minimizing player
are updated. We continue expanding the leaves of the tree until we reach a terminal
leaf – when more than one angle are at the same node. We then compute new search
probabilities and propagate the outcome of the game through the ancestors of the terminal
node.

Fig. 2 depicts the arrangement of the respective structures within a prostate case
example that we consider. Notice that the PTV is at the center of the tumor, and this is
consistent with the cases in this work. What follows in Table 2 and 3 are the dose washes
obtained by superimposing the calculated dose (based on the beams that the network
selects) on the CT scan map. They provide a qualitative evaluation of the computed dose
for a particular case. Represented as a heat map, regions with minimal or no radiation
are dark blue, while regions that receive the highest doses are red. Dose increases in
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Table 2: Dose wash plots for select patients after training the self-play network

intensity from blue to green to yellow to red. The intersection of beams delivers heavy
dose to the tumors (center of the slices) while largely spares surrounding tissues. The
line overlays on the plots are the angles of the incident radiation.

The advantage of this policy is that finding the right beam angles is orders of
magnitude faster than the current way these angles are found in the clinic. At test time,
we pick the last checkpoint during training and use it to find feasible beam angles. The
search process typically takes between 2-3 minutes before we settle on a good candidate
beam angle set. This is significant time saved compared to manually tuning beam angles
by dosimetrists or radiation therapists in clinics.

4 Conclusions

In modern clinics, solving the BOO problem involves many hours of planning, tuning
and refinement – usually by experienced treatment planners. To reduce typical classical
optimization time, we adopt a hybrid approach: leveraging Monte Carlo simulation of
high dimensional state-spaces, neuro-dynamic programming, convex optimization of
fluence profiles, to arrive at good candidate beamlets. Our work is the first, to the best
of our knowledge, that transforms the BOO problem into a MCTS strategy. One could
envisage improving this formulation by training on a prior beam selection procedure
based on clinician experience or a linear programming-based simplex procedure for
pre-selecting beam candidates before further refinement by the tree search.
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Table 3: Dose wash plots for select patients during testing of self-play network
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