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Abstract— Multistage decision policies provide useful control
strategies in high-dimensional state spaces, particularly in
complex control tasks. However, they exhibit weak performance
guarantees in the presence of disturbance, model mismatch,
or model uncertainties. This brittleness limits their use in
high-risk scenarios. We present how to quantify the sensitiv-
ity of such policies in order to inform of their robustness
capacity. We also propose a minimax iterative dynamic game
framework for designing robust policies in the presence of
disturbance/uncertainties. We test the quantification hypothesis
on a carefully designed deep neural network policy; we then
pose a minimax iterative dynamic game (iDG) framework for
improving policy robustness in the presence of adversarial
disturbances. We evaluate our iDG framework on a mecanum-
wheeled robot, whose goal is to find a ocally robust optimal mul-
tistage policy that achieve a given goal-reaching task. The algo-
rithm is simple and adaptable for designing meta-learning/deep
policies that are robust against disturbances, model mismatch,
or model uncertainties, up to a disturbance bound. Videos of
the results are on the author’s website: https://goo.gl/JhshTB,
while the codes for reproducing our experiments are on github:
https://goo.gl/3G2VBy. A self-contained environment for repro-
ducing our results is on docker: https://goo.gl/Bo7MBe.

I. INTRODUCTION

Multistage decision policies are often brittle to deploy
on real-world systems owing to their lack of robustness
[1], [2] and the data inefficiency of the learning process.
Methods of designing scalable high-dimensional policies often
rely on heuristics e.g. [3], which do not always produce
repeatable results. Quite often, policies are learned under
partial observability, but sampling with partial observations
can be unstable [4]. In the presence of model uncertainties
or model mismatch between the source and target environ-
ments [5], we must therefore devise policies that are robust
to perturbations. Our goal in this paper is to provide an
underpinning for designing robust policies, leveraging on
methods from H∞ control theory [6], dynamic programming
(DP) [7], differential dynamic programming (DDP) [8], and
iterative LQG [9]. Essentially, we consider the performance
of policies in the presence of various adversarial agents [10]–
[12] using a minimax method. While recent DRL techniques
produce performance efficiency for agent tasks in the real
world [13]–[19], there are sensitivity concerns that need to
be addressed, e.g. the trade-off between a system’s nominal
performance and its performance in the face of uncertainty
or model mismatch.
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Contributions

• We provide a framework for testing the brittleness of
a policy: Given a nominal policy, we pit a disturbing
input against it, whose magnitude is controlled by a
disturbance parameter, γ. If an adversarial agent causes
significant performance degradation, then γ indicates the
upper bound on the efficiency of such policy.

• In an iterative, dynamic two player zero-sum Markov
game (iDG), we let each agent execute an opposite
reaction to its pair: a concave-convex problem ensues,
and we seek to drive the policy toward a saddle point
equilibrium. This iDG framework generates local control
laws – providing an alternating best response update
of global control and adversarial policies, leading to a
saddle-point equilibrium convergence. This is essentially
a meta-algorithm that can be extended to quantify and
design the robustness of model-free, model-based RL,
as well as DP/iterative LQG family of policies.

We evaluate our proposal for robot motor tasks control
using policy search [15], [20] and the ILQG algorithm
[9]. The rest of this paper is thus organized: we provide
a formal treatment policy sensitivity quantification and the
iDG algorithm within a linearly solvable MDP [21] in Sec. II.
The dynamics and model of the robot we that evaluates our
iDG hypothesis is presented in Sec. III. Results for the two
proposals of this work are discussed in Sec. IV, and we
conclude this work in Sec. V. A more extensive discussion
of the modeling methods in this paper is detailed in [22].

II. TWO-PLAYER TRAJECTORY OPTIMIZATION

Consider two agents interacting in an environment, E , over
a finite horizon, T ; the states evolve according to a discrete-
time stochastic dynamics,

xt+1 = ft(xt,ut, vt), t = 0, . . . , T − 1, x0 = x̄0,

where xt ⊆ Xt is the n−dimensional state vector, ut ⊆ Ut is
the m-dimensional nominal agent’s action (or control law),
and vt ∈ Vt denote the disturbing agent’s p-dimensional ac-
tion. The nominal agent chooses its action under a (stochastic)
policy {π = π0, π1, . . . , πT } ⊆ Π, while the uncertainty’s
actions are governed by a policy {ψ = ψ0, ψ1, . . . , ψT } ⊆ Ψ.
For the policy pair(π, ψ), we define the cost-to-go, J (x, π, ψ),
of a trajectory {xt}t=0,...,T with initial condition x0, as a
partial sum of costs from t to T ,

J0(x0, π, ψ) = Eut,vt

T−1∑
t=0

`t(xt,ut, vt) + LT (xT ),



where `t is a nonnegative function of (xt,ut, vt), denoting the
stage cost, and LT is a nonnegative function of xT , denoting
the final cost. We seek a pair of saddle point equilibrium
policies, (π∗, ψ∗) that satisfy,

J0(x0, π
∗, ψ) ≤ J0(x0, π

∗, ψ∗) ≤ J0(x0, π, ψ
∗),

∀π ∈ Π, ψ ∈ Ψ and x0. For the general case where we
start from an initial condition xt, one may write the dynamic
programming (DP) equation above as

J ∗t (xt) = min
π∈Π

max
ψ∈Ψ
Jt(xt, π, ψ),

where π and ψ contain the control sequences {ut} and {vt},
and J (·) denote the Hamilton-Jacobi Bellman cost function.
The saddle point equilibrium for an optimal control sequence
pair {u∗t , v∗t } can be obtained with

J ∗t (xt)= min
π∈Π

max
ψ∈Ψ
Jt(xt, π, ψ) (1)

= min
π∈Π

max
ψ∈Ψ

[`t(xt,ut, vt) + J ∗t+1 (ft (xt,ut, vt))]

A. Quantifying a policy’s robustness
Suppose that the nominal policy, π, of an agent has been

found, and consider an interacting disturbuing agent so that
the closed-loop dynamics is describable by the discretized
Euler equation,

xt+1 = ft(xt,ut, vt), ut ∼ πt
= f̄t(xt, vt), t = 0, ..., T − 1.

(2)

For stage costs of the form, `t(xt,ut, vt) = ct(xt,ut) −
γgt(vt), where ct(xt,ut) represents the nominal stage cost,
gt(·) is a norm on the adversarial input1, penalizing the
adversary’s actions, and γ > 0 is a disturbance term that
controls the strength of the adversary; the adversary faces a
maximization problem of the form

max
ψ∈Ψ

Eut∼πt

T∑
t=0

c(xt,ut)− γg(vt) = max
ψ∈Ψ

E

T∑
t=0

¯̀γ
t (xt, vt).

Varying γ increases/decreases the penalty incurred by the
adversarial agent’s actions. As γ → ∞, the adversary’s
optimal policy is to do nothing, since any action will
incur an infinite penalty; as γ decreases, the adversary
incurs lower penalties, causing large system disturbance. The
(inverse of the) smallest γ-value for which the adversary
causes unacceptable performance degradation (e.g., instability)
provides a measure of robustness of the nominal agent’s policy
π. The parameter γ is a distinguishing feature of our work; γ
quantifies the H∞ norm of the closed-loop system, a measure
of its robustness to an adversarial input. The adversary need
not represent a malicious input, but can be interpreted as a
worst possible disturbance of a given magnitude.

In systems with nonlinear dynamics, one can use differ-
ential dynamic programming (DDP) [8] or iterative LQG
[23] to optimize the adversary against the closed-loop system
under the nominal agent’s policy π. Indeed, Morimoto (in

1This formulation takes Vt as a vector space but one can as well define a
nonnegative adversarial penalty term when Vt is a finite set.
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Fig. 1: Prototypical Performance-Robustness Tradeoff Curve.

Algorithm 1 Robustness Curve via iLQG

1: for γ ∈ range(γmin, γmax, N) do
2: for i ∈ {1, . . . , I} do
3: Initialize x0 = x(0)

4: pi ← arg minpi Epi

[∑T
t=0

˜̀̄γ
t (xt, vt)

]
5: end for
6: end for

[24]) applied minimax DDP to a walking biped robot, but
we noticed errors in the value function recursions2. We
are motivated by the improved convergence guarantees of
iterative LQG (iLQG) over DDP, and its suitability for
solving constrained nonlinear control problems by iteratively
linearizing a nonlinear system about a local neighboring
trajectory and computing the optimal local control laws. Our
minimax iLQG framework facilitates learning control decision
strategies that are robust in the presence of disturbances and
modeling errors – improving upon nominal iLQG policies.

A performance-robustness tradeoff curve can be computed
by optimizing the adversary for various values of γ. A
prototypical curve is illustrated in Fig. 1. This curve quantifies
the robustness of a fixed policy π, defining an upper bound
J ∗γ∗ on the cost function that does not yield acceptable
performance: this is the critical value of γ to be identified.
This γ∗-value determines how much adversarial effort we
need to suffer performance degradation; large γ∗ values will
give poor robustness of π – even with little adversarial effort.
The algorithm for optimizing adversaries and generating the
trade-off curve is summarized in Algorithm 1. The adversary’s
policy may not be globally optimal due to the approximation
of policies in continuous spaces and because the algorithm
may only converge to a locally optimal solution, we obtain
an upper bound on the robustness of the policy π.

B. Achieving Robustness via IDG
We propose to arrive at a saddle point equilibrium with

(1) by continually solving an online finite-horizon trajectory
optimization problem. This is essentially a minimax frame-
work and is applicable in principle to any off/on-policy RL
algorithm. In this work, we generalize the online trajectory

2These corrections are given in (7).



optimization algorithm of [23], to a two-player, zero-sum
dynamic game as follows:
• we approximate the nonlinear system dynamics (c.f. (2)),

starting with a schedule of the nominal agent’s local
controls, {ūt}, and nominal adversarial agent’s local
controls {v̄t} which are assumed to be available (when
these are not available, we can initialize them to 0)

• we then run the system’s passive dynamics with {ū}, {v̄}
to generate a nominal state trajectory {x̄t}, with neigh-
boring trajectories {xt}

• we choose a small neighborhood, {δxt} of {xt}, which
provides an optimal reduction in cost as the dynamics
no longer represent those of {xt}

• discretizing time, the new state and control sequence
pairs become δxt = xt−x̄t, δut = ut−ūt, δvt = vt−v̄t.

Setting V (x, T ) = `T (xT ), the min-max over the entire
control sequence reduces to a stepwise optimization over
a single control, going backward in time with

V (xt) = min
ut∼π

max
vt∼ψ

[`(xt,ut, vt) + V (f(xt+1,ut+1, vt+1))].

If we consider the Hamiltonian, `(·) + V (·), as a perturba-
tion around the tuple {xt,ut, vt}, the cost over the local
neighborhood via an approximate Taylor series expansion
becomes

Qt = `(xt,ut, vt, t) + V (xt+1, t+ 1).

A second-order approximation of the perturbed Q-coefficients
of the LQR problem around the neighborhood {δxt} of the
trajectory {xt} is defined as,

Q(·) ≈ 1

2


1
δxT

t

δuT
t

δvT
t


T  1 QTxt QTut QTvt

Qxt Qxxt Qxut Qxvt

Qut Quxt Quut Quvt

Qvt Qvxt Qvut Qvvt


 1
δxt

δut

δvt

 , (3)

where,

Qxt = `xt + fT
xtVxt+1, Qut = `ut + fT

utVxt+1

Qvt = `vt + fT
vtVxt+1, Qxxt = `xxt + fT

xtVxxt+1fxt

Quxt = `uxt + fT
utVxxt+1fxt, Qvxt = `vxt + fT

vtVxxt+1fxt

Quut = `uut + fT
utVxxt+1fut, Qvvt = `vvt + fT

vtVxxt+1fvt

Quvt = `uvt + fT
utVxxt+1fvt.

This is consistent with linearized methods, where linearized
second moment terms will dominate the higher order terms.
The LQR approximation to the state and the optimal control
performance index become,

δxt+1 ≈ fxtδxt + futδut + fvtδvt

`(xt, ut, vt) ≈
1

2

 1
δxT

t

δuT
t

δvT
t


T `0t `Txt `Tut `Tvt

`xt `xxt `Tuxt `Tvxt

`ut `uxt `uut `uvt

`vt `vxt `vut `vvt


 1
δxt

δut

δvt


(4)

where single and double subscripts denote first and second-
order derivatives3. The best possible nominal agent’s action

3 Note that δxk, δuk, and δvk are measured w.r.t the nominal vectors
x̄k, ūk, v̄k and are not necessarily small.

and the worst possible adversarial action can be found by
performing the respective arg min and arg max operations
on the Q− function in (3) so that

δu?
t = −Q−1

uut

[
QT

ut +Quxtδxt +Quvtδvt

]
,

δv?
t = −Q−1

vvt

[
QT

vt +Qvxtδxt +Qvutδut

]
.

(5)

Note that the control strategies in (5) depend on the action of
the other player. Say the nominal agent first implements its
strategy, then transmits its information to the adversary, which
subsequently chooses its strategy; it follows that the adversary
can choose a more favorable outcome since it knows what
the nominal agent’s strategy is. It becomes obvious that the
best action for the nominal agent is to choose a control
strategy that is an optimal response to the action choice
of the adversary. Similarly, if the roles of the players are
changed, the nominal agent’s response to the adversary’s
worst choice will be more favorable since it knows what
the adversarial agent’s strategy is. Therefore, it does not
matter that the order of play is predetermined. We end up
with an iterative dynamic game, where each agent’s strategy
depends on its opponent’s actions. This ensures that we have a
cooperative game in which the nominal and adversarial agent
alternate between taking best possible and worst possible
actions during the trajectory optimization phase. This helps
maintain equilibrium around the system’s desired trajectory,
while ensuring robustness in local policies. Suppose we set,

Kut =
[(
I −Q−1

uutQuvtQ−1
vvtQ

T
uvt
)
Q−1

uut
]−1

,

Kvt =
[(
I −Q−1

vvtQ
T
uvtQ

−1
uutQuvt

)
Q−1

vvt
]−1

,

gut = Kut(QuvtQ−1
vvtQvt −Qut),

gvt = Kvt(Q
T
uvtQ

−1
uutQut −Qvt),

Gut = Kut
(
QuvtQ−1

vvtQvxt −Quxt
)
,

Gvt = Kvt
(
QTuvtQ

−1
uutQuxt −Qvxt

)
,

then it follows that we can rewrite (5) as

δu?t = gut + Gutδxt, δv?t = gvt + Gvtδxt. (6)

Equation 6 gives the open and closed-loop components of
the control equations for both agents. Comparing coefficients
in (4), we find that the value function coeeficients can be
thus written

∆Vt = gutQut + gvtQvt + gutQuvtgvt

+
1

2
(gutQuutgut + gvtQvvtgvt)

Vxt = Qxt + GTutQut + GTvtQvt + GTutQuutgut + gutQuxt
+gvtQvxt + GTvtQvvtgvt + GTvtQ

T
uvtgut + GTutQuvtgvt

Vxxt =
1

2
(Qxxt+GTutQuutGut + GTvtQvvtGvt) + GTutQuxt

+ GTvtQvxt + GTutQuvtGvt . (7)

These recursive value functions, essentially differentiate our
value coefficient recursion equations from Morimoto’s DDP
recursions.



C. Improved Regularization
For nonlinear systems, the inverse of the Hessian must be

strictly positive definite. When the inverse of the Hessian is
non-positive-definite, we can add a suitably large positive
quantity to it [25], [26], or replace the elements of the diagonal
matrix in its eigen decomposition, [V,D] = eig(Q), that are
smaller than an adequately small ρ, and then set Q = VDV T
[9]. In this work, ρ is added to Q when the Hessian is not
well-posed. Our update rule is Q̃uu = Quu + ρIm. However,
the regularization can have adverse effects on the system
arising from the control/disturbance transition matrices fut
and fvt; therefore, we introduce a similar penalty term used
in [23] to deviations from states so that the regularization
yields a quadratic state cost about the previous policy:

Q̃uut = `uut + fTut(Vxxt+1 + ρIn)fxt + Vxt+1fuut
Q̃vvt = `vvt + fTvt(Vxxt+1 + ρIn)fxt + Vxt+1fvvt
Q̃uxt = `uxt + fTut(Vxxt+1 + ρIn)fxt + Vxt+1fuxt
Q̃vxt = `vxt + fTvt(Vxxt+1 + ρIn)fxt + Vxt+1fvxt. (8)

The adjusted gains therefore become

K̃ut =
[(
I − Q̃−1

uutQ̃uvtQ̃−1
vvtQ̃

T
uvt
)
Q̃−1

uut
]−1

,

K̃vt =
[(
I − Q̃−1

vvtQ̃vutQ̃−1
uutQ̃uvt

)
Q̃−1

vvt
]−1

gut = K̃ut(Q̃uvtQ̃−1
vvtQ̃vt − Q̃ut),

Gut = K̃ut

(
Q̃uvtQ̃−1

vvtQ̃vxt − Q̃uxt
)

gvt = K̃vt(Q̃vutQ̃−1
uutQ̃ut − Q̃vt),

Gvt = K̃vt

(
Q̃vutQ̃−1

uutQ̃uxt − Q̃vxt
)
. (9)

The improved value functions are updated in (7) accordingly.

D. Regularization Schedule
To accurately tweak the regularizarion term, ρ, we adopt a

regularization schedule that penalizes Quut or Qvvt when the
backward pass fails. When the backward pass is successful,
we would desire rapid decrease in ρ in order to assure fast
convergence; otherwise, we would want to quickly increase
ρ, albeit in a bumpless manner since the minimum value of ρ
that prevents divergence is of linear order. We let ρ0 denote
some minimal modification value for ρ (set to 1.0), and we
adjust ρ as follows:

increase ρ:
ρ← 1.1 ρ0

ρ0 = ρ

reduce ρ:
ρ← 0.09 ρ0

ρ0 = ρ

III. DYNAMICS MODELING AND SIMULATION

We consider the KUKA youbot4 platform with four
mecanum wheels, capable of spatial {x, y} motion, i.e.
sideways, and forward, and an in-place θ-rotation about the z-
axis (see Fig. 2a). It is equipped with a 5-DoF arm, mounted
on its base. We use the complete kinematic and dynamic
model of the youbot platform, accounting for the wheels’
friction and mass, while neglecting the links’ masses and

4https://goo.gl/CYTjvD

(a) Mecanum Wheels Model (b) Robot frames convention

Fig. 2: Robot Geometry

their associated inertia forces. The coordinates of the robot
in the world frame are denoted xR =

[
xR, yR, θR

]T
, where

given as the xR, yR are coordinates of the origin of the robot
frame and θR is the relative angle between the world and
robot x axes (see Fig. 2b).

The torques that govern the robot’s motion are obtained
from [27] and we run our experiments in the Gazebo
physics engine, with reference frame as x pointing forward, y
sideways, and z up. Our reference frame and robot geometry
are illustrated in Figs 2a and 2b respectively. We define the
generalized Lagrangian equation of the robot as,

M(x)ẍ + C(x, ẍ)ẋ + BTSf =
1

r
BT τ (10)

where τ = [τ1, τ2, τ3, τ4] is the wheel torque vector, r is the
wheel radius, f = [f1, f2, f3, f4]T is the friction vector, and
S and B map the inverse kinematics, gravity, external forces
and robot’s angle, θ, to each wheel torque; matrices M and
C denote the inertia and coriolis properties of the robot. B
and S are given by,

B =

−(cos θ − sin θ) −(cos θ + sin θ) −
√
2l sin(ζ)

−(cos θ + sin θ) (cos θ − sin θ) −
√
2l sin(ζ)

(cos θ − sin θ) (cos θ + sin θ) −
√
2l sin(ζ)

(cos θ + sin θ) −(cos θ − sin θ) −
√
2l sin(ζ)


S = diag

[
sgn(φ̇1), sgn(φ̇2), sgn(φ̇3), sgn(φ̇4);

]
ζ = π/4 − α, l is the mounting distance of the wheels as
shown in Fig. 2a, and φ̇i, is the rotation speed of each
wheel about its axis of rotation. We apply the generalized
force/torque vector, Fi, to the base frame of the robot, defined
as,

Fi =

4∑
j=1

(
τj − r sgn(φ̇j) f j

) ∂φ̇j
∂ẋi

, i = {1, 2, 3} (11)

A. Trajectory Optimization: ILQR

This section describes the navigation of the robot using
the nominal ILQR algorithm, the objective function design,
and specific initializations for the robot. The goal is for the
robot to move optimally from the center of the environment
in Fig. 3a to within a 0.1m radius of the orange box attached
to the right-hand corner of Fig. 3b. We separate the state and
control cost terms for easier manipulation of cost components.
For the state’s instanteneous cost, we define a pseudo “smooth-



(a) Home Position. (b) Goal State.

Fig. 3: Goal Navigation Illustration

abs” function,

`(xt) =
√
α+ (xt − x?)T diag(wx) (xt − x?), (12)

where x? denotes the desired state, wx is a state penalty
vector, and α is a constant that controls the curvature of
the cost function: the lower the α value, the smoother is
the robot’s trajectory near the goal state. The (x− x?) term
encourages the robot to follow the nominal trajectory while
driving toward the goal state. This l12 function enforces
reaching a desired target exactly in 3D space. Equation 12
encourages the relative weighting of state-cost terms along
different axes of motions. Inspired by [23], we choose a
hyperbolic cosine control cost function (instead of a quadratic
cost which gives disproportional controls in differrent portions
of the state space) defined as:

`(ut) = α2
(
cosh(wTuut)− 1

)
, (13)

where wu is a control penalty vector. This cost function
limits control outputs to an α-sized neighborhood in u−space.
We set α to 10−4, wu to [1, 1, 1, 1] and wx to [1, 1, 0.8]. We
found a time horizon, T = 150 to be appropriate for this
task. We proceed as follows:

• starting with an open-loop control schedule {ūt}, (ini-
tialized to [1.3, 0.8, 0.1]), we generate the nominal states
{x̄t}

• replacing τ with u in (10), we compute the forward
dynamics:

ẍ = −M−1Cẋ−M−1BT
(

Sf − 1

r
u
)

(14)

• we then obtain derivatives of f and those of ` from (4)
• starting at time t = T − 1, we compute the associated

nominal Q coefficients in (4), obtain the open and
closed-loop gains, gu,Gu, and obtain the value function
derivatives

• in the forward pass, we proceed from t = {0, . . . , T −
1}, and update the trajectories with a backtracking line
search parameter, 0 < ς ≤ 1, as follows

x̂(1) = x(1), û(t) = u(t) + ς gu(t) + Gu(t)(x̂(t)− x(t))

x̂(t+ 1) = f (x̂(t), û(t)) (15)

• the backward/forward pass informs of the change in
cost ∆J?, which is compared to the estimated reduction

η = (J(u1,...,T−1)− J(û1,...,T−1) /∆(J(ρ)), where

∆(J(ρ)) = ρ

T−1∑
t=1

gTutQut +
ρ2

2

T−1∑
i=1

gTutQuutgut.

• we accept a trajectory only if 0 < c < η (where we
have chosen c = 0.5) following [8]’s recommendation.

• set x̄t = xt(t = 1, . . . , T ), ut = ūi, reset ρ and repeat
the forward pass

• stop when ∆(J(ρ)) < χ (where χ is a problem
dependent term).

B. Trajectory Optimization: IDG
We initialized the adversarial inputs v from a Gaussian

distribution ∼ N (0,2I) and augment the stage control cost
of (13) as:

`(ut, vt) = α2
(
cosh(wTuut)− γ cosh(wTv vt)

)
. (16)

γcosh(wTv vt) introduces a weighting term in the disturbing
input, with γ as the robustness parameter. We set wv to
[1, 1, 1, 1] and run the two player, zero-sum game erstwhile
described. Again, we compute the derivatives fut and fvt,
calculate the associated derivatives in (4) and give the
optimized iDG torque to the robot. We initialized the nominal
disturbance vectors v̄, and vt as a multivariate Gaussian-
filtered, random noise vectors ∼ N (0, 2I). Our iDG process
goes thus:

• starting with an open-loop control and disturbance
schedules {ūt}, {v̄t}, we generate the nominal states
{x̄t}

• we then obtain the derivatives fut, fvt, fuvt, fuut, fvvt
and those of ` from (4)

• in a backward pass, we obtain the associated nominal Q
coefficients, the open and closed-loop gains, and obtain
the improved value function coefficients with (7)

• in the forward pass, we proceed from t = {0, . . . , T−1},
and update the trajectories with a backtracking linesearch
parameter, 0 < ς ≤ 1, as follows

x̂(1) = x(1), û(t) = u(t) + ς gu(t) + Gu(t)(x̂(t)− x(t))

v̂(t) = v(t) + ς gv(t) + Gv(t)(x̂(t)− x(t))

x̂(t+ 1) = f (x̂(t), û(t), v̂(t)) (17)

• the backward/forward pass informs of the change in
cost ∆J?, which is compared to the estimated reduction
η =

J(u1,...,T−1,v1,...,T−1)−J(û1,...,T−1,v̂1,...,T−1)
∆(J(ρ)) , where

∆(J(ρ)) = ρ

T−1∑
t=1

[
gu(t)TQu(t) + gv(t)TQv(t)

]
+ . . .

. . .
ρ2

2

T−1∑
i=1

[
gu(t)TQuu(t)gu(t) + gv(t)TQvv(t)gv(t)

]
• we accespt a trajectory only if 0 < c < η (choosing
c = 0.5)

• set xt = x̄t, {t=1,...,T}, ut = ūt, vt = v̄t, reset ρ and
repeat the forward pass

• stop when ∆(J(ρ)) < χ



Fig. 4: Policy Robustness Quantification Experiment
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Fig. 5: Robustness Analysis for Peg Insertion Task

IV. RESULTS

We implement the policy sensitivity analysis using the
guided policy search algorithm of [16]. We then run the
iDG optimization algorithm on the youbot and analyze the
effectiveness of using our method against standard ILQG.
The codes for reproducing the experiments can be found on
github at https://github.com/lakehanne/youbot/tree/rilqg.

A. Robustness Margins
We first generate data used to train a global neural network

policy by running our ILQG optimization scheme for the
local controllers. We then run an adversarial local controller
in closed-loop with the nominal agent’s controller for various
disturbance values, γ, in a supervised learning of global
neural network policies. We task the PR2 robot (shown in
Fig. 4 and simulated in the MuJoCo physics simulator [28]),
to insert a peg into the hole at the bottom of the slot. The
model was learned with a mixture of N = 40 Gaussians and
we parameterized the local control laws with the deep neural
network described in [16]. The difficulty of this task stems
from the discontinuity in dynamics from the contact between
the peg and the slot’s surface.

We choose quadratic stage costs for both the state and the
two controllers

`(xt,ut, vt) = wuuTt ut + wx‖d(xt)− d?‖2−γvTt vt (18)

where d(xt) denotes the end effector position at state xt and
d? denotes the desired end effector position at the base of
the slot. The cost function quantifies the squared distance of
the end effector to its desired position and energy of the the
controller and adversary torque inputs. We set wu and wx to
10−6 and 1, respectively. For various γ-values, we evaluate
the robustness of the trained policy by training the adversary
with the GPS algorithm, and observe its effect on the task

performance. We run each experiment for 11 GPS iterations.
Fig. 5 shows that the adversary causes a sharp degradation
in the controller performance for values of γ < 1.5. This
corresponds to when the optimized policy is destabilized
and the arm fails to reach the desired target. As values of γ
increase above 1.5, however, we observe that the adversary
has a reduced effect on the given task. Video of this result is
on the robustness margins link on our website.

B. ILQG-based Trajectory Optimization
We evaluate the trajectory optimization algorithm on the

youbot KUKA robotic platform. The iLQG result is best
understood by watching the ILQG video result available here:
https://goo.gl/JhshTB. In the video, observe that the arm
on the robot vibrates with abrupt motions while navigating
toward the desired goal. This is expected as the dynamics of
the arm links were not included in the model of the platform.
Regardless, the robot reaches the goal state after 76 seconds.

C. Trajectory Optimization: iDG
We found T = 150 to be a desirable stage horizon,

initiate the disturbance from a multivariate Gaussian filtered
noise N (0, 2), set the gains for the torques to {kFx =
10, kFy = 15, kFθ = 1} respectively, and run the algorithm
described in III-B for various γ-disturbance values. We run
two experiments: one with the goal at far left corner of the
environment and the second with the goal state at the far
right corner of the environment. We pose various adversarial
inputs against the controller with values of γ in the range
{10, 5, 3, 1.5, 0.65, 0.1, 0.1, 10−5, 2 × 10−3, 2 × 10−5} for
both experiments. The result showing the trajectory evolution
and the position of the youbot after each iDG run for various
γ values is better appreciated by watching the videos available
on our website: https://goo.gl/JhshTB.

In both experiments, for γ in 1.5 ≤ γ ≤ 10, the robot drives
smoothly – reaching the goal without the arm vibrating as in
the ILQG video. This is despite explicit model of the mass and
inertia matrices. When γ ≤ 1.5, the adversarial disturbance’s
effect on the overall system gets larger. While the robot
does reach the desired goal state (for γ = {0.5, 1.5}), the
arm’s motion is no longer stable. For values of γ ≤ 10−3, the
robot’s trajectory becomes unstable, with the robot arm losing
its balance. As γ � ε (for ε < 10−5), the robot’s trajectory
is incongruent – converging to a spurious minimum. This γ
indices would correspond to the J ?γ? that depicts unacceptable
performance in Fig. 1.

There is a time-efficiency/trajectory robustness throughput
in solving a policy optimization scheme with our iDG
algorithm/other nonlinear methods. While iLQG does achieve
the goal in generally 3-4 iterations, iDG solves the same
task in about 5-7 iterations. When speed is not crucial, and
the safety of a real-world agent/its environment is important,
iDG provides a viable alternative for designing safe policies.
Without loss of generality, we envisage that our minimax
iDG scenario is extensible to similar systems that compute
gradients of a cost function or reward in achieving an optimal
control task. Compared to Morimoto’s work [24], our minimax
iDG does not have to learn the unmodeled disturbance with



x?1

x?2

State convergence of the KUKA robot with our iDG formulation given different goal states and varying γ-values

reinforcement learning after implementing the minimax player.
We conjecture that [24]’s model lacked robustness due to
the incorrect second order derivative of the value function
recursions.

V. CONCLUSIONS

Despite exhibiting near-optimal performance, high-
dimensional policies often exhibit brittleness in the presence
of adversarial agents, model mismatch or policy transfer [2],
[3]. IIn this work, we have presented a way of identifying the
greatest upper bound on a policy’s sensitivity via a minimax
framework. We have also presented an iDG framework that
informs of how to make a policy robust to unmodeled
disturbances, and uncertainities, up to a disturbance bound by
converging to a saddle equilibrium. We ran four experiments
in total to validate our hypothesis and the videos of our results
are available on our website.
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