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Abstract Stereotactic radiosurgery based on frame-based positioning is a well-
established technique for treating benign and malignant lesions. In recent years, there
has been a trend in frameless systems which use image-guided robot positioning
for managing patient motion compensation in radiation therapy. A majority of these
works utilize rigid-links in Stewart-Gough kinematic mechanisms for patient motion
correction. A fundamental weakness of a majority of these approaches is that the
rigid mechanical components of these robots interfere with the therapeutic radiation
beam. In addition, they share their complete workspace with the patient’s body
(risking safety), and their constant curvature components are hardly suitable for
manipulating the soft tissues of the human body. In this report, we highlight some
recent advancements that aim to stem these issues in our line of work; these are
systems that utilize soft mechanisms for patient motion compensation in robotic
radiation therapy.

1 Introduction

Across the world, cancer remains an existential burden on rich and poor nations alike.
In 2019 alone, an estimated 1,762,450 new cancer cases will be diagnosed in the
United States, whereupon 606,880 will lead to fatality [1]. At a cost projection of
$147.3 billion it consumes about 4.2% of overall health care spending. Similarly,
the International Agency for Research on Cancers estimates that the highest rates
of cancer incidence over the coming decades will fall on low- and middle-income
countries [2].
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Fig. 1: The Cyberknife and 6-DOF robotic couch system. ©Accuray Inc.

Fig. 2: A multi-leaf collimator (MLC) used in IMRT and 3DCRT. ©Varian Medical
Systems.

Means of treating cancers may include one or a combination of drugs, radiation
therapy, immunotherapy, stem cell transplant, targeted therapy, precision therapy,
chemotherapy, or surgery. Radiation Therapy (RT), sometimes in conjunction with
surgery and chemotherapy, can be an invaluable single cancer treatment modality: it
is very cost-effective (accounting for only 5% of the total cost of cancer care [3]),
and it has an advanced mode of radiation production and delivery. By shaping the
geometry of high-energy radiation it allows radiation escalation to tumor targets while
simultaneously sparing organs-at-risk (OARs). The importance of RT is underscored
by the fact that half of all cancer patients undergo RT treatment during the course of
their illness; in fact, an estimated 40% of all curative cancer treatment modality are

https://www.cyberknife.com
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performed with RT [4]. Thus, because of its advanced radiation delivery method, RT
is often the most suitable treatment modality for H&N cancers.

1.1 Robots in Radiation Therapy

Traditionally in conventional high-energy RT, a non-static beam is used as a surgical
instrument so that the radiation source can move along primitive geometrical paths,
irradiating the patient on a treatment couch in the process (see Figure 1). Using rect-
angular fields, blocks and wedges to specify flatness and symmetry, uniform radiation
intensity can be produced [5]. In order to adaptively reposition the radiation beam
during treatment, modern approaches utilize a six degree-of-freedom (DOF ) robot
arm to overcome the cross-sectional radiation delivery limitations of conventional
systems.

1.1.1 Robotic Beam Repositioning

In RT, high-energy photons are generated in a linear accelerator (LINAC) machine;
the LINAC is mounted on the end effector of an open kinematic chain robot arm.
By this arrangement, the radiation beam can be delivered to the tumor target e.g. [6]
within a patient lying in a supine position on a 6-DOF translational and rotatory
robotic couch [7, 8].

To conform the radiation to the tumor, minimize sustained damage to normal
tissues, and ensure sparing of OARs during irradiation, in an inverse treatment
planning process, multi-leaf collimator or MLCs (shown in Figure 2) are sequenced
in order to conform the geometric field of the ionizing radiation into a non-uniform
field [9]. Essentially, the MLCs conform the spatial localization of a high dose
volume to a target volume.

1.1.2 Patient Motion Correction During RT

An open problem in radiosurgery is that of keeping the patient’s position consistent
with those in the pre-calculated treatment planning parameters. Studies have shown
that serious changes do occur in delivered dose when a patient is slightly displaced or
when there is a misalignment from the registered patient’s pose angle. Ling et. al [10]
found that minute changes in couch angles affected target delivery results significantly
more than accelerator angular changes. These uncertainties in couch translational and
rotatory magnitudes may reduce the minimum target dose or increase the maximum
cord dose [10]. In stereo-tactic radiosurgery (SRS), the misalignment between
planned and delivered dose can cause eczema or brain lesions [11]. If there is a
geometric miss, highly conformal potent dose increases the risk of underdose to
tumors or undesirable high dose to critical organs and nearby tissues.
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Fig. 3: Masks and Frames for Head Immobilization

Therefore, in order to avoid dose miss, guarantee precision of dose delivery, assure
repeatable positioning during interfractional treatments, as well assure the efficacy
of dose escalation to a target or minimize OARs’ exposure to toxicity, a patient’s
position on the treatment couch should not fluctuate.

1.2 Limitations of Existing Immobilization Technologies

Currently in clinics, rigid frames and masks (see Figure 3) are used to keep the patient
immobilized on the machine so as to mitigate patient motion errors. Mask-based
immobilization uses thermoplastic masks (see left inset of Figure 3. Before the
patient wears the mask, the solid thermoplast is allowed to stretch by heating it in
water to a preset temperature. When the molecular bonds in the thermoplast weaken,
a patient may wear it tnd secure their head to the couch. It reduces immobilization
accuracy owing to flex and shrinkage over multiple use. For deep tumors nearby
critical structures such as the brain stem, and for novel treatment modalities such as
single isocenter multiple-target SRS, masks are not suitable given the high sensitivity
of rotational head motion.

Frame-based immobilization involves a metal ring screwed to the skull of the
patient, which is then bolted to the treatment table (see right inset of Figure 3).
The invasive nature and discomfort of the frame causes poor patient compliance to
trajectory and reduces clinical efficacy. Even so, for certain patients frame placement
is impossible given their unique cranial anatomy or prior surgical bone flaps; the
frame limits the use of multiple RT delivery as patients cannot be subjected to daily
attachment and removal of the frame.

Setup errors between fractionated treatments (interfractional) or patient motion
errors during a treatment session (intrafractional) often need to be corrected in real-
time during treatment. Currently in clinics, the treatment is stopped, and the machine
is recalibrated when the error is too large for this process to go on. The discomfort
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caused by head and neck masks and frames in prolonged treatment (i) can increase
the voluntary and involuntary motion of patients; (ii) are time-consuming to calibrate
on a treatment machine since doses are usually delivered in fractions over many
weeks or months; (iii) lack real-time position correction of the patient’s head motion;
and (iv) have been known to cause patient discomfort after treatment.

The CyberKnife system (see Fig 2), in spite of its advanced mode of beam
repositioning and radiation delivery, requires a frame or an immobilization mask,
and is incapable of real-time closed-loop feedback head motion corrections when
the treatment beam is on. The CyberKnife Synchrony, while capable of precise,
non-surgical tumor and lesions treatment in SRS and stereotactic body radiotherapy
(SBRT), only executes a-priori trajectories; furthermore, it is only FDA-approved
for lung tumors’ treatment; correction requirements in systems such as this require
far less accuracy, typically < 5mm [12] than brain targets.

Additionally, real-time closed-loop head motion compensation for the CyberKnife
system is inhibited by its high load-to-weight ratio which indirectly affects its repeata-
bility: as an open-loop kinematic chain, it exhibits poor accuracy since the weight
of the segments that follow each link in the robot and the load of the mechanical
structure contributes to the large flexure of torques; its links inherently magnify
errors from shoulder out to the end-effector, consequently hampering its use for so-
phisticated control strategies that may minimize or eliminate load-dependent errors;
additionally, its setup distance from the patient is a recipe for delayed execution
of control laws in ensuring that radiation beam reaches its target without signifi-
cantly affecting dose delivery. Given its stiffness (it weighs 160kg), it exhibits a high
load-to-weight ratio, with a complicated actuation system so that its passive bending
stiffness overwhelms the degree of deformation for rapid patient repositioning.

Frameless and maskless (F&M) positioning systems are an emerging non-invasive
immobilization technology in radiosurgery; they work without utilizing rigid masks
and frames – reducing side effects and optimizing patient comfort with little trade-off
in efficiency or effectiveness. The goal is to correct patient motion, ideally with a
closed-loop feedback controller implemented in real-time on a high-precision robotic
system – improving the satisfaction of patients and clinicians, and maximizing dose
delivered to a tumor whilst minimizing healthy tissues’ exposure to radiation. Parallel
robot configurations have found good use along this research thrust. This is despite
their higher number of actuated joints. In a way, this is an advantage because they
distribute the weight of the load around the links of the robot, improving manipulation
accuracy as a result; they also exhibit a desirable lightness property (albeit at the
expense of a reduced workspace), and minimize the flexure torques that are otherwise
common with open-loop kinematic chains. Thus, parallel kinematic configurations,
in theory, enable greater precision with minimal control complications owing to the
non-cumulative actuator errors [13].

Recent F&M research research directions include the steel-cast assembled 4-
DOF robot of [14] which corrected translational motion and a pitch rotational
head motion; the HexaPOD parallel manipulator of [15] which utilized a system
identification and model predictive control approach to correct a tumor position
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on an Hexapod, or the in-house fabricated 6-DOF Stewart-Gough platform of [16].
However, these systems share common drawbacks e.g.

• given their constant-curvature end-effectors/platforms, they are incapable of pro-
viding sophisticated manipulation e.g. for the inadvertent respiratory motions that
often induce deviation from a target;

• being made out of rigid bodies, the attenuation of ionizing radiation dose has to
be factored into treatment plans when these systems get commissioned; and

• exhibiting planar platforms/tool frames, there is an inherent delay in head motion
compensation along the patient’s frontal axis that may inhibit clinical accuracy.

To improve the treatment planning process, these drawbacks need to be addressed.
This would require the interdisciplinary effort of engineers, roboticists, physicists,
and surgeons alike. In what follows, we present some of our work in soft robotic
patient motion correction systems in RT [17–24].

2 Materials

In this section, we describe the mechanical components necessary for the soft actua-
tion system described in [21] and [24].

• Mannnequine head and torso simulator (custom-made, 155W × 240L× 200D
mm)1, 1;

• Craftsman air canister (maximum pressure: 320psi), 1;
• Off-the-shelf suction pump (max. pressure: 12 psi), 3;
• National Instruments (NI) myRIO microcontroller, 1;
• PWM voltage regutaor (custom-built for DIOs on the myRIO), 6;
• 3D camera (Ensenso N35 model, mounted u 45◦ to the vertical above the head),

1;
• Base inflatable air bladder or IAB, 1

– custom-made from elastomeric polymers;
– elastomer covered with soft styrofoam to absorb reactive pressure from head

manipulation;
– size in reference configuration: 180mm× 280mm;
– maximum width in current configuration: ∼ 75mm;
– 2 crack-resistant polyethylene tubing: 1/8” internal diameter (ID) and 1/4”

outer diameter (OD).

• Side IABs, ×2

– custom-made from elastomeric polymers;
– elastomers encased in breathable foam pads for comfort;
– size in reference configuration: 180mm× 140mm;

1 Link to Solidworks Model

https://github.com/lakehanne/superchicko/blob/sofa/ros/superchick/meshes/headnball.stl
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Fig. 4: Hardware Description

– maximum width in current configuration: ∼ 75mm;
– 2 crack-resistant polyethylene tubing: 1/8” ID and 1/4” OD for each IAB

• Proportional solenoid valves

– Dakota Instruments EM valves (Model PSV0105, Orangeburg, NY, USA) for
proportional torques to the soft actuators, 6.

3 Methods

The model head lies in a supine position above a planar table as shown in Figure 4.
We employed a 3D camera from Ensenso GmbH (model N35) to reconstruct the
surface image and measure head pose. The N35 camera captures multiple image
pairs during exposure; each image pair is made up of different patterns, controlled by
piezo-actuators. A stereo-matching algorithm gathers the information from all image
pairs after capture to produce a high-resolution point cloud (PCL) of the scene [25].
We mounted the 3D sensor such that its lens faced the head at approximately 45◦

from the vertical during experiments. All vision processing, systems modeling and
control laws were computed on a CORSAIR PC. We exchange the neuro-control and
sensor signals via the publish-subscribe IPC of the ROS middleware installed on the
PC. Adaptive control laws were sent via udp packets to the RIO microcontroller. The
system setup is shown in Figure 4.
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The reference frame of the head is described as follows: the pitch/x-axes is along
the frontal axis of the head, from the left ear out to the right ear; the yaw/z-axes
is equivalent to the Sagittal axis, running from the back of the head through the
forehead; while the roll/y-axes runs along the Craniocaudal axis, from the neck
through the top of the head. The side IABs are positioned at both temples/cheeks of
the patient respectively for controlling the roll- and x-axes motions, while the IAB
underneath the head, henceforth referred to as the base IAB, controlled the pitch- and
z-axes motions. What we present here is a simultaneous control of the head motion
about the z, pitch and roll axes.

3.1 Face Segmentation

In order to pose a good control problem, we must define a local frame on the patient’s
face. This frame will then be used to determine the patient’s real-time pose during
control. Through spatial decomposition of the scene, we delineate the face from
the table and other peripheral actuators around the head. In a stagewise process,
we segment candidate objects that lack the characterization of the object we want
to extract from the scene (the face of the mannequine). Our vision segmentation
philosophy is inspired by spatial decomposition methods such as [26] that determine
subdivisions and boundaries in a scene to allow retrieval of a region of interest given
a proximity measure. Since the table’s location cannot exceed a given height during
experiments (the couch does not move as the IABs provide complete closed-loop
control) and the camera’s position is fixed relative to the head, separating objects
that represent planar 2D geometric shapes from the scene would simplify the face
segmentation algorithm.

Thus, we remove objects that fit a planar primitive geometry, and then cluster the
remaining objects afterwards: we search for a simplified 2D planar object, fitted to
the scene such that points pi ∈ P that support a 2D plane is found within a tolerance
0 ≤ |d| ≤ |dmax, where |dmax| is a user-defined threshold based on the measured
couch height [26]. We proceed as follows:

• The point cloud of the scene was acquired from the computed disparity map of
the two raw camera images on the sensor;

• To minimize sensor noise whilst preserving 3D representation, the acquired point
cloud was downsampled using a SAmple Consensus (SAC)-based robust moving
least squares algorithm (RMLS) [26, §6];

• We then searched for the edges of 2D planar regions in the scene with Maximum
Likelihood SAmple Consensus (MLESAC) [27], and we bound the resulting plane
indices by computing their 2D convex hull;

• A model fitting stage extruded the computed hull (of objects lying above the 2D
planar region) into a prism model based on a defined L1 Manhattan distance;
this gives the points whose height threshold is about the region of the face in the
scene [28];



Motion Compensation Robots in Radiosurgery 9

• Clustering the remaining points based on a heuristically-determined L2 distance
between points remaining within the polygonal plane, we find the largest cluster
as the face.

We now describe these segmentation stages. Normalizing the coordinates of the
original point cloud, P , we ensure that the distance between points p ∈ P is upper-
bounded by 1 based on the diagonal of P’s bounding box. It computes a weighting
factor, α, given by

α = µx + k � σx, (1)

where µ and σ respectively denote the mean and standard deviation of the mean
distance distribution between points and k is a user-chosen variable. Through SAC,
an estimate P̂ of the original point cloud is computed and represented as a set of
equidistant grid points in the neighborhood of P . The points of P are then projected
to a local plane of reference through their k nearest neighbors to assure proximity to
the surface of P . Points p̂i ∈ P̂ are fitted to the surface that approximates P with
a bivariate polynomial height function in a local Darboux frame (with orthonormal
axes U, V, N; V is chosen to be parallel to the local reference frame’s normal). The
polynomial weights are computed for the k nearest neighbors of p as

wi = exp
(
−‖p̂− pi‖2

α

)
. (2)

Surfaces in the proximity of p̂’s neighbors are approximated using

n(u,v) =

N∑
i=1

ci.f
i
(u,v), (3)

where u, v, and n are coordinates along the Darboux frame axes, f i(u,v) are height
function members of bivariate polynomials. We refer the reader to [26] for a more
detailed treatment of the resampling algorithm. The result of the resampling algorithm
is shown in the top-right image of Figure 5.

The inertial frame has the z-axis pointing up from the head along the dorsoventral
axis (towards the camera), y-axis pointing right along the frontal axis; and the x-axis
as the cross product of the y− and z− axes. This is chosen as O(0, 0, 0.712m) from
the camera’s origin. To simplify the complexity of the planar structure in the scene,
the table is modeled as a 2D planar geometric primitive so that finding points that fit a
defined model hypothesis involves estimating a single distance to the frontal plane of
the table surface rather than multiple points if the model was represented with points.
Searching for horizontal planes that are perpendicular to the z-axis of the head is
carried out using the maximum likelihood SAC [27] algorithm implemented in the
PCL Library [29] to generate model hypotheses. The plane segmentation algorithm
is defined in 1. The plane segmentation process is run once. Once the plane model
is found, its indices and those of objects lying above it are separated and stored in
separate data structures. Every subsequent iteration consists of (i) computing the 2D
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Fig. 5: [Top-left]: Dense point cloud of the experimental setup scene. [Top right]: Downsampled
cluttered cloud of the left scene. [Bottom-left]: Using RANSAC, we searched for 2D plane can-
didates in the scene and compute the convex hull of found planar regions. We then extrude point
indices within the hull into a prismatic polygonal model to give the face region. [Bottom-right]:
An additional step clusters the resultant cloud based on a Euclidean distance. The largest cluster is
taken to be the face.

Algorithm 1 Plane Segmentation Algorithm

function PlaneSeg(P, a, b, c, d)
for i = 1 to N do

sample non-collinear points {pi, pj , pk} from P
calculate the model coefficients ax + by + cz = d
find distances from all p ∈ P to the plane (a, b, c, d)
store points p∗ ∈ P that satisfy the model hypothesis
0 ≤ |d| ≤ |dmax.

end for
return maximum of the stored points p∗.
end function

convex hull of point indices of objects above the table using the Qhull library2, (ii)

2 The Qhull library: http://www.qhull.org/
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Algorithm 2 Euclidean Clustering Algorithm

Require: a kd-tree data structure for the PCL P
Require: a cluster of linked list C, and a queue, Q

function ClusterEuclid
for points pi ∈ P do

enqueue pi to Q
search for neighbors Pki of pi in a sphere of radius r < x
add neighbors pki ∈ Pki that are not yet processed to Q
add Q to C and reset Q to an empty list.

end for
return C.
end function

with a pre-defined prismatic model candidate, we stored the extruded points to the
approximate facial height above the table; and (iii) separating the face from every
other point in the resulting cloud through the Euclidean clustering (EC) method
of [30]. A distinct point cluster is defined if the points in cluster Ci = {pi ∈ P} and
cluster Cj = {pj ∈ P} satisfy the L2-distance threshold

x ≤ min‖pi − pj‖2 (4)

whereupon the largest cluster returned by Algorithm 2 represents the face.
Finding the face in the scene after carrying out EC algorithm is a question of

finding the largest index in the list C in linear time for n clusters. The face segmenta-
tion results are presented in Figure 5. We then compute the Cartesian position of the
face with respect to the camera origin by taking the center of mass of the segmented
facial region (bottom-right image of Figure 5). This is obtained by calculating the
mean-value of all the points in the resulting cloud (≈ 600 points on average).

3.2 Head Pose Estimation

With the facial point cloud segmented, we define three points on the head. Our goal
is to compute the optimal translation and rotation of the head from a model point set
X = {−→x i} to a measured point set P = {−→p i}, where Nx = Np = 3, and the point
−→x i ∈ X has the same index as −→p i ∈ P. All point coordinates are with respect to a
Cartesian frame in the stereo camera. We consider the world frame to have an origin
at the centroid of the clustered point cloud of the head when all IABs are at ambient
pressure, with the axes oriented as described in figure to the right of this page.

Following Besl and McKay’s work in [31], we compute the cross-covariance
matrix of P and X as Σpx, extract the cyclic components of this skew symmetric
matrix as∆, and use it to form the symmetric 4× 4 matrix Q(Σpx) as follows,
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Q(Σpx) =

[
tr(Σpx) ∆T

∆ Σpx +Σ
T
px − tr(Σpx)I3

]
. (5)

The unit eigenvector, qR, that corresponds to the maximum eigenvalue of Q(Σpx) is
selected as the optimal rotation quaternion; we find the optimal translation vector as

−→q T = −→µ x − R(−→q R)−→µ p (6)

where µx and µp are the mean of point sets X and P respectively. Obtaining the roll,
pitch and yaw angles from qR is trivial and the pose of the face is described by tuples
[qT , qR] = {x, y, z, θ, φ, ψ} with respect to the world frame. Given the 3-DOF setup,
we choose to control three states of the head: z, θ, φ (i.e. z, roll, and pitch).

3.3 Control Design

We propose an adaptive control strategy in a Bayesian setting, which given an initial
prior distribution of controls and 3-DOF head pose, minimizes a cost criterion as the
expected value of control laws that will yield a future desired head pose. We consider
the pwm voltages that power the valves as input, u, the head pose as the output, x and
an unknown disturbance w(k). We first describe the nonlinear function approximator
model f̂ (u(k − d), x(k),w(k)), which is constructed from memory-based input and
output experimental data that satisfy

ZN = {u(k), u(k − 1), . . . u(k − nu), x(k), x(k − 1), . . . , yx(k − nx)} (7)

that satisfy the Lipschitz continuity. (7) implies an input u(·) at time k− d, produces
an output x(k) at d time instants later. The next section describes how we formulate
the class of minimum error variance controllers that predict the effect of actions u(·)
on states x(·) using a self-tuning regulator.

3.4 Adaptive Neuro-Control Formulation

We fixed a persistently exciting input signal uex ∈ L2 ∩ L∞ to excite the nonlinear
modes of the system. We then parameterized the system with a neural network with
sufficient number of neurons. The neural network (NN) provided information on the
changing parameters of the system during control trials. The adjustment mechanism
is computed from inverse Lyapunov analysis, where we choose adaptive laws that
guarantee a nonpositive-definite Lyapunov function candidate when evaluated along
the trajectories of the error dynamics.

Our contribution is the approximation of the nonlinear system by a long short-
term memory (LSTM) [32], equipped with an adequate number of neurons in its
hidden layers. We parameterized the last layer of the network with a fully connected
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Fig. 6: Function Approximator Model

layer that outputs control torques to the valves. The neural network can be seen as a
memory-based model that remembers effective controls for the adaptation mechanism
in the presence of uncertainties and external disturbance.

The neural network is shown in Figure 6. Depending on the region of attraction of
the system the network is approximating, it parameterizes the nonlinear dynamical
system f(·) and maps the parameterized model to appropriate valve torques. There
exists additional feedforward + feedback terms in the global controller (introduced
shortly) that guarantee system stability and robustness to uncertainties. Therefore, the
global controller keeps the states of the system bounded under closed-loop dynamics,
ensures convergence to desired trajectories from states that are initialized outside
the domain of attraction, and guarantees robust reference tracking in the presence of
non-parametric uncertainties.

For the multi-input, multi-output (MIMO) adjustable system,

ẋ = Ax + BΛ (u− f(x, u)) + w(k) (8)

where x ∈ Rn,u ∈ Rm are known input and output vectors, and A ∈ Rn×n,Λ ∈
Rm×m are unknown matrices, B ∈ Rn×m , sgn(Λ) are known matrices, and
w(k) ∈ Rn is a bounded time-varying unknown disturbance, upper-bounded by
a fixed positive scalar wmax. with a Hurwitz matrix Am ∈ Rn×n and Bm ∈ Rn×m
commanded by a reference signal r ∈ Rm. For this system, we note that n = 3
and m = 6. We choose a model-reference adaptive controller (MRAC) capable of
operating in the presence of parametric (εf ), and non-parametric (w(k)) uncertainties
so as to assure the boundedness of all signals within the closed-loop system. Our
controller is of the following form
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u = K̂
T
xx + K̂

T
r r + f̂(x,u), (9)

where K̂x and K̂r are adaptive gains to be designed shortly. The K̂
T
xx term keeps the

states of the approximation set x ∈ BR stable, while the KT
r r term causes the states

to follow a given reference trajectory. The function approximator f̂(·) ensures states
that start outside the approximation set x ∈ BR converge to BR in finite time (it
converges non-parametric errors εf that puts certain states out of the approximation
set into BR). We can generally write the NN model as

f̂(x) = Θ̂TΦ(x) + εf ,

where Θ̂T denotes the vectorized weights of the neural network and Φ(x) denotes
the vector of Lipschitz inputs and outputs, and εf is the approximation error. The
closed-loop dynamics therefore become

ẋ = Ax + BΛ
(

K̂
T

x x + K̂
T

r r + f̂(·)− f(·)
)
. (10)

Theorem: Given correct choice of adaptive gains K̂x and K̂r, the error vector
e(k) = ẋ(k) − ẋm(k) will be uniformly ultimately bounded, and the state x will
converge to a neighborhood of r.
The main matter of the proof to the above theorem is in [21].

3.5 Network Design

We require accurate mapping of temporally lagged patterns in inputs to output states,
a dynamic nonlinear model of valve encoder values to sensor measurements that
accurately maps f(·) in (8). We choose a LSTM [32] due to its capacity for long-
term context memorization and inherent multiplicative units that avoid oscillating
weights or vanishing gradients when error signals are backpropagated in time [32,33].
LSTMs truncate gradients in the network where it is harmless by enforcing constant
error flows through their constant error carousels. As a result, LSTMs are robustly
more powerful for adaptive sequence-to-sequence modeling or mapping data that
temporally evolve in time. Their biological model makes them more suitable for
adaptive robotics such as soft robots than previously used artificial NNs such as
feedforward networks [34], radial basis-functions [35, 36] or vanilla RNNs [37].

The NN model takes a memory-based concatenated vector of current inputs
and past outputs, propagates them through three hidden layers, with each layer
made up of {9, 6, 6} neurons each, applies 30% dropout and then maps the last
layer to a fully connected layer that generates valve torques. The architecture of
the neuro-controller is shown in Figure 6. The last layer is designed to generate
appropriate valve torques based on an internal model of the plant. A self-tuning
adaptive control law (with a feedforward regulation and state feedback component)
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adapts to the internal parameters of the plant to ensure stability of the system and
bounded tracking of given trajectory. The overall network has neuron connection
weights and thresholds of approximately 1,400. This makes search for a suitable
controller feasible.

The LSTM model estimates a model f(x), that minimizes the mean-squared error
between predicted output x̂(k) and actual output x(k) according to

f(x(k)) = arg min
w

VN (w,Φ(x)) (11)

where VN (w,Φ(x)) =
K∑
t=1

n∑
i=1

1

2
(x̂i(t)− xi(t))2, (12)

and Φ(x) is the regression vector on a bounded interval [1, N ]. (11) is minimized
using stochastic gradient descent so that at each iteration, we update the parame-
ters (weights) of the network wi based on the ordered derivatives of VN (w,Φ(x))
(Werbos [38]) i.e.

wk+1 ← ηwk − α
n∑
i=1

∇wV(xi, x̂i(θk)). (13)

η (set to 1) hastens the optimization in a direction of low but steepest descent in
training error, and α is a sufficiently small learning rate (set to 5 × 10−3), and
∇wV(θ,Φ(x)) is the derivative of V with respect to w averaged over the k-th batch
(we used a batch size of 50). We initialized the weights of Figure 6 from a one-
dimensional normal distribution with zero-mean and unit variance.

4 Results from Experiments

The 3-DOF pose of the head is made up of the state tuple {z(k), θ(k), φ(k)}. We
sample from the parameters of the trained network and we set f̂(·) in (9) to the
fully connected layer of samples from the network. We publish the control law from
the neural network and subscribe in a separate node. The gains K̂x and K̂r in (??),
were found by solving the ODEs iteratively using a single step of the integral of the
solutions to ˙̂Kx(t),

˙̂Kr(t). Our solution is an implementation of the Runge-Kutta
Dormand-Prince 5 ODE-solver available in the Boost C++ Libraries3. We found a
step-size of 0.01 to be realistic. xm is computed based on the solution to the forced
response of the linear system,

xm(t) = eAmtxm(0) +

∫ t

0

eAm(t−τ)Bm r(τ)dτ.

3 https://goo.gl/l7JyYe

https://goo.gl/l7JyYe
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We set xm(0) = x(0) at t = 0 and for a settling time requirement of Ts = 5secs at
which the response remains within 2% of final value, we find that

Am =

− 1334
1705 0 0
0 − 1334

1705 0
0 0 − 1334

1705

 . (14)

For a nonnegative Q and a positive definite P, the pair (Q,Am) will be observable
(LaSalle’s theorm) so that the dynamical system is globally asymptotically stable.
We choose a positive definite Q = diag(100, 100, 100) as the dissipation energy and
set Λ = I3×3 so that solving the general form of the lyapunov equation, we have

P =

− 170500
2668 0 0
0 − 170500

2668 0
0 0 − 170500

2668

 (15)

The six solenoid valves operate in pairs so that two valves create a difference in air
mass within each IAB at any given time. Therefore, we set

B =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 (16)

The non-zero terms in (16) denote the maximum duty-cycle that can be applied to the
Dakota valves based on the software configuration of the NI RIO PWM generator.

4.1 Analysis

The three DoFs of the head are coupled and there is a limited reachable space with the
IABs. It is therefore paramount that desired trajectories be ascertained as physically
realizable before rolling out control trials. We therefore placed the head to physically
realizable positions in open-loop control settings before testing the close-loop control
system on such feasible goal poses.

Figure 7 show the performance of the controller when commanded to move the
head from [z, θ, φ]T = [2.5mm, .25o, 35o]T to [14mm, 1.6o, 45o]T . We observe
strong steady-state convergence along 2-DoFs, namely z and pitch axes with a 20
second rise time. The roll motion is however characterized by offshoots that may
be caused by the coupled DOF. We perform a second experiment, seen in Figure 8,
where we evaluate the performance of the controller on the roll angle of the head.
We observe that the controller behaves well controlling the roll motion in isolation.

5 Conclusion
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Fig. 7: Head motion correction along z, pitch and roll axes.
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Fig. 8: Head motion correction along roll axis.
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