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CHAPTER 1

PREAMBLE

Consider this the roadmap for this course. Please read through the syllabus posted on Moodle2
carefully and feel free to share any questions that you may have. Please print a copy of the Syllabus
for reference. Some relevant parts of the Syllabus are repeated here but the Moodles reference
should serve as your guide throughout the ten weeks of this course.

1.1 Course Description

This course focuses on the algorithmic and mathematical concepts with respect classical and recent
methods for solving real-world problems in robotics. While some students may have encountered
some of the concepts we will be treating in past courses or avenues of study, we will provide the
breadth and depth necessary for equipping students to be world-class roboticists. The topics covered
by this course shall include the configuration space, rigid bodies, semi-rigid soft bodies, as well as
their motions in Rn, wrenches, homogeneous transformations, optimal algorithms for rigid body
rotations, linear systems theory, probability theory, the Kalman filter. The course will begin and end
with a self-assessment to allow students to gauge their strengths and weaknesses in these topics.
References for further, in-depth study in each topic are provided at the end of this course.

1.2 Course Outcomes

After taking this course, each student will be able to

• Develop mathematical tools for solving fundamental kinematic problems in robot operation;

• Formulate optimal state estimation tools for solving real-time smoothing and filtering opera-
tions in robotics;

• Integrate state estimation with rigid and semi-rigid soft bodies to solve real-world automation
problems; and 4. Use open-source Python, and C++ tools to solve classical and emerging
problems in robotics in our day.

1.3 Prerequisites

An undergraduate-level understanding of linear algebra, analytical mechanics, Python and C++
programming.

1.4 Recommended Texts

• Main Texts
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– Simon, Dan. (2007). Optimal state estimation: Kalman, H − ∞, and nonlinear ap-
proaches. Choice Reviews Online, Vol. 44, pp. 44-3334-44–3334. https://doi.org/10.5860/choice.44-
3334

– Murray, R. M., Li, Z., and Sastry, S. S. (1994). A Mathematical Introduction to Robotic
Manipulation. Book (Vol. 29). Free PDF preprint downloadable from, Murray’s website.

– Theory of Screws: A Study in the Dynamics of a Rigid Body by Robert Stawell Ball,
Dublin: Hodges, Foster, and Co., Grafton-Street. a. Textbooks:

• Secondary Text

– Modern Robotics: Mechanics, Planning, and Control. Free PDF preprint downloadable
from Author’s Northwestern University Website.

• Auxiliary Text:

– Theory of Screws: A Study in the Dynamics of a Rigid Body by Robert Stawell
Ball, Dublin: Hodges, Foster, and Co., Grafton-Street (Should be downloadable via
Interlibrary Loan).

1.5 Recommended Journals

• IEEE Transactions on Robotics.

• The International Journal of Robotics Research.

• The IEEE International Conference on Robotics and Automation (ICRA).

• IEEE/Robotics Society of Japan International Conference on Intelligent Robots and Systems
(IROS).

• Robotics and Autonomous Systems, An Elsevier Journal.

1.6 Required Software

• A working knowledge of python and the anaconda environment.

• ROS 1.x Installation Instructions: ros 1.x website.

• ROS 2 installation ros 2.0 website.
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https://www.cds.caltech.edu/~murray/books/MLS/pdf/mls94-complete.pdf 
 http://hades.mech.northwestern.edu/images/7/7f/MR.pdf
 https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=8860
https://journals.sagepub.com/home/ijr
https://www.ieee-ras.org/conferences-workshops/fully-sponsored/icra
https://www.ieee-ras.org/conferences-workshops/financially-co-sponsored/iros
https://www.ieee-ras.org/conferences-workshops/financially-co-sponsored/iros
https://www.journals.elsevier.com/robotics-and-autonomous-systems
https://www.ros.org/
https://index.ros.org/doc/ros2/Installation/Crystal/Linux-Install-Binary/


1.7 Online Course Content

This course will be conducted completely online using Brandeis’ LATTE site. The site contains the
course syllabus, assignments, our discussion forums, links/resources to course-related professional
organizations and sites, and weekly checklists, objectives, outcomes, topic notes, self-tests, and
discussion questions. Access information is emailed to enrolled participants before the start of the
course. To begin participating in the course, review the “Welcoming Message" and the “Week 1
Checklist."

1.8 Errata

If in the course of using these notes, you find sentence errors, errata or mistakes in equations, please
annotate them and upload it to the discussion forum. Points will awarded, at the discretion of the
instructor, for such help.

3
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CHAPTER 2

INTRODUCTION TO MATRIX ANALYSIS.

Our goal here is to introduce the student to the study of matrix theory. Matrices are symbolism of the
important transformations in everyday life; these transformations lie at the heart of mathematics and
robotics. The contents of this topic are thus positioned toward the aspiration of roboticists, engineers
of all stripes and scientists. Specifically, we are concerned with the theory of symmetric matrices,
which is important for all fields, matrices and differential equations, necessary for engineering and
robotics, as well as positive matrices, necessary for probability theory. Most of the texts im this
chapter are drawn from Richard Bellman’s Matrix Analysis Book given in the Syllabus.

2.1 Maximization and Minimization

Of importance to us in this section is to ascertain the range of values of homogeneous quadratic
functions of two variables and how it is connected to the determination of the maximum or minimum
of a general function of two variables.

2.1.1 Maximization of Functions of a Variable

Suppose f(x) is a real function of the real variable x for x ∈ [a, b], and let us suppose that it is a
Taylor series of the form

f(x) = f(c) + f ′(x− c) + f ′′ (x− c)2

2!
+ . . . (2.1.1)

around every point in the open interval (a, b). We define a stationary point of f(x) to be a point
where f ′(x) = 0 and it is the point that determines if c is a point at which f(x) is a relative
maximum, a relative minimum, or a stationary point of a subtle characteristic. If c is a stationary
point, we must have

f(x) = f(c) + f ′′ (x− c)2

2!
+ . . . (2.1.2)

If f ′′(c) > 0, then f(x) has a relative minimum at x = c. Otherwise, if f ′′(c) < 0, f(x) has a
relative maximum at x = c. Whereas, if f ′′(c) = 0, we must needs consider further terms in the
expansion.

Quiz 1. Suppose that f ′′(c) = 0, what are the sufficient conditions that c must furnish to be a
relative minimum?

2.1.2 Maximization of Functions of Two Variables

Now, suppose that we have two variables x, y as arguments of a function f , defined over the
rectangle a1 ≤ x ≤ b1, a2 ≤ y ≤ b2, and possessing a convergent Taylor series around each point
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(c1, c2) within the region. Then, for sufficiently small |x− c1 and |y − c2| , we have

f(x, y) = f(c1, c2) + (x− c1)
∂f

∂c1
+ (y − c2)

∂f

∂c2
+

(x− c1)
2

2

∂2f

∂c21

+ (x− c1)(y − c2)
∂2f

∂c1∂c2
+

(y − c2)
2

2

∂2f

∂c22
+ . . . (2.1.3)

where

∂f

∂c1
=

∂f

∂x
at x = c1, y = c2

∂f

∂c2
=

∂f

∂y
at x = c1, y = c2 e.t.c. (2.1.4)

As before, the stationary point of f(x, y) is defined to be (c1, c2) so that ∂f
∂c1

= 0 and ∂f
∂c2

= 0;
and the behavior of f(x, y) in the immediate neighborhood of (c1, c2) depends on the nature of the
quadratic terms in the expansion of (2.1.3),

Q2(x, y) = a(x− c1)
2 + 2b(x− c1)(y − c2) + c(y − c2)

2 (2.1.5)

where a = 1
2
∂2f
∂c21

, 2b = ∂2f
∂c1∂c2

, and c = 1
2
∂2f
∂c22

.
Suppose we set x− c1 = u and y− c2 = v, then we can write a quadratic expression in variables

u and v i.e.

Q(u, v) = au2 + 2buv + cv2 (2.1.6)

whereupon we are interested in the behavior of Q(u, v) in the vicinity of u = v = 0 and the fact that
Q(u, v) is homogeneous allows us to examine the range of values of Q(u, v) for the set of values
on u2 + v2 = 1.

If Q(u, v) > 0 for all u and v distinct from u = v = 0, f(x, y) will have a relative minimum
at x = c1, y = c2; and if Q(u, v) < 0 for all u and v distinct from u = v = 0, f(x, y) will have a
relative maximum at x = c1, y = c2; The stationary point is a saddle point if Q(u, v) can take on
both positive and negative values.

2.1.3 Algebraic Approach

How do we determine which of the three situations described in the foregoing occur for any given
quadratic form, au2 + 2buv + cv2, with real coefficients. To determine the sign of Q(u, v), we
complete the square in au2 + 2buv and write Q(u, v) as

Q(u, v) = a

(
u+

bv

a

)2

+

(
c− b2

a

)
v2 (2.1.7)

provided that a ̸= 0.
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If a = c = −, then Q(u, v) ≡ 2buv . If b ̸= 0, then Q(u, v) can be positive or negative. If
however, b = 0, the quadratic form is eliminated.

If a ̸= 0, from (2.1.7), we must have a Q(u, v) > 0 for all unique u and v different from the pair
(0, 0) provided that a > 0 and c− b2

a
> 0.

In the same vein, Q(u, v) < 0 for all nontrivial u and v, provided that we have the inequalities,
a < 0 and c− b2

a
< 0.

Positivity Requirement

A set of necessary and sufficient conditions that Q(u, v) be positive for all nontrivial u and v
is that

a > 0,

∣∣∣∣a b
b c

∣∣∣∣ > 0. (2.1.8)

2.1.4 Analytic Approach

To find the range of values of Q(u, v), we can examine the set of values that Q(u, v) occupies on
the circle u2 + v2 = 1. If Q is to be positive for all nontrivial values of u and v, we must have

min
u2+v2=1

Q(u, v) > 0 (2.1.9)

and to have Q(u, v) negative for all u and v on the unit circle, we must have

max
u2+v2=1

Q(u, v) < 0. (2.1.10)

Introducing a Lagrange multiplier, λ, we can rewrite the problem as

R(u, v) = au2 + 2buv + cv2 − λ(u2 + v2). (2.1.11)

At the stationary points, we must have ∂R
∂u

= ∂R
∂v

= 0 so that

au+ bv − λu = 0

bu+ cv − λv = 0 (2.1.12)

whereupon, we see that λ satisfies ∣∣∣∣a− λ b
b c− λ

∣∣∣∣ = 0 (2.1.13)

λ2 − (a+ c)λ+ ac− b2 = 0. (2.1.14)

The roots of (2.1.14) are real seeing that the discriminant is non-negative i.e.

(a+ c)2 − 4
(
ac− b2

)
= (a− c)2 + 4b2, (2.1.15)
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and as long as a ̸= 0 and b ̸= 0, the roots are distinct.
If b = 0, the roots of the quadratic in (2.1.14) becomes λ1 = a, λ2 = c. For λ1 = a, the linear

set of equations from (2.1.12) becomes

(a− λ1)u = 0 (c− λ2) v = 0 (2.1.16)

which leaves u arbitrary and v = 0, if a ̸= c.
Whereas if b ̸= 0, we obtain the nontrivial solutions of (2.1.12) by using one equation and

discarding the other. Therefore, u and v are connected by the relation

(a− λ1)u = −bv. (2.1.17)

For the exact solution, we can add the normalization requirement that u2 + v2 = 1 so that the values
of u and v are

u1 = −b/
(
b2 + (a− λ1)

2
)1/2

v1 = (a− λ1)/
(
b2 + (a− λ1)

2
)1/2 (2.1.18)

with another set (u2, v2) determined in a similar fashion when λ2 is used in place of λ1.
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CHAPTER 3

VECTORS AND MATRICES

In the previous chapter, we looked into the problem of the minima and maxima (locally) of a
function of a single and two variables. Suppose that we have N variables, and proceed in a similar
manner as before, we see that finding basic necessary and sufficient conditions that ensure the
positivity of a quadratic form of N variables are of the form

Q(x1, x2, . . . , xN) =
N∑

i,j=1

aijxixj (3.0.1)

We will thus develop a notation that allows us to solve the problem analytically using a minimum of
arithmetic or analytical calculation. In this light, we will develop a notation that allows us to study
linear transformations such as

yi =
N∑
j=1

aijxj i = 1, 2, . . . , N (3.0.2)

3.1 Vectors

We shall define a set of N complex-valued numbers as a vector, written as

x =


x1

x2
...
xN

 (3.1.1)

The vector x in (3.1.1) shall be called a column vector. If the elements of the vector are stacked
horizontally, i.e.

x =
[
x1 x2 . . . xN ,

]
(3.1.2)

then we shall call it a row vector.
Going forward, we shall use the notation of (3.1.1) to represent all forms of vectors we shall

be using. When we mean a row vector, we shall use the notation of a transpose of (3.1.1), i.e. xT .
Bold font letters such as x, or y shall denote vectors and lower-case letters with subscripts i such as
xi, yi, zi or pi, qi, ri shall denote the components of a vector. When discussing a particular set of
vectors, we shall use the superscripts x1,x2 e.t.c. N shall denote the dimension of a vector x.

One-dimensional vectors are called scalars and shall be our quantities of analysis. When we
write x̄, we shall mean the vector whose components are the complex conjugates of the elements of
x.

8



3.1.1 Addition of Vectors

Two vectors x and y are said to be equal if all of their components, (xi, yi) are equal for i =
1, 2, . . . , N . Addition is the simplest of the arithmetic operations on vectors. We shall write the sum
of two vectors as x+ y so that

x+ y =


x1 + y1
x2 + y2

...
xN + yN ,

 (3.1.3)

whereupon we note that the “ + ” sign connecting x and y is different from the one connecting xi

and yi.

Homework 1. Prove that we have the commutativity, x + y = y + x, and the associativity
x+ (y + z) = (x+ y) + z

Homework 2. Just as we showed the addition property of two vectors above, show the subtraction
property of two vectors x and y.

3.1.2 Scalar Multiplication

When a vector is multiplied by a scalar, we shall write it out as follows

c1x = xc1 =


c1x1

c1x2
...

c1xN

 (3.1.4)

3.1.3 The Inner Product of Two Vectors

This is a scalar function of two vectors x and y defined as

⟨x,y⟩ =
N∑
i=1

xiyi. (3.1.5)

Further to the above, we define the following properties for inner product

⟨x,y⟩ = ⟨y,x⟩ (3.1.6a)
⟨x+ y,u+ v⟩ = ⟨x,u⟩+ ⟨x,v⟩+ ⟨y,u⟩+ ⟨y,v⟩ (3.1.6b)

⟨c1x,y⟩ = c1⟨x,y⟩ (3.1.6c)

The above is an easy way to multiply two vectors. The inner product is important because ⟨x,x⟩
can be considered as the square of the “length" of the real vector x.

9



Homework 3. Prove that ⟨ax+ by, ax+ by⟩ = a2⟨x,x⟩+2ab⟨x,y⟩+ b2⟨y,y⟩ is a non-negative
quadratic form in the scalar variables a and b if x and y are real.

Homework 4. Hence, show that for real-valued vectors x and y, that the Cauchy-Schwarz Inequality
⟨x,y⟩2 ≤ ⟨x,x⟩⟨y,y⟩ holds.

Homework 5. Using the above result, show that for any two complex vectors x and y, |⟨x,y⟩|2 ≤
⟨x, x̄⟩ ⟨y, ȳ⟩

Homework 6. Show that the triangle inequality

⟨x+ y,x+ y⟩
1
2 ≤ ⟨x,x⟩

1
2 + ⟨y,y⟩

1
2

holds for any two real-valued variables.

3.1.4 Orthogonality

Two vectors are said to be orthogonal if their inner product is 0 i.e.

⟨x,y⟩ = 0 (3.1.7)

When the set of real vectors {xi} possess the property that ⟨xi,yi⟩ = 1, then we say they are
orthonormal.

Homework 7. Show that xi are mutually orthogonal and normalized i.e. orthonormal for the
following N -dimensional Euclidean basis coordinate vectors

x1 =


1
0
...
0

 x2 =


0
1
...
0

 xN =


0
0
...
1

 (3.1.8)

3.2 Matrices

We can write an array of complex numbers in the form

X =


x11 x12 . . . x1N

x21 x22 . . . x2N
...

... . . . ...
xN1 xN2 . . . xNN

 (3.2.1)

The matrix of (3.2.1) shall be called a square matrix. The quantities xij are the elements of
the matrix X; the quantities xi1, xi2, . . . , xiN are the ith rows of the matrix X and the quantities

10



x1j, x2j, . . . , xNj are the jth columns of X . We denote matrices with upper case letters or the
lower-case subscript notations

X = (xij) (3.2.2)

while the determinant of the array associated with (3.2.1) shall be denoted |X| or |xij .
Similar to the equality definition between vectors, two matrices are said to be equal if and only

if their elements are equal i.e.

A+B = (aij + bij) (3.2.3)

Scalar multiplication of a matrix can be expressed as

c1X = Xc1 = (c1xij) (3.2.4)

Lastly, by X̄ we shall mean the matrix whose elements are the complex conjugates of X . X is a
real matrix if the elements of X are real.

3.2.1 Vector by Matrix Multiplication

Recall the linear transformation

yi =
N∑
j=1

aijxj i = 1, 2, . . . , N (3.2.5)

where aij are complex quantities. For two vectors x and y related as above, we have

y = Ax (3.2.6)

to describe the multiplication of a vector x by a matrix X .

Homework 8. Consider the identity matrix I , so defined

I =


1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1

 (3.2.7)

i.e. I = (δij), where δij is the Kronecker delta symbol, defined as

δij =

{
0, if i ̸= j

1, if i = j
(3.2.8)

Show that

δij =
N∑
k=1

δikδkj (3.2.9)

Homework 9. Show that

⟨Ax, Ax⟩ =
N∑
i=1

(
N∑
j=1

aijxj

)2

(3.2.10)
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3.2.2 Matrix by Matrix Multiplication

Consider (3.2.6). Now, suppose our goal is to generate a second-order linear transformation so
defined

z = By (3.2.11)

which converts the components of y into components of z. To express the components of z in terms
of the components of x this, we write

zi =
N∑
k=1

bikyk =
N∑
k=1

bik

(
N∑
j=1

akjxj

)
(3.2.12)

=
N∑
j=1

(
N∑
k=1

bikakj

)
xj (3.2.13)

Introducing C = (cij) defined as

cij =
N∑
k=1

bikakj i, j = 1, 2, . . . , N (3.2.14)

we may write

z = Cx (3.2.15)

Since, formally

z = By = B(Ax) = B(Ax) = (BA)x (3.2.16)

so that

C = BA (3.2.17)

Note the ordering of the matrix product above.

Homework 10. Show that

f(θ1)f(θ2) = f(θ2)f(θ1) = f(θ1 + θ2) (3.2.18)

where

f(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(3.2.19)

Homework 11. Let

A =

[
a1 a2
−a2 a1

]
and B =

[
b1 b2
−b2 b1

]
, (3.2.20)

show that (
a21 + a22

) (
b21 + b22

)
= (a2b1 + a1b2)

2 + (a1b1 − a2b2)
2 (3.2.21)

Hint: |AB| = |A||B|,

12



3.2.3 Non-Commutativity

Matrix multiplication is not commutative, i.e. AB ̸= BA. For an example, consider the following
3× 3 matrices

A =

5 6 9
2 1 6
3 6 9

 B =

 1 4 13
23 6 24
8 3 9

 (3.2.22)

where

AB =

215 83 290
73 32 104
213 75 264

 and BA =

 52 88 150
199 288 459
73 105 171

 (3.2.23)

so that AB ̸= BA. If, however, AB = BA, we say A and B commute. Note that

(AB)−1 = B−1A−1. (3.2.24)

3.2.4 Associativity

Associativity of matrix multiplication gets preserved unlike the commutativity. So for matrices A,
B, and C, we have

(AB)C = A (BC) (3.2.25)

that is, the product ABC is unambiguously defined without the parentheses. To prove this, we write
the ijth element of AB as

aikbkj (3.2.26)

so that the definition of multiplication implies that

(AB)C = [(aikbkl) clj] (3.2.27)
A (BC) = [aik (bklclj)] (3.2.28)

which establishes the equality (AB)C and A (BC).

3.2.5 Invariant Vectors

The problem of finding the minimum or maximum of Q =
∑N

i,j=1 aijxixj for xi satisfying the
relation

∑N
i=1 x

2
i = 1 can be reduced to the problem of finding the values of the scalar λ that

satisfies the set of linear homogeneous equations
N∑
j=1

aijxj = λxi, i = 1, 2, . . . , N (3.2.29)

which possesses nontrivial solutions. Vectorizing, we have

Ax = λx (3.2.30)

Here, x signifies the direction indicated by the N direction numbers x1,x2, . . . ,xN , and we are
searching for the directions that are invariant.
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3.2.6 The Matrix Transpose

We define the transpose of the matrix A = (aij) as AT = (aji) i.e. the rows of AT are the columns
of A and vice versa. An important consequence of this is that the transformation A on the set of a
vector x is same as the transformation of the matrix AT on the set y. This is shown in the following

⟨Ax,y⟩ = y1

N∑
j=1

a1jxj + y2

N∑
j=1

a2jxj + . . .+ yN

N∑
j=1

aNjxj (3.2.31)

which becomes upon rearrangement,

⟨Ax,y⟩ = x1

N∑
i=1

ai1yi + x2

N∑
i=1

ai2yi + . . .+ xN

N∑
i=1

aiNyi (3.2.32)

= ⟨x, ATy⟩ (3.2.33)

We can then regard AT as the induced or adjoint transformation of A. An interesting property
of the transpose of a matrix product is that

(AB)T = BTAT (3.2.34)

3.2.7 Symmetric Matrices

Matrices that satisfy the relation

A = AT (3.2.35)

play a crucial role in the study of quadratic forms and such matrices are said to be symmetric, with
the property that

aij = aji (3.2.36)

Homework 12. Prove that (AT )T = A

Homework 13. Prove that ⟨Ax, By⟩ = ⟨x, ATBy⟩

3.2.8 Hermitian Matrices

The scalar function for complex vectors is the expression ⟨x, ȳ⟩. Suppose we define z = ĀTy, then

⟨Ax, ȳ⟩ = ⟨x, z̄⟩ (3.2.37)

i.e. the induced transformation is now ĀT , the complex conjugate of A. Matrices for which

A = ĀT (3.2.38)

are called Hermitian. Note that in some literature, the Hermitian matrix is often written as A⋆.

14



3.2.9 Orthogonal Matrices

This section has to do with the invariance of distance between matrices, that is, taking the Euclidean
measure of distance as the measure of the magnitude of the real-valued vector x. The prodding
question of interest is to figure out the linear transformation y = Hx that leaves the inner product
⟨x, z⟩. Mathematically, we express this problem such that

⟨x,x⟩ = ⟨Hx, Hx⟩ (3.2.39)

is satisfied for all x. We know that

⟨Hx, Hx⟩ = ⟨x, HTHx⟩ (3.2.40)

and that HTH is symmetric so that (3.2.39), gives

HTH = I. (3.2.41)

Orthogonal Matrix

A real matrix H for which HTH = I is called orthogonal.

3.2.10 Unitary Matrices

This is the measure of the distance of a complex vector, akin to the invariance condition of real-
valued matrices (3.2.41). We define the unitary property as follows:

H⋆H = I. (3.2.42)

Matrices defined as in the foregoing play a crucial role in the treatment of Hermitian matrices, such
as the role that orthogonal matrices play in symmetric matrices theory.

3.2.11 Matrix Determinant

The determinant of a scalar is same as the scalar while the determinant of a matrix shall be
inductively defined for square matrices. Suppose we have an n × n matrix A, its determinant is
defined as

|A| =
N∑
j=1

(−1)i+ja(i,j)|a(i,j)| (3.2.43)

for any value of i ∈ [1, n], where (3.2.43) is called the Laplace expansion of |A| along its ith row.
Equation (3.2.43) shows us that the determinant of the square matrix A is found in terms of the
determinants of the (n− 1)× (n− 1) matrices. Similarly, the determinants of (n− 1)× (n− 1)
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matrices are defined by (n−2)× (n−2) and so on until we get to the determinant of 1×1 matrices
which are scalars. We can also define the determinant of A as

|A| =
N∑
i=1

(−1)i+ja(i,j)|a(i,j)| (3.2.44)

for any value of j ∈ [1, n]. This is termed the Laplace expansion of A along its jth column. It
follows that

|A11| = A11 (3.2.45a)

det
[
A11 A12

A21 A22

]
= A11A22 − A12A21 (3.2.45b)

and that

det

A11 A12 A13

A21 A22 A23

A31 A32 A33

 = A11(A22A33 − A23A32)− (3.2.45c)

A12(A21A33 − A23A31)+ (3.2.45d)
A13(A21A32 − A22A31) (3.2.45e)

3.2.12 Properties of the Matrix Determinant

1. |AB| = |A||B|, where A and B are assumed to be of equal dimensions.

2. |A| =
∏N

i=1 λi, where λi are the eigenvalues of A.

3. The inverse of A is said to exist if AA−1 = I . Such a matrix is said to be non-singular. Note
that A must be a square matrix in order for it to have a determinant. A square matrix whose
inverse does not exist is said to be singular.

Take for example, [
3 0
2, 1

] [
1/3 0

−2/3, 1

]
=

[
1 0
0, 1

]
. (3.2.46)

Then we say that the two matrices on the left are inverses of one another. Among other ways of
stating the nonsingularity of A are that

• A’s rows or columns are linearly independent.

• |A| ≠ 0.

• Ax = b has a unique solution x for all b.

• The rank of A = n.

• 0 is not an eigenvalue of A.

• A−1 exists.
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3.2.13 The Matrix Trace

The trace of a matrix exists if and only of the matrix is square. It is defined as the sum of its diagonal
elements.

Tr(A) =
∑
i=1

Aii (3.2.47)

Also, the trace can be expressed in terms of the sum of the matrix’s eigenvalues,

Tr(A) =
∑
i=1

λi. (3.2.48)

The trace of a matrix product is not dependent in the order of multiplication of the matrices:

Tr(AB) = Tr(BA). (3.2.49)

3.2.14 Eigenvectors and Eigenvalues of a Matrix

A square n× n matrix A has n eigenvalues and n eigenvectors. If

Ax = λx (3.2.50)

for a scalar λ and an n× 1 vector x then we say the matrix A has eigenvalues λ and eigenvectors x.
Together, λ and x are called eigendata, the characteristic roots, latent roots, or proper numbers and
vectors of the matrix.

Homework 14. If A has eigendata (λ,x), show that A2 has eigendata (λ2,x).

Homework 15. Show that A−1 exists if and only if none of the eigenvalues of A are zero.

Homework 16. Show that the eigenvalues of A are real numbers if A is symmetric.

3.2.15 Other Matrix Properties

A symmetric n× n matrix A can be characterized as either positive definite, positive semidefinite,
negative definite, negative semidefinite, or indefinite if matrix A is

• Positive definite if xTAx > 0 for all nonzero n× 1 vectors x. That is, all the eigenvalues of
A are positive real numbers. If A is positive definite, then so is A−1.

• Positive semidefinite if xTAx ≥ 0 for all nonzero n× 1 vectors x. That is, all the eigenvalues
of A are non-negative real numbers. A positive semidefinite matrices are sometimes called
nonnegative definite.

• Negative definite if xTAx < 0 for all nonzero n× 1 vectors x. That is, all the eigenvalues of
A are negative real numbers. If A is negative definite, then so is A−1.
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• Negative semidefinite if xTAx ≤ 0 for all nonzero n×1 vectors x. That is, all the eigenvalues
of A are non-negative real numbers. A positive semidefinite matrices are sometimes called
non positive definite.

• When some of the eigenvalues of A are positive and some are negative, then the matrix is
said to be indefinite.

The singular values of matrix A are defined as

σ2(A) = λ(ATA)

= λ(ATA) (3.2.51)

For an n× n matrix A, we have a min(n,m) singular values. If n > m, then AAT will have the
same eigenvalues as ATA and an additional n−m zeroes. We do not consider the additional zeroes
to be singular values of A because A always has min(n,m) singular values.

Quiz 2. If A is n×m, what are number of eigenvalues of ATA and AAT respectively?

3.2.16 The Matrix Inversion Lemma

This is sometimes called the Woodbury matrix identity, named after Max A. Woodbury., Sherman-
Morrison formula, or the modified matrices formula. It a tool frequently used in statistics, system

identification, state estimation and control theory. Assume we have a blockwise matrix
(

A B
C D

)
where A and D are invertible square matrices, and B and C are not necessarily square. We can
define the following matrices

E = D − CA−1B

F = A−BD−1C. (3.2.52)

If E is invertible, it follows that[
A B
C D

] [
A−1 + A−1BE−1CA−1 −A−1BE−1

−E−1CA−1 E−1

]
=

[
I 0
0 I

]
. (3.2.53)

Also, if F were invertible, it follows that[
A B
C D

] [
F−1 −A−1BE−1

−D−1CF−1 E−1

]
=

[
I 0
0 I

]
. (3.2.54)

It follows that (3.2.53) and (3.2.54) are two expressions for the inverse of
(

A B
C D

)
. We must

therefore have the upper-left partitions of the two matrices equal so that

F−1 = A−1 + A−1BE−1CA−1 (3.2.55)
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and from the definition of F , we have(
A−BD−1C

)−1
= A−1 + A−1B

(
D − CA−1B

)−1
CA−1 (3.2.56)

An alternative statement of the matrix inversion lemma is(
A+BD−1C

)−1
= A−1 − A−1B

(
D + CA−1B

)−1
CA−1 (3.2.57)

Quiz 3. Verify the expressions in (3.2.53) and (3.2.54).

Example 1. Suppose that at Brandeis, you took three courses in your Freshman year namely,
RBOT 101, RBOT 103, and RBOT 105 where you got 90%, 85%, and 86% respectively. In your
Sophomore year, you took RBOT 201, RBOT 203, and RBOT 205, where you got 65%, 68%, and
92% respectively, and in your junior year, you decide to retake your Sophomore classes, where your
scores increased by 10%, 5%, on the first two courses and decreased by 8% in the last course. Your
GPA each year increased by 4%, 3.5% and 2.5% respectively. Given your analytical prowess, you
decide to model each year’s GPA changes with the equation z = au+ bv + cw, where u and v and
w are the scores/grades you got as percentages and a, b, and c are unknown constants. To find the
unknown constants, you figure you need to invert the matrix

A =

 90 85 86
65 68 92
71.5 71.4 84.64

 (3.2.58)

so that

A−1 =

 23/20 155/104 −145/52
−207/136 −569/274 6725/1768

5/16 205/416 −175/208

 (3.2.59)

It follows that the unknown constants are

X = A−1

 4
7/2
5/2

 =

 2959/1040
−2693/700
725/832

 (3.2.60)

As a result, you are able to determine a model which allows you to predict future GPA changes
based on how hard you work, sleep, engage in social activities. You can better allocate your time
resource and improve your grades in the following years.

Suppose that in the aftermath of generating this model, you now realize that your grade in RBOT
201 the second year was 86% rather than 65%, this means that in order to find the constants, you
want to invert

Ā =

 90 85 86
86 68 92
71.5 71.4 84.64

 . (3.2.61)
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Rather than invert all the matrix all over, you decide to apply a mathematical trick leveraging the
inversion lemma. You write Ā = A+BD−1C, where

B =
[
0 21 0

]T
, C =

[
1 0 0

]
, and D = 1 (3.2.62a)

so that

Ā−1 =
(
A+BD−1C

)−1 (3.2.63)

= A−1 − A−1B
(
D + CA−1B

)−1
CA−1 (3.2.64)

The (D + CA−1B)
−1 term turns out to be a scalar so that

Ā−1 =

0.0506 0.0656 −0.1228
0.0239 −0.073 0.0551
−0.065 0.0035 0.0741

 (3.2.65)

X = Ā−1

 4
7/2
5/2


=

 51/407
−134/6037
−148/2361

 (3.2.66)

Here, the matrix inversion lemma may not be necessary since the size of the matrix is small.
However, if the matrix had a larger size, the computational savings of using the matrix inversion
lemma becomes appreciated.

Homework 17. Using the same linear model employed in 1, suppose that on a typical weekend,
you go to your local Farmers’ market and bought tomatoes, bell peppers, and blue berries for $35%,
$18%, and $32% respectively; on your way home, you drove to your local grocery store and found
that the prices for each item were actually increased by 10%, 25% for each of tomatoes, and bell
peppers, and decreased by 68% for the blue berries. You decide to buy more blueberries that cost a
total of $50 at your local grocery; and discovered that $5 worth of tomatoes bought at the Farmers’
market was defective and had to be discarded. Can you compute a model that allows you to predict
future prices for good tomatoes, blue berries and bell peppers at your local Farmers’ market?
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CHAPTER 4

REGISTRATION OF OBJECTS IN ROBOTICS.

In this chapter, we are concerned with the problem of optimally aligning two vectors, a model
point/shape to a “sensed" or measured point/shape in space e.g. ν1, ν2 ∈ Rn to one another with
the minimal amount of errors. To transform between two points in the Cartesian coordinate system
is akin to the problem of solving a rigid body motion problem where that yields a rotation and a
translation. In addition, the scaling factor may be unknown. For translation, there are three degrees
of freedom, while rotation has another three viz., the direction of the axis about which we are
rotating, the angle of rotation itself, and the scaling. Three points in either coordinate systems give
us nine constraints (with each contributing three coordinates), more than enough to find the seven
unknowns. If we discard two of the constraints, we end up with seven equations in seven unknowns
that can be developed to allow us to recover the parameters.

There exists many methods of solving this problem. Most of them leverage clever optimization
methods and we will be looking into these in this chapter. We could follow the homogeneous
transformation scheme we presented in Chapter 1, but we would not have an optimal solution. A
popular technique in computer geometry and computer vision is to use the iterative closest point
algorithm(ICP), an algorithm by Paul Besl and Neil McKay developed out of General Motors
Laboratory in the 1990’s (Besl and McKay, 1992). This is more appropriate for 3D tasks and it
describes a generic, representation method for the accurate and computationally efficient registration
of three-dimensional (3-D) shapes. The ICP algorithm always converges monotonically to the
nearest local minimum of a mean-square distance metric such as an l2 distance, and this convergence
rate is of the order of a few iterations. An important property of the ICP algorithm is that it can
register data from unfixtured rigid objects with an ideal geometrical model prior to shape inspection.
So, if we want to figure out that two geometric representations are congruent, estimate the motion
between them in real-time where the correspondences are not known, ICP tends to be really good
for such operations.

Now, suppose our dataset is not a complex geometric primitive1, but rather a set of two vectors
such that we are tasked with the problem of determining the best unconstrained transformation
between the two sets of coordinates. We can formulate the problem into a constrained optimization
problem and thereafter, through clever factorization, turn the problem into a simple one of factorizing
the unconstrained transformation into a symmetric and orthogonal matrix by which we may solve
for the optimal rotation and translation. The algorithm we shall be looking into will be the one
that was invented in crystallography in 1976 and updated in 1978 by Wolfgang Kabsch, today
dubbed the Kabsch algorithm (Kabsch, 1978). Kabsch showed that a direct solution was possible,
irrespective of the non-linear character of the problem.

While other newer algorithms exist, these are the two popular algorithms that we shall be
concerning ourselves with in this chapter.

1We shall refer to a geometric primitive as a primitive 3D shape such as a cylinder, square, prism and the likes.
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4.1 Preliminaries

We will denote the real line by R. An example of a metric space is the Euclidean n-space Rn,
which consists of n−tuples x = (x1, x2, . . . , xn) where each xi ∈ R. We shall mean an Rn metric
space to have the metric

d(x, y) =

√√√√ n∑
i=1

(yi − xi)2. (4.1.1)

If n = 0, then R0 is taken to be a single point 0 ∈ R.
A manifold is “locally" similar to one of the example metric spaces Rn. Precisely, a manifold is

a metric space M with the property that, if x ∈ M ., then there is some neighborhood U of x and
some integer n ≥ 0 such that U is homeomorphic2 to Rn.

A simple example of a manifold is Rn: for each x ∈ Rn we can take U to be everything in Rn.

Quiz 4. Suppose we supply Rn with an equivalent metric, which makes it homeomorphic to Rn,
would it also be a manifold?

Another example of a metric space is an open ball in Rn, wherein one can take U to be the entire
open ball since an open ball in Rn is homeomorphic to Rn. Similarly, an open subset V of Rn is a
manifold, i.e. for each x ∈ V we can choose U to be some open ball with x ∈ U ⊂ V .

The Euclidean distance d(r1, r2) between two points r1 = (x1, y1, z1) and r2 = (x2, y2, z2) is
given by

d(r1, r2) = ∥r1 − r2∥ =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2. (4.1.2)

Suppose that P is a point set with Np points denoted as pi : P = {pi} for i = 1, . . . , Np. The
distance between the point q and the point set P is

d(q, P ) = min
i∈{1,...,Np}

d(q,pi). (4.1.3)

We find that the closest point pj of P satisfies d(q,pj) = d(q, P ).
Suppose that we have a line segment that connects the points, (r1, r2), the distance between the

point r and the line segment l is

d(p, l) = min
x+y=1

∥xr1 + yr2 − p∥ (4.1.4)

where x, y ∈ [0, 1].

2A homeomorphic mapping means intrinsic topological equivalence between e.g. objects. Two objects are homeo-
morphic if they can be deformed into each other by a continuous, invertible mapping. Such a homeomorphism ignores
the space in which surfaces are embedded, so the deformation can be completed in a higher dimensional space than
the surface was originally embedded. Mirror images are homeomorphic, as are Möbius strip with an even number of
half-twists, and Möbius strip with an odd number of half-twists (Weisstein, Weisstein).
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Homework 18. Find a closed-form expression for the solution to (4.1.4).

Now, if instead of a line segment, suppose we have a set of Nl line segments denoted li, and let
L = {li} for i = 1, . . . , Nl. The distance between the point p and the line segment set L is

d(p, L) = min
i∈{1,...,Nl}

d(p, li). (4.1.5)

The closest point yj on the line segment set L satisfies d(p, yj) = d(p, L). Let g be a triangle with
the following coordinates r = (x1, y1, z1), r2 = (x2, y2, z3), and r3 = (x3, y3, z3). The distance
between the point p and the triangle g is

d(p, g) = min
x+y+z=1

∥xr1 + yr2 + zr3 − p∥ (4.1.6)

where x ∈ [0, 1], y ∈ [0, 1], and z ∈ [0, 1].

Homework 19. Find a closed-form expression for the problem in (4.1.6).

Now, if we have a collection of Ng triangles G, denoted by gi such that G = {gi} for i =
1, . . . , Ng. The distance between the point p and the triangle set G is

d(p, G) = min
i∈{1,...,Ng}

d(p, gi), (4.1.7)

and the closest point yj on the triangle set G satisfies the equality d(p, yj) = d(p, G).

4.1.1 Distance between a Point and a Parameterized Entity

We define a parametric curve and a parametric surface as single parametric entities r(u), where
u = u ∈ R1 denotes a parameterized curve, and u = (u, v) ∈ R2 denotes parametric surfaces. We
will evaluate a curve within an interval domain e.g. [x, y] while the evaluation domain of a surface
can be an arbitrarily closely-connected region in a plane.

We will take the distance from a given point p to a parametric entity E to be

d(p, E) = min
r(u)∈E

d(p, r(u)) (4.1.8)

To compute the point-to-curve and point-to-surface distances, let F be the set of Ne parametric
entities denoted by Ei, and let F = {Ei} for i = 1, Ne> The distance between a point p and the
parametric entity set F is

d(p, F ) = min
i∈{1,...,Ne}

d(p,Ei). (4.1.9)

To find the distance from a point to a parametric entity, we can create a simplex-based approx-
imation for e.g. a line segment or triangle. For a parametric space curve C = {r(u)}, we can
compute a polyline L(C, δ) such that the piecewise-linear approximation never deviates from the
space curve by more than a prespecified distance δ. If we tag every point of the polyline with a
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corresponding u argument values of the parametric curve, we can obtain an estimate of the closest
point from the line segment set.

In a similar vein, for a parametric surface S = {r(u, v)}, one can compute a triangle set G(S, δ)
such that the piecewise triangular approximation never deviates from the surface by more than
a prespecified distance δ. If we tag each truangle vertex with the corresponding (u, v) argument
values of the parametric surface, we can find the Ua, va) of the argument values of the closest point
from the triangle set. The initial value of ua is assumed to be available such that r(ua) is very close
to the closest point on the parametric entity.

We can employ a Newtonian minimization approach for solving the point to parametric entity
problem when a reliable starting point ua is available. The scalar objective function to be minimized
is

f(u) = ∥r(u)− p∥2. (4.1.10)

Suppose ∆ = [∂/∂u]T is the vector differential gradient operator, the minimum of f must occur at
∆f = 0. If we have a surface, then we must have ∆f = [fu, fv]

T , with the 2-D Hessian matrix is
given by

∆∆T (f) =

[
fuu fuv
fuv fvv

]
(4.1.11)

where the partial derivatives of the objective function is

fu(u) = 2rT
u (u)(r(u)− p) (4.1.12a)

fv(u) = 2rT
v (u)(r(u)− p) (4.1.12b)

fuu(u) = 2rT
uu(u)(r(u)− p) + 2rT

u (u)ru(u) (4.1.12c)

fvv(u) = 2rT
vv(u)(r(u)− p) + 2rT

v (u)rv(u) (4.1.12d)

fuv(u) = 2rT
uv(u)(r(u)− p) + 2rT

u (u)rv(u). (4.1.12e)

And the update relation for the curve and surface case is

uk+1 = uk −
[
∆∆T (f)(uk)

]−1
∆f(uk) (4.1.13)

where u0 = ua.

4.1.2 Distance between a Point and an Implicit Entity

An implicit geometric entity is the zero set of a possibly vector-valued multivariate function
g(r) = 0. Examples of this distance could be a point-to-curve or point-to-surface distance. The
important thing to bear in mind is that the distance metric for an individual entity, once defined,
makes the sets of implicit entities straightforward to implement. The distance from a given point p
to an implicit entity I is given by

d(p, I) = min
g(r)=0

d(p, r) = min
g(r)=0

∥r − p∥. (4.1.14)
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It is helpful to note that when computing the implicit entity distance from a point, the solution is
never closed-form and are usually involved. Suppose that J is the set of NI parametric entities,
represented by Ik and J = {Ik} for k = 1, NI . The distance between a point p and the implicit
entity set J is given by

d(p, J) = min
k∈{1,...,NI}

d(p, Ik), (4.1.15)

and the closest point yj on the implicit entity Ij satisfies the equality d(p,yj) = d(p, J). In order to
compute the distance from a point to an implicit entity, we can create a simplex-based approximation
such as line segments or triangles. The point-to-line or point-to-triangle set distance yields an
approximate closest point ra which can be used to compute the exact distance.

Typically, we must solve a constrained optimization problem when finding the closest point on
an implicit entity, say g(r) = 0 to a point p in order to minimize a quadratic objective function that
is subject to a nonlinear constraint

min f(r) = ∥r − p∥2 (4.1.16)

where g(r) = 0 We can form the augmented Lagrange multiplier system of equations to solve the
above, i.e.

∆f(r) + λT∆g(r) = 0

g(r) = 0 (4.1.17)

where ∆− [∂/∂r]T .

4.1.3 Quaternions

The unit quaternion is a four vector qR = [q0, q1, q2, q3]
T , where q0 ≥ 0, and q20 + q21 + q22 + q3 = 1,

used to parameterize a rotation matrix. The 3 × 3 rotation matrix generated by a unit rotation
quaternion is given by

R = qT
RqR =

q20 + q21 − q22 − q3 2(q1q2 − q0q3) 2 (q1q3 + q0q2)
2(q1q2 + q0q3) q20 + q21 − q22 − q3 2(q2q3 − q0q1)
2(q1q3 + q0q2) 2(q2q3 + q0q1) q20 + q23 − q21 − q2

 (4.1.18)

For more on unit quaternions, see ??.

4.2 Closed-form Solution using Least Sum of Squares Errors

As we will see from our sensors, measurements are often inexact, which means we need a way to
enforce greater accuracy when determining the transformation parameters. Therefore, we will need
more than three points. One approach is to minimize the sum of squares of residual errors using
various empirical, graphical, and numerical procedures. Because these are iterative in nature, they
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Figure 4.1: Given two coordinate systems, we measure a number of points in the two different
coordinate systems. The goal is to find the transformation between the two points.

lead to an approximate solution and while the answer is better, it is imperfect.Iterative methods are
repeatedly applied until the residual error is negligible.

There are closed-form solutions which present the absolute orientation in a single step with
the best possible transformation given the measurements of the points in the two coordinate
systems (Horn, 1987; Kabsch, 1978). With these closed-form least sum of squares methods, we do
not need to find an initial good guess as is the case for iterative methods.

4.2.1 Kabsch Algorithm

Suppose we have two sets of vectors xn and yn where n = 1, . . . , N , and weight wn that corre-
sponds to each pair xn and yn. Our goal is to find an orthogonal matrix ∪ = (uij) which minimizes
the cost function

C =
1

2
Σnwn (∪xn − yn)

2 (4.2.1)

subject to ∑
k

ukiukj − δij = 0 (4.2.2)

where δij are the elements of a unit matrix. When there is a translation, we can find the centroid of
the vector sets to the origin.
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In order to solve the problem, we may introduce a symmetric Lagrangian matrix of multipliers,
L = (lij) and an auxiliary function as follows

D =
1

2
Σi,jlij (Σkuklukj − δij) (4.2.3)

so that we can form the Lagrangian, E = C + D. For each condition in eq. 4.2.2, we have an
independent number lij so that the constrained minimum of C is part of the free minima of D. A
free minimum of D can occur if

∂E

∂uij

=
∑
k

uik (Σnwnxnkxnj + lk,j)−
∑
n

wnynlxnj = 0 (4.2.4)

and

∂2E

∂umk∂uij

= δmi (Σnwnxnkxnj + lkj) (4.2.5)

are elements of a positive definite matrix xnk and ynk are the kth elements of xn and yn. Now,
suppose we have a matrix R = (rij) and a symmetric matrix S = (sij), such that

rij =
∑
n

wnynixnj (4.2.6)

and

sij =
∑
n

wnxnixnj. (4.2.7)

If the matrix (4.2.5) has 1 along its diagonal, we must have the minimum of the Lagrangian E to
mean that S + L is positive definite, and (4.2.4) translates to

U. (S + L) = R. (4.2.8)

Our goal would be to find a matrix L of Lagrange multipliers so that ∪ is orthogonal. We can do
this by multiplying both sides of (4.2.8) by their transposed matrices so that we can get rid of matrix
∪ as follows:

U(S + L)T (S + L) = (S + L)TUTU(S + L)

= (S + L)(S + L) = RTR. (4.2.9)

Now, we know that RTR is a symmetric positive definite matrix so that we can find the eigenvalues
λk and eigenvectors vk using standard procedures e.g. single value decomposition. Thus, since
S + L is symmetric and positive definite, it must have normalized eigenvectors, vk and positive
eigenvalues

√
λk so that the Lagrange multipliers are

lij = Σk

√
λk; vkivki − sij (4.2.10)
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where vki signifies the ith component of vk and the effect of the orthogonal matrix U on these
eigenvectors ak is determined from (4.2.8) which defines the unit vectors qk as

qk = U.vk =
1√
λk

U(S + L)vk =
1√
λk

Rvk. (4.2.11)

The solution to find the constraint minimum of the minimum of the proposed cost function in
(4.2.1) is then given by,

Kabsch’s Optimal Rotation

uij = Σkbklakj. (4.2.12)

4.2.2 Examples

There are clever ways of solving the optimal rotation between two vectors.
There is a jupyter notebook at the following link: Kabsch Algorithm and Implementation. For

your convenience, it is included as a pdf file below.
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Kabsch

December 15, 2020

0.1 Overview

Throughout this course, we will be leveraging Google’s Colab Notebooks to reinforce the concepts
we have been learning in class. For an introduction into how to use collab, in case you are not
already familiar with it, have a go at this overview of Colaboratory features.

0.1.1 Kabsch’s Algorithm

As stated in the course notes, the Kabsch algorithm is a very versatile tool for optimally aligning
two vectors to one another. In this example, we are provided with two point sets - a model set
and a point (measured) set, and our goal would be to compute the optimal rotation matrix U that
allows us to efficiently rotate the point set into the model set.

0.1.2 Load the Measured Point Set

For the example we are interested in, we have measured the position of an object in 3D space
using a Northern Digital Inc’s Polaris Camera. The points are collected as a set of three-
dimensional (3D) points in space, arranged in rows of (x,y,z) tuples and they are as given by
the measured_points_full function below:

In [9]: # Here, we are importing all the libraries we will be using in these notebook
import os
import numpy as np
from os.path import join, expanduser
import scipy.linalg as LA

In [8]: def measured_points_full():
# these are the (x,y,z) tuples
pre_calib = {

'0,0.0': [-369.88531494140625, 101.30087280273438, -1960.3780517578125],
'200,0': [-369.8937683105469, 101.32111358642578, -1960.302734375],
'0,0.1': [-369.8780212402344, 101.32646942138672, -1960.353271484375],
'220,0': [-369.8780212402344, 101.32646942138672, -1960.353271484375],
'0,0.2': [-367.74957275390625, 101.65080261230469, -1953.7960205078125],
'240,0': [-370.8532409667969, 101.074951171875, -1942.255126953125],
'0,0.3': [-366.7646484375, 101.17594909667969, -1949.628173828125],
'255,0': [-381.33837890625, 97.10205078125, -1920.667236328125],
'0,0.4': [-368.0609436035156, 100.83153533935547, -1953.857177734375],
'0,220': [-382.8047790527344, 100.34918975830078, -1944.807373046875],
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'0,0.5': [-369.7981262207031, 100.01362609863281, -1958.6396484375],
'0,240': [-382.71600341796875, 99.87244415283203, -1945.184326171875],
'0,0.6': [-370.24237060546875, 98.66026306152344, -1957.2281494140625],
'0,255': [-382.71600341796875, 99.87244415283203, -1945.184326171875],
'0,0.7': [-370.1295166015625, 98.33242797851562, -1956.1732177734375],
}

def exp(x):
'This function expands the array along the second dimension so that '
return np.expand_dims(x, 1)

# sort pre-recorded points in the order.
measured_calib = np.array(([[

pre_calib['0,0.0'],
pre_calib['0,220'],
pre_calib['0,0.1'],
pre_calib['0,240'],
pre_calib['0,0.2'],
pre_calib['0,255'],
pre_calib['0,0.3'],
pre_calib['200,0'],
pre_calib['0,0.4'],
pre_calib['220,0'],
pre_calib['0,0.5'],
pre_calib['240,0'],
pre_calib['0,0.6'],
pre_calib['255,0'],
pre_calib['0,0.7'],

]]))
"""
As it is currently, our array has 3 dimensions. We need to reduce the size of the
array alongthe singleton dimention for efficient matrix manipulations, hence why we
are squeezing the matrix

"""
measured_calib_zero_centered = np.array(([0, 0, 0]))
for i in range(len(measured_calib)):

' find the centroid of the points '
centered = measured_calib[i] - np.min(measured_calib, 0)
measured_calib_zero_centered = np.vstack((measured_calib_zero_centered, centered))

measured_calib_zero_centered = measured_calib_zero_centered[1:]

return measured_calib_zero_centered

0.1.3 Load the model set

It now behooves us to load the model set so we can begin our Kabsch computation. For this, we
have them saved in a numpy array. Therefore, we will import numpy as well as associated and
needed libraries necessary for our computation.
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In [12]: model_points = np.array((
[[-1755.87720294, 866.87898685, 283.0353811 ],
[-1755.76266696, 866.8540598, 282.9782946 ],
[-1758.9453555, 857.8363267, 296.13326449],
[-1759.02853104, 865.92774874, 283.52951211],
[-1777.42772925, 826.8692224, 293.38292356],
[-1784.34737705, 836.7521396, 281.74652354],
[-1777.77335781, 826.96331701, 292.88727602],
[-1783.56649649, 836.45510137, 281.56390533],
[-1783.53245361, 836.46510174, 281.54257437],
[-1783.6947516, 836.55773878, 281.52364873],
[-1783.58522171, 836.46979064, 281.55684051],
[-1783.66230977, 836.54098015, 281.50709046],
[-1783.52724697, 836.44927943, 281.56064662],
[-1783.59681243, 836.52118858, 281.52347799],
[-1783.44129296, 836.40624764, 281.5671847 ]]

))

0.1.4 Get the point set from the function above.

In [13]: point_set = measured_points_full()

0.2 Now, let us calculate the transformation as we described in our notes

In [23]: def Kabsch(P=None, Q=None, augment_Q=True, center=True):
'''P and Q must be nX3. This rotation is accurate.
Rotates points in P optimally to measured reference points in Q

Params
======
Q: Points to be rotated into
augment_Q: Whether Q was recorded without the zero/home points embedded between successive readings

'''
if not isinstance(P, np.ndarray) or not isinstance(Q, np.ndarray):

P, Q = prepro()

# calculate the centroids
if center:

'This only for computed old points'
q0 = np.mean(Q, 1)
p0 = np.mean(P, 1)

Q_ctr = Q - np.expand_dims(q0, 1)
P_ctr = P - np.expand_dims(p0, 1)

else:
Q_ctr, P_ctr = Q, P
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# add the zero points to preconputed control points
if augment_Q:

'This only for computed old points'
Q_aug = np.array(([[0,0,0]]))
for i in range(Q_ctr.shape[0]-1):

Q_aug = np.append(Q_aug, np.expand_dims(Q_ctr[i+1], 0),0)
Q_aug= np.append(Q_aug, np.expand_dims(Q_ctr[0], 0),0)

Q_ctr = Q_aug[1:]

Hmat = P_ctr.T@Q_ctr
U, S, V = LA.svd(Hmat)
d = np.sign(np.linalg.det(V@U.T))
M = np.eye(3); M[-1][-1] =d
opt_rot = V@M@U.T
opt_trans = Q_ctr.T- opt_rot@P.T

return opt_rot, np.mean(opt_trans, 1)

0.2.1 Test the algorithm

Remember that we are rotating the points in point_set into model_points. So we would go ahead
and call the Kabsch function above as follows:

In [24]: Rot, Trans = Kabsch(model_points, point_set, augment_Q=False, center=False)

In [25]: print(Rot)

[[1. 0. 0.]
[0. 1. 0.]
[0. 0. 1.]]

In [26]: print(Trans)

[1775.85125374 -842.66314863 -284.40256961]
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Homework 20. For the following model points P and measured poinyts Q, compute the optimal
rotation matrices for moving points Q into point P . For the three assignments below, report your
results within a colab notebook, download the colab notebook as a pdf and upload on Latte.

1.

P =

−1 0 0
0 0 0
0 1 1

 , Q =


0 −1 −1
0 −1 0
0 0 0
−1 0 0

 (4.2.13)

2.

P =


3172.79468418 727.52462347 7122.70450243
165.28953155 −3552.32467068 −2045.15346584
5292.45250241 −1748.52037006 −6181.40300009
1893.07584225 5897.19719625 3130.41287776

 , (4.2.14)

Q =


1774.11606309 −4241.11341178 5259.04277742
6079.70499031 −98.14197972 −3442.0914569
813.07069876 3334.26289147 −6112.55652513
1856.72080823 2328.86927901 6322.16611888


3. For a toy problem, measure the coordinates of an object in the world using your favorite

measuring instrument (a 3D camera sensor, iPhone app (e.g. ArkIt), android app e.t.c.). Be
sure to record the position of the object at multiple points in world coordinates and make sure
that the physical locations of these points are known (these are your model points). Then
compute the optimal rotation and translation between the model and measured points.

4.2.3 Corresponding Point Set Registration with Quaternions

While the Kabsch algorithm does yield an optimal solution for the rotation of two sets of points that
correspond to one another, it leverages the orthonormal rotation matrix with positive determinant in
its computations. This suffers from the non-uniqueness of solutions that arise from reflections. Using
matrices straightforward is problematic because we need six nonlinear constraints to guarantee
the orthonormality of the rotation matrix. To yield a least squares rotation, and translation, we
will generally avoid singular value decomposition (SVD) methods in two and three dimensions
since we generally do not want reflections. For n > 3 in any n-dimensional application, the SVD
approach, based on the cross-covariance matrix of two point distributions, does generalize easily to
n dimensions.

Let t = [tx, ty, tz]
T denote the translation vector and qR = [q0, q1, q2, q3]

T denote the unit
quaternion. Suppose further that the complete registration set of vectors is H = [qR|t]T . Now,
let Dl = {dli} be the measured set of points which we want to align with the model point set
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Dr = {dri}, where the cardinality, Nl of Dl is same as that of Dr, Nr, and where each point dli

corresponds to point dri with the same index. We are looking for a transformation of the form

Dr = aR(Dl) + t (4.2.15)

from the left to the right coordinate system as shown in ??, where a is a scale factor, and t is
the translation vector offset. R(Dl) denotes the rotated version of Dl. Since we do not expect to
have a perfect data, it will be difficult to find a scale factor, a translation and a rotation so that the
transformation equation is satisfied for every point. Thus, there will be a residual error,

ei = dr,i − aR(dl,i)− t (4.2.16)

and the cost function will minimize the sum of squares is given as,

f(s) = min ∥ei∥2. (4.2.17)

Finding Translation

We can find the translation, scale and finally rotation by systematically varying the total error.
Consider the centroids of the measured and point sets,

D̄l =
1

n

n∑
i=1

dl,i, D̄r =
1

n

n∑
i=1

dr,i, (4.2.18)

so that the new coordinates are

d′
l,i = dl,i − d̄l, d′

r,i = dr,i − d̄r. (4.2.19)

If we write t′ = t− t̄+ aR(dl), it follows that we can write the error as

ei = d′
r,i − aR(d′

l,i)− t′ (4.2.20)

and the sum of squares of errors becomes
n∑

i=1

∥d′
r,i − aR(d′

l,i)− t′∥2 ≡
n∑

i=1

∥d′
r,i − aR(d′

l,i)∥2 − 2t′.
n∑

i=1

[
d′
r,i − aR(d′

l,i)
]
+ n∥t′∥2.

(4.2.21)

The middle term on the right hand side vanishes since the measurements are referred to the centroid
and we are left with the first and the third terms. The first term is independent of t′ and the last term
cannot be negative given the squared norm. Thus, the total error to be minimized with t′ = 0 is

Optimal Translation

t = d̄r − a R(d̄l) (4.2.22)
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In other words, the translation is the difference between the right centroid and the scaled and
rotated left centroid.

We can now rewrite the error term from (4.2.20) as

ei = d′
r,i − aR(d′

l,i) (4.2.23)

since t′ = 0. So the total error to be minimized is
n∑

i=1

∥d′
r,i − aR(d′

l,i)∥2. (4.2.24)

Finding Scale

Expanding (4.2.24), we find that
n∑

i=1

∥d′
r,i∥2 − 2a

n∑
i=1

d′
r,i.R(d′

l,i) + s2
n∑

i=1

∥d′
l,i∥2, (4.2.25)

and since rotation preserves distances, ∥R(d′
l,i)∥2 = ∥d′

l,i∥2, we can write the foregoing as Sr −
2sD + s2Sl, where Sr and Sl are the sums of the squares of the measurement vectors (relative to
their centroids), while D is the sum of the dot products of corresponding coordinates in the right
system with the rotated coordinates in the left system. Completing the square in s, we find that(

a
√
Sl −D/

√
Sl

)2
+
(
SrSl −D2

)
/Sl. (4.2.26)

If we minimize with respect to scale a when the first term is 0 or a = D/Sl, we find that

s =

∑n
i=1 d

′
r,i ·R(d′

l,i)∑n
i=1 ∥d′

l,i.∥2.
(4.2.27)

Finding rotation

To find the optimal rotation, we note that the cross-covariance matrix Σlr between the sets Dl and
Dr is given by

Σlr =
1

Nl

Nl∑
i=1

[
(dl,i − d̄l)(dr,i − d̄r)

T
]

(4.2.28)

=
1

Nl

Nl∑
i=1

[
dl,id

T
r,i

]
− d̄ld̄

T
r . (4.2.29)

The cyclic components of the skew symmetric matrix Qij =
(
Σlr − ΣT

lr

)
ij

are used to construct

the column vector ∆ = [Q23 Q31 Q12]
T , so that the vector is then used to form the symmetric

matrix

Q(Σlr) =

[
tr(Σlr) ∆T

∆ Σlr + ΣT
lr − tr(Σlr)I3

]
(4.2.30)
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where I3 is the 3 × 3 identity matrix and the unit eigenvector qR = [q0 q1 q2 q3]
T that

corresponds to the maximum eigenvalue of Q(Σlr) is chosen as the optimal rotation.

4.3 Iterative Closest Point

The Iterative Closest Point (ICP) algorithm applies to the following sets of problems (i) sets of
points, (ii) sets of line segments, (iii) sets of parametric curves, (iv) sets of implicit curves, (v) sets
of triangles, (vi) sets of parametric surfaces, and (vii) sets of implicit surfaces. To properly describe
the algorithm, we choose a data, P , which is to be moved or registered/positioned to best align
with a “model" data X . It is best if the data and model shape are decomposed into a point set
if they are not already in point set form. For triangles and line segments, we use their vertices
and endpoints respectively; while for curves and surfaces, an approximation to the vertices and
endpoints of triangles and lines are used. Suppose we denote, as before, the number of points in the
data shape as Np and Nx as the number of points, line segments, or triangles in the model shape.
The distance metric d between an individual data point p and a model shape X will be denoted

d(p, X) = min
x(X)

∥x− p∥. (4.3.1)

The closest point in X that yields the minimum distance is denoted y such that d(p,y) =
d(p, X), where y ∈ X .

Quiz 5. 1. What is the worst case asymptotic computation for the closest point in X and why?

2. What is the expected worst case computation time?

When the closest point computation from p to X is performed for each point P , that process
is worst case O(Np, Nx). Let Y denote the resulting set of closest points, and C the closest point
operator, i.e.

Y = C(P,X). (4.3.2)

For the resultant corresponding point set Y , the least squares registration can be computed as

(q, d) = Q (P, Y ) . (4.3.3)

and the positions of the data shape point set are] then updated via P = q(P ).
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Algorithm 1 ICP Algorithm

1: Given point set P with Np points {pi} from the data shape and the model shape X with Nx

supporting geometric primitives: points, lines, or triangles
2: Start the iteration with P0 set to P , q0 = [1, 0, 0, 0, 0, 0, 0]T and k = 0 and define the registration

vector relative to the initial data set P0 so that the final registration denotes the complete
transformation.

3: Given a mean-square error with preset threshold τ > 0, and a desired registration accuracy, d
4: while τ > dk − dk+1 do
5: Compute the closest points, Yk = C(Pk, X) (cost: O(No, Nx), worst-case: O(NplogNx)

average).
6: Compute the registration: (qk, dk) = Q(P0, Yk) (cost: O(Np)).
7: Apply the registration, Pk+1 = q(P0) (cost: O(Np)).
8: end while
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CHAPTER 5

STATE ESTIMATION

The next few topics in this course shall involve the quantification of uncertainty in order to enable
a robot navigate, move, or understand its environment via visual or audio sensors. In order to do
justice to this topic, we shall soon find out that the concept of putting a value or percentage on how
sure we are about a robot’s environment shall be very helpful in effective control of our robots. Thus
the concept of probability shall greatly aid us in quantifying uncertainty. Even so, we introduce
the concept of states, grounded in a mathematical theory that allows the engineer to implement a
state through discrete-time systems (since we assume that most implementations shall be done on
digital computers). By the state of a system, we shall loosely mean “those variables that provide a
complete representation of the internal condition or status of the system at a given time instant." In
this sentiment, the states of a motor system may mean currents that flow through the inductive coils,
the position and speed of its motor shaft, or the voltage across the coils of a solenoid valve. The
states of a military power may include the number of its aircraft carriers, the size and horsepower of
its nuclear submarines, the number of enlisted servicemen in its forces e.t.c. For a biological system,
the states might include blood sugar levels, heart and respiration rates, or body temperature.

Robot systems may include mobile platforms for extraterrestrial navigation, robotics arms in
assembly lines, autonomous cars, or actuated surgical devices that assist surgeons. Our goal is to
treat uncertainty. Uncertainty occurs if the robot lacks important information that hinders it from
carrying out assigned tasks. We may classify this uncertainty into five different factors, viz.,

1. Environments. The physical world is inherently unpredictable. While the degree of uncer-
tainty in well-structured environments such as assembly lines is small, environments such as
highways and private homes are highly dynamic and unpredictable.

2. Sensors. Most sensors have limitations in their perceptual ability arising from noise and the
range and the resolution of the sensors. For example, environmental disturbances, weather,
lighting conditions limit the information that can be extracted from sensors. Secondly, as to
range and resolution, cameras cannot see through walls despite the perceptual range that the
spatial resolution of the camera is limited.

3. Models. In general, models are at best an approximation or a mathematical representation or
abstraction of the physical world. As such, model errors are a source of uncertainty that need
to be incorporated in modeling robotics problems.

4. Computation. Being real-time systems, robots require a lot of computation in order to be
able to achieve timely-response through sacrificing accuracy.

We will estimate states as they shall represent latent or underlying variables that influence
the physical or chemical or financial properties of the system. And in motivating the study of
a system’s state, we can resolve to many weapons in our estimation arsenal which may include
linear state filtering (the simple Kalman filter), nonlinear state filters (the extended Kalman filter,
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unscented Kalman filter e.t.c.), Bayesian estimation, and frequentist/classical estimation approaches.
In general, state estimation is an important topic to the engineer because:

• We may need to implement a feedback controller in order to regulate a system’s behavior. If
the application was for a surgeon to regulate blood pH levels, we may need to estimate the
system’s state. Or if the challenge is to adequately position a patient’s head to a position in
3D space during cancer stereotactic radiosurgery, we may need to estimate the position and
orientation of the patient’s head and neck in the inertial frame.

• If the states in question are curious enough, we may want to measure these states to understand
the faults tolerance of the system in order to perform a good fault identification and prognosis.
For example, we might want to estimate the internal states of an aircraft system in flight such
that if an aircraft engine fails during flight, we can safely monitor system states in real-time
in order to determine how long we can continue flying the aircraft or if we should quickly
find a near-by airport where we could land the aircraft for maintenance.

In our treatment, therefore, we shall give a brief introduction to linear systems theory, touch upon
standard linear filters and then proceed to treat probability theory before we treat nonlinear systems,
and decision-making.

5.1 Linear Systems

State-space systems are very important in engineering systems because they allow us (i) to gain
insight into the characteristics of the system, (ii) be able to predict future behaviors of the system,
(iii) identify the controllable and observable states of the system. The mathematical model of the
process allows us to infer the information about the process. State-space models can be classified
into linear and nonlinear systems. While most real-world systems are nonlinear, the tools that exist
for analyzing and synthesizing nonlinear systems are well-developed and sophisticated that most
nonlinear systems can be approximated by linear systems in order to exercise good control and
estimation for real-world applications.

A continuous-time, deterministic linear system can be described by the equations

ẋ = Ax+Bu

y = Cx (5.1.1)

where x is the state vector in Rn × 1, u is the control vector in Rp × 1, and y is an Rn × 1 vector.
Matrices A, B, and C are respectively n × n, n × p and n × 1 in dimension. The matrix A is
often called the system matrix, B the input or control matrix, while C is often called the output
matrix. A,B, and C can be time-varying matrices, in which case the system is linear. Otherwise,
the solution to the linear system of equations above is

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ)dτ (5.1.2)

y(t) = Cx(t) (5.1.3)
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where t0 is the initial time of the system. If the input control law is zero, then we have a non-
autonomous system i.e.

x(t) = eA(t−t0)x(t0) (5.1.4)

and because of this, eAT is called the state-transition matrix i.e. it describes how the state moves
between transitions at different times regardless of external inputs. At t = t0, we have that

eA 0 = I, (5.1.5)

which is similar to the scalar exponential of a zero. What happens if x is an n-element vector? The
solution in (5.1.3) still remains valid but we must note that the exponential of the matrix becomes
interpreted as

eAt =
∞∑
j=0

(At)j

j!

= L−1 [sI − A]−1 = QeÂtQ−1 (5.1.6)

where the symbol L−1 is the symbol for the inverse Laplace transform and “s” is the Laplace
operator. We see that A must be square in order for eAt to exist. Q contains the eigenvectors of A
and Â are the Jordan form of A.

Quiz 6. Write a note about the Jordan form. Also, explain how it can be determined from (5.1.6).

Quiz 7. Does the matrix A commute with its exponential i.e. does AeAt = eAt A?

The matrix Â is often diagonal, so that case eÂt can be computed as

Â =


Â11 0 . . . 0

0 Â22 . . . 0
... . . . . . . ...
0 . . . . . . Ânn

 eÂt =


eÂ11 0 . . . 0

0 eÂ22 . . . 0
... . . . . . . ...
0 . . . . . . eÂnn

 (5.1.7)

From (5.1.6), we can write [
eAt
]−1

= e−At = Qe−ÂtQ−1 (5.1.8)

Since A and −A have eigenvalues that are negative of each other, eAt is always invertible.

Example 2. Suppose we are controlling angular heading of a mobile robot (for example, using
voltage applied to its wheels’ rotor windings in order to generate command velocity along the x, y,
and z heading, i.e. θ, ω and α respectively). The derivative of the angular velocity vector can be
written as

θ̇ = ω + α + 3.5ω1 + 6θ2

ω̇ = u+ 0.1θ + 2.5α + ω1 + ω2
2

α̇ = θ1 + 2u (5.1.9)
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The scalars ω1, ω2, θ1 and θ2 are acceleration noise terms such as gear backlash, friction, and
modeling errors. If our measurement consists of the θ and ω states, it follows that we can write the
state space equation as  θ̇ω̇

α̇

 =

0 1 1
1 0 2.5
0 0 0

+

01
2

u+

3.5ω1 + 6θ2
ω1 + ω2

2

θ1


y =

[
1 1 0

]
+

θω
α

+

vxvy
vz

 (5.1.10)

where v = [vx, vy, vz]
T is the linear velocity vector for the robot.

Example 3. Suppose that

A =

[
0 1
0 0

]
(5.1.11)

It follows that

eAt =
∞∑
j=0

(At)j

j!

= (At)0 + (At)1 +
(At)2

2!
+

(At)3

3!
+ . . .

= I + At (5.1.12)

where the last term follows from the fact that Ak = 0 for k > 1 so that

eAt =

[
1 0
0 1

]
+

[
0 t
0 0

]
=

[
1 t
0 1

]
(5.1.13)

Using the expression for the inverse Laplace transform earlier, we have

eAt = L−1
[
(sI − A)−1]

= L−1

([
s −1
0 s

]−1
)

= L−1

[
1/s 1/s2

0 1/s

]
=

[
1 t
0 1

]
(5.1.14)

Homework 21. Find the eigendata of the matrix A in (5.1.14). Then determine the following terms
using the eigenvector and eigenvalue that you may find: Â, Q and eAt.

Homework 22. Produce a one-page report on a control system transfer function.
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5.2 State Space Standard Forms

For a linear system, there are many possible state space models that can result in the same transfer
function dynamics. Therefore, standardizing state space model structures is relevant for solving
problems in a conformal way. For consider the following input-output system’s linear difference
equation1

yn + a1yn−1 + . . .+ an−1y1 + any = b0un + b1un−1 + . . .+ bn−1u1 + bnu (5.2.1)

with u and y serving respectively as the input and output, and yn serving as the nth derivative of y
with respect to time. If we take the Laplace transform of both sides, we have

Y (s)
(
sn + a1s

n−1 + . . .+ an−1s+ an
)
= U(s)

(
b0s

n + b1s
n−1 + . . .+ bn−1s+ bn

)
(5.2.2)

so that the transfer function from the input u to the output y can be written as

Y (s)

U(s)
=

b0s
n + b1s

n−1 + . . .+ bn−1s+ bn
sn + a1sn−1 + . . .+ an−1s+ an

(5.2.3)

5.2.1 Companion form

In companion form representation, the coefficients of the transfer function in (5.2.3) are arranged
along its far rows or columns. An example would be

0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
0 0 1 · · · 0 −a3
...

...
... . . . ...

...
0 0 0 · · · 1 −an−1


(5.2.4)

or 

−an−1 −an−2 −an−3 · · · −a1 −a0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0


(5.2.5)

In general, we use the convenient observable and controllable canonical forms in control theory.
They are exactly the transpose of one another and using either for control design simplifies the
system structure so that it can be readily manipulated for a desired control.

1

Quiz 8. What is the difference between a linear difference equation and a linear ordinary differential equation?
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5.2.2 Modal Form

The modal form is the dual to the companion form. In the modal form, the state matrix is a
diagonal matrix with non-repeating eigenvalues such that the control has a unitary influence on each
eigenspace, and the output is a linear combination of the contributions from the eigenspaces. That
is,

A =


−p1 0 0 · · · 0 0
0 −p2 0 · · · 0 0
0 0 −p3 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 0 −pn

 (5.2.6a)

B =


1
1
...
1

 C =
[
c1 c2 · · · cn

]
(5.2.6b)

Homework 23. Write out the solution to eq. 24 in modal form.

5.2.3 Controllable Canonical Form

When we want to design a controller that leverages the full state of the system (assuming this is
known), often the controllable canonical form will come in handy. It is expressed as follows:

A =



−a1 −a2 −a3 · · · −an−1 −an
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · 1 0


(5.2.7a)

B =


1
0
...
0

 C =
[
b1 b2 b3 · · · bn

]
D =

[
b0
]

(5.2.7b)

Example 4. For the system

Y (s)

U(s)
=

5s2 − s+ 8

s2 + 4s− 2
(5.2.8)

we can realize the state space representation in canonical form as follows:

1. Observe that n from (5.2.3) is 3, i.e. the highest s exponent in the given transfer function.
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2. It follows that we have a0 = −2 and a1 = 4; and b0 = 5, b1 = −1, b2 = 8, so that we can
write the state space model as[

ẋ1

ẋ2

]
=

[
0 2
1 −4

] [
x1

x2

]
+

[
1
0

] [
u1 u2

]
y =

[
−1 8

] [x1

x2

]
+ u (5.2.9)

Homework 24. Derive the companion form for the system:

Y (s)

U(s)
=

3s2 − 2s+ 1

s2 − 8s+ 5
(5.2.10)

The controllable canonical form is helpful in when using the pole placement method for
controller design. However, the system’s transformation to companion form is based on the
controllability matrix which is almost always numerically singular for mid-range orders. It should
be avoided for computation when possible.

5.2.4 Observable Canonical Form

In observable canonical form, the transfer function coefficients of (5.2.3) are written in the rightmost
column of the A matrix similar to the companion canonical form but the B matrix takes a different
form. It is given as follows:

A =



0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
0 0 1 · · · 0 −a3
...

...
... . . . ...

...
0 0 0 · · · 1 −an−1


(5.2.11)

B =


bn − anb0

bn−1 − an−1b0
bn−2 − an−2b0

...
b1 − a1b0

 C =
[
0 0 . . . 1

]
, D = b0 (5.2.12)

This observable canonical form is ill-conditioned for most state-space computation. It should be
avoided for computation when possible as its controllability matrix is almost always numerically
singular for mid-range orders.

The observable and controllable canonical forms’ matrices are respectively transposes of one
another.

Homework 25. Transform the exercise of 24 to observable canonical form.

44



5.3 Nonlinear Systems

All the world is a nonlinear system. He linearized to the right. He linearized to the left. Till nothing
was right. And nothing was left. – Stephen Billings.

Our treatment of dynamical so far has involved linear systems. These are optimistic models of
the real world as in the reality, nothing is really linear. In general, a nonlinear system is a system
which is not linear i.e. , does not satisfy the principle of superposition. Even a simple resistor
exhibits nonlinearity. However, we utilize Ohm’s law in approximating the dynamics of a resistor.
This is because the equation is valid over a wide enough operating range. In this light, while we may
say linear systems do not exist in real life, linear systems are a useful tool for describing nonlinear
systems. We will write a general nonlinear system with the equation

ẋ = f(x, u, w)

y = h(x, v) (5.3.1)

where f(·) and h(·) are arbitrary vector valued functions, w denotes the process noise, and v denotes
the measurement noise. We have a time-varying system if f(·) and h(·) are explicit functions of t,
otherwise, the system is termed time-invariant. Suppose that

f(x, u, w) = Ax+Bu+ w; and (5.3.2)
h(x, v) = Hx+ v, (5.3.3)

then the system is linear. Otherwise, the system is nonlinear.
Often, we will need to linearize a nonlinear system in order to properly analyze its stability

properties or synthesize its parameters for a particular control application. Suppose we have a
nonlinear vector function f(·) of a scalar x, we can expand f(x) in a Taylor series around some
nominal operating point, x = x̄ i.e.

f(x) = f(x̄) +
∂f

∂x

∣∣∣∣
x̄

x̃+
1

2!

∂2f

∂x2

∣∣∣∣
x̄

x̃2 +
1

3!

∂3f

∂x3

∣∣∣∣
x̄

x̃3 + . . . (5.3.4)

where x̃ = x− x̄. For a 2× 1 vector x, we can write f(x) as follows:

f(x) = f(x̄) +
∂f

∂x1

∣∣∣∣
x̄

x̃1 +
∂f

∂x2

∣∣∣∣
x̄

x̃2 +
1

2!

(
∂2f

∂x2
1

∣∣∣∣
x̄

x̃2
1 +

∂2f

∂x2
2

∣∣∣∣
x̄

x̃2
2 + 2

∂2f

∂x1x2

∣∣∣∣
x̄

x̃1x̃2

)
+

1

3!

(
∂3f

∂x3
1

∣∣∣∣
x̄

x̃3
1 +

∂3f

∂x3
2

∣∣∣∣
x̄

x̃3
2 + 3

∂3f

∂x2
1x2

∣∣∣∣
x̄

x̃2
1x̃2 + 3

∂3f

∂x1x2
2

∣∣∣∣
x̄

x̃1x̃
2
2

)
+ . . . (5.3.5)

which can be compactly written as

f(x) = f(x̃) +

(
x̃1

∂

∂x1

+ x̃2
∂

∂x2

)
f

∣∣∣∣
x̄

+
1

2!

(
x̃1

∂

∂x1

+ x̃2
∂

∂x2

)2

f

∣∣∣∣
x̄

+

1

3!

(
x̃1

∂

∂x1

+ x̃2
∂

∂x2

)3

f

∣∣∣∣
x̄

+ . . . (5.3.6)
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And when n is an n× 1 vector, the vector f(x), expanded in a Taylor series becomes

f(x) = f(x̃) +

(
x̃1

∂

∂x1

+ . . .+ x̃n
∂

∂xn

)
f

∣∣∣∣
x̄

+
1

2!

(
x̃1

∂

∂x1

+ . . .+ x̃n
∂

∂xn

)2

f

∣∣∣∣
x̄

+

1

3!

(
x̃1

∂

∂x1

+ . . .+ x̃n
∂

∂xn

)3

f

∣∣∣∣
x̄

+ . . . (5.3.7)

Suppose we define the operation Dk
x̃f as

Dk
x̃ =

(
n∑

i=1

x̃i
∂

∂xi

)k

f(x)

∣∣∣∣
x̄

(5.3.8)

so that we can define f(x) in Taylor series form as

f(x) = f(x̄) +Dx̃f +
1

2!
D2

x̃f +
1

3!
D3

x̃f + . . . (5.3.9)

= f(x̄) +Dx̃f + o(δ). (5.3.10)

If f(x) is “sufficiently smooth", it is not far fetched to see that the above equation turns to

f(x) ≈ f(x̄) +Dx̃f ≈ f(x̄) +
∂f

∂x
|x̄x̃ ≈ f(x̄) + Ax̃. (5.3.11)

since o(δ) implies that higher order terms satisfy limδ→0
o(δ)
δ

= 0, and A =
∂f

∂x

∣∣∣∣
x̄

.

Recall (5.3.1), if we choose a nominal operating point (x̄, ū, w̄) and carry out a Taylor series
expansion about this nominal point of the nonlinear system of equations, for the state part, we have

ẋ = f(x, u, w)

≈ f(x̄, ū, w̄) +
∂f

∂x

∣∣∣∣
(x̄,ū,w̄)

(x− x̄) +
∂f

∂u

∣∣∣∣
(x̄,ū,w̄)

(u− ū) +
∂f

∂w

∣∣∣∣
(x̄,ū,w̄)

(w − w̄) + o(δ) (5.3.12)

= f(x̄, ū, w̄) +
∂f

∂x

∣∣∣∣
(x̄,ū,w̄)

x̃+
∂f

∂u

∣∣∣∣
(x̄,ū,w̄)

ũ+
∂f

∂w

∣∣∣∣
(x̄,ū,w̄)

w̃ + o(δ)

= ˙̄x+ Ax̃+Bũ+ Lw̃

Since w̃ is a noise term, it suffices that w̃ = w̄ = w so that we can write

ẋ− ˙̄x = Ax̃+Bũ+ Lw or
˙̃x = Ax̃+Bũ+ Lw. (5.3.13)

In other words, we have a linear equation for the deviations of the nonlinear system from the nominal
system. It is therefore reason that as long as the deviations are minute enough, the linearization will
be valid and the linear equation of (5.3.13) will describe the nonlinear system (5.3.1) well enough.
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In a similar vein, the measurement equation from (5.3.1) will be approximated with the Taylor
series expansion about the nominal operating point (x̄, ū) as follows:

y = h(x, u)

≈ h(x̄, ū) +
∂h

∂x

∣∣∣∣
(x̄,ν̄)

x̃+
∂h

∂ν

∣∣∣∣
(x̄,ν̄)

ν̃ + o(δ) (5.3.14)

= ȳ + Cx̃+Dν̃ or
ỹ = Cx̃+Dν̃. (5.3.15)

It follows that we can “solve" a nonlinear control problem by finding linear operating regions
whereby we can solve the control problem, after which we can obtain locally linear solutions for the
nonlinear control problem.

Example 5. Consider the longitudinal flight control of a hypersonic aircraft cruising at a Mach
number of 15 at an altitude of 110, 000ft. The dynamic equations are (Wang and Stengel, 2000)

V̇ = (T cosα−D) /m− µ sin γ/r2 (5.3.16a)

γ̇ = (L+ T sinα) /mV −
[
(µ− V 2r) cos γ

]
/(V r2) (5.3.16b)

ḣ = V sin γ (5.3.16c)
α̇ = q − γ̇ (5.3.16d)
q̇ = Myy/Iyy (5.3.16e)

where

L =
1

2
ρV 2SCL (5.3.17a)

D =
1

2
ρV 2SCD (5.3.17b)

T =
1

2
ρV 2SCT . (5.3.17c)

Here, α is the angle of attack, γ is the flight path angle, rad, r is the radial distance from the
center of the Earth, 20, 903, 500ft, CT is the thrust coefficient, CD is the drag coefficient, CL is the
lift coefficient, L is the lift, D is the drag in lbf , h is the altitude, T is the thrust in lbf , V is the
velocity in ft/sec, m is the mass, 9375 slugs, q is the pitch rate in rad/sec, S is the reference area,
3603ft2, Iyy is the moment of inertia, 7× 106 slug-ft2, Myy is the pitching moment in lbf-ft, µ is
the gravitational constant, 1.39× 1016ft3/s2.

We can write the state space vector of the dynamics as follows:

ẋ =
[
ẋ1 ẋ2 ẋ3 ẋ4 ẋ5

]
=
[
V̇ γ̇ ḣ α̇ q̇

]
.
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So that the nonlinear dynamics of the hypersonic aircraft at the specified cruising altitude of
110, 000 ft and Mach number 15 becomes

ẋ1 =
1

2m
ρS (CT cosx4 − CD)x

2
1 −

µ

r2
sinx2 (5.3.18a)

ẋ2 =

(
1

2m
ρSCL − µ

x2
1r

2

)
x1 +

x1

r
cosx2 +

1

2m
ρSCD sinx4 (5.3.18b)

ẋ3 = x1 sinx2 (5.3.18c)

ẋ4 = −
(

1

2m
ρSCL − µ

x2
1r

2

)
x1 −

x1

r
cosx2 −

1

2m
ρSCD sinx4 + x5 (5.3.18d)

ẋ5 = Myy/Iyy (5.3.18e)

Following our earlier argument, we proceed to linearize the dynamics by first finding the Jacobian
with respect to the state transition matrix, x:

A =
∂f

∂x

=


1
m
ρS (CT cosx4 − CD)x1 − µ

r2
cosx2 0 − 1

2m
ρSCT sinx4x

2
1 0

1
2m

ρSCL − µ
r2 x2

1
+ 1

r
cosx2 −x1

r
sinx2 0 1

2m
ρSCD cosx4 0

sinx2 x1 cosx2 0 0 0
− 1

2m
ρSCL − 1

r
cosx2 − µ

r2x2
1

x1

r
sinx2 0 − 1

2m
ρSCD cosx4 1

0 0 0 0 0

 . (5.3.19)

Similarly, the input matrix can be obtained by finding the Jacobian with respect to the lift, L,
drag D, and thrust, T , are

B =
∂f

∂u
(5.3.20)

=


0 −1/m 0

1/mV 0 sinα
mV

0 0 0
0 0 0
0 0 0

 (5.3.21)

so that the linear system

˙̃x = Ax̃+Bũ (5.3.22)

approximately describes the nonlinear hypersonic aircraft’s deviation from its nominal value x̄.
We can simulate the lift, drag and thrust with the following nominal control values: L = sin 2πt,
D = cos 2πt, T = 2L−D to find the nominal state trajectory x̄.
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Introduction

My goal is to give you theory foundations and practical tools for
your research

I’ll give lots of definitions, but the underlying concepts are typically simple

Do the exercises to check your understanding

All referenced Python code is in the probability theory folder

I’m only giving you a small taste of this rich field - take further courses
and study on your own!

I will cover material from

Stark & Wood’s textbook
“Probability, Statistics, and Random
Processes for Engineers” [1]

Assorted other textbooks

My own experience
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Outline

1 What is probability?

2 Boolean and set algebra

3 Axiomatic definition of probability

4 Basic rules of probability
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Background

What is probability?

“Probability is a mathematical model to help us study physical systems in
an average sense. We have to be able to repeat the experiment many
times under the same conditions. Probability then tells us how often to
expect the various outcomes.” [1]

Why study and use probabilistic models?

“We are forced to use probabilistic models in the real world because we
do not know, cannot calculate, or cannot measure all the causes
contributing to an effect. The causes may be too complicated, too
numerous, or too faint.” [1]
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Interpretations of probability

Generic
“Probability” means the chance of something

Frequentist
“Probability” means the relative frequency of events

Bayesian
“Probability” means the degree to which we believe something to be true

Axiomatic
“Probability” is a mathematical construct that follows a set of rules

No interpretation needed - conclusions follow logically from premises

Be prepared for counter-intuitive conclusions
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Preliminaries
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Sets

Set

A set is a collection of individual elements.

Sets are denoted by braces, with the elements ei contained inside

S = {e1, e2, e3, . . .} (1)

Often constructed via set-builder notation

S = {ei | predicate(ei)} (2)

“the set of all elements ee-eye such that the predicate holds for ee-eye”

An element e is “in” a set S if S contains e, denoted as e ∈ S.

The cardinality of a set is the number of elements in the set.
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Examples of Sets

The set of people reading this slide right now

The set of hairs on your head

The empty set, denoted ∅, the set containing nothing at all

∅ is the only set with cardinality zero

The set containing the empty set {∅}
This set is not itself empty - it has cardinality one

The universal set, denoted U, the set containing every possible
element

The set of whole numbers, denoted W = {0, 1, 2, 3, . . .}
It has cardinality ℵ0, a countable infinity

The set of real numbers, denoted R
It has cardinality c = 2ℵ0 > ℵ0, an uncountable infinity

See Cantor’s diagonal argument from 1891
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Boolean algebra

Basic mathematical operations that apply to truth/false statements

Just like “standard” math operations that apply to numbers like
addition, multiplication, etc.

Let x and y be two truth values

Operation Notation Definition

Disjunction x ∨ y x is true or y is true
Conjunction x ∧ y x is true and y is true

Negation ¬x x is not true
Equivalence x↔ y x is true if and only if y is true
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Set algebra

Basic mathematical operations that apply to sets

Defined with Boolean algebra applied to set membership

Let E and F be two sets

Operation Notation Definition

Union E ∪ F Set of all elements in E or in F
Intersection E ∩ F Set of all elements in E and F
Complement Ec Set of all elements not in E

Difference E − F Set of all elements in E and not in F
Exclusive Union E ⊕ F Set of all elements in E or F and not

in both
Subset E ⊂ F Every element in E is also in F

Superset E ⊃ F Every element in F is also in E
Equality E = C Every element in E is also in F and

vice versa.
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Set algebra

Figure 1: Set operations: (a) Union (b) Intersection (c) Complement
(d) Difference (e) Difference (f) Exclusive Union

Ben Gravell Probability Theory 11/38



Set terminology

Let {Ei} be a collection of sets

Let A be another set (if unspecified, the universal set A = U is implied)

{Ei} is disjoint or mutually exclusive if no elements are shared
between any two different sets

{Ei} collectively exhausts A if the union of {Ei} is A

{Ei} partitions A if {Ei} is disjoint and collectively exhausts A
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Set algebra laws

Set operations are related by simple laws, can be proved using Boolean
logic (e.g. truth tables) and definitions

Examples:

E = F ↔ (E ⊂ F ) ∧ (E ⊃ F )

E ∩ Ec = ∅
E ∪ Ec = U
E − F = E ∩ F c

E ⊕ F = (E − F ) ∪ (F − E) = (E ∪ F ) ∩ (E ∩ F )c
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More set algebra laws

De Morgan’s laws

[
⋃n

i=1Ei]
c

=
⋂n

i=1E
c
i

[
⋂n

i=1Ei]
c

=
⋃n

i=1E
c
i

Associative laws

A ∪ (B ∪ C) = (A ∪B) ∪ C
A ∩ (B ∩ C) = (A ∩B) ∩ C

Distributive laws

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
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Events

Outcome

A random experiment results in individual outcomes, denoted as ζ.

Sample space

The sample space of a random experiment is the set of all possible
outcomes of the experiment, denoted as Ω.

Event

An event is a subset of the sample space i.e. a set of outcomes.

In probability

The sample space plays Ω the role of the universal set U, and is
called the certain event.

The empty set ∅ is called the null event.

Any individual outcome ζ is an element of Ω.
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Sigma fields (sigma algebras)

Field

The collection of events F = {Ei} is a field if

1 ∅ ∈ F and Ω ∈ F
2 If Ei ∈ F for all i = 1, . . . , n, then

⋃n
i=1Ei ∈ F and

⋂n
i=1Ei ∈ F

“Closed under finite union and intersection”

3 If E ∈ F , then Ec ∈ F
“Closed under complement”

If condition 2 further holds with n countably infinite i.e. “closed under
countably infinite union and intersection”, then F is a sigma (σ) field.

Ensures any union, intersection, and complement of any set of events is
well-defined (by construction).
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Sigma fields (sigma algebras)

If Ω is continuous and thus uncountable, e.g. Ω = R, we can generate a
sigma field from the set of all open and closed intervals in Ω.

In this case the sigma field is called the Borel field.

We can compute sigma fields of finite and discrete Ω using combinatorics

See sigma field.py
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Probability measure

Axiomatic definition of probability

Probability is a function that maps events to real numbers
P [·] : F → [0, 1] that satisfies three axioms

1 P [E] ≥ 0

2 P [Ω] = 1

3 P [E ∪ F ] = P [E] + P [F ] if P [EF ] = ∅

From the axioms we can establish the additional properties

4 P [∅] = 0

5 P [E − F ] = P [E]− P [E ∩ F ]

6 P [Ec] = 1− P [E]

7 P [E ∪ F ] = P [E] + P [F ]− P [EF ]
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Probability formulation example

Example: Single coin flip

Sample space is Ω = {H,T} where H = heads, T = tails

There are 22 possible events, ∅, H, T , Ω

Consider events H and T with equal probability

σ-field is F = {∅, H, T,Ω}

Example: Die roll

Sample space is Ω = {1, 2, 3, 4, 5, 6}
There are 26 possible events, each one containing, or not, each of
the 6 possible outcomes

Consider events {1, 3} and {2, 3, 4}
Consider each singleton event equally probable i.e. P [{i}] = 1/6

σ-field is...tedious - see Example 1.4-9 [1]

Ben Gravell Probability Theory 19/38



Probability of a union

Probability of a union of disjoint events

Let {Ei}ni=1 be a set of mutually disjoint events, i.e.
Ei ∩ Ej = φ for all i 6= j.
Then

P

[
n⋃

i=1

Ei

]
=

n∑
i=1

P [Ei] . (3)

Proof: Use mathematical induction with Axiom 3.
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Probability of a union

Union bound (Boole’s inequality)

Let {Ei}ni=1 be a set of events.
Then

P

[
n⋃

i=1

Ei

]
≤

n∑
i=1

P [Ei] . (4)

Proof: Use mathematical induction with Axiom 7.

Note: The only difference vs the previous result is that the events Ei are
not assumed disjoint - the union bound always applies!
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Probability of a union

Bonferroni inequality

Let {Ei}ni=1 be a set of events. Define the sums

Sm =
∑

1≤i1<i2<···<im≤n

P

 m⋂
j=1

Eij

 (5)

Then for any k ∈ {1, . . . , n}

P

[
n⋃

i=1

Ei

] 
≤ if k odd

≥ if k even

= if k = n


k∑

j=1

(−1)j−1Sj (6)

Proof: Use mathematical induction, see Theorem 1.5-1 in [1].

Note: Bonferroni is more tedious, but gives tighter bounds than Boole
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Joint and conditional probability

Let A and B be two events with nonzero probability.

Joint probability

The joint probability of events A and B is the probability of their
intersection P [A ∩B].

Intuitively, it is the probability that both A and B will occur.

Conditional probability

The conditional probability of event A given B is the ratio

P [A|B] =
P [A ∩B]

P [B]
. (7)

Intuitively, it is the probability that event A will occur, given the
knowledge that event B already occurred.
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Product Rule for events

Product Rule for events

The joint probability of events A and B can be computed as

P [A ∩B] = P [B|A]P [A] (8)

When the events are independent we recover the

Proof: Follows by rearranging the definition of conditional probability.
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Sum Rule for events

Sum Rule for events

Suppose the events {Ai}ni=1 are disjoint and collectively exhaustive, i.e.

Ai ∩Aj = ∅ for any i 6= j⋃n
i=1Ai = Ω

Then the total probability of event B can be computed as

P [B] =

n∑
i=1

P [B|Ai]P [Ai] =

n∑
i=1

P [B ∩Ai] (9)

Proof: Follows by the product rule and the assumptions on the Ai’s.

The sum rule is useful when the conditional probabilities or intersection
probabilities are readily available but the total probability is not.

The sum rule is also known as the law of total probability.

The total probability is also known as the marginal probability, since we
are marginalizing out the other events Ai.
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Total probability - example

Microchip factories

Given information:

1 Factory A makes 4000 chips/day with defect rate of 5%

2 Factory B makes 2000 chips/day with defect rate of 2%

3 Chips from both factories are mixed together at the end of each day
then sent to a lab for testing

Question:
What is the probability of getting a defective chip at the lab?
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Total probability - example

Solution:
Denote the following events:

D: Chip is defective

A: Chip is from factory A

B: Chip is from factory B

First compute base probabilities from frequency of occurrence:

P [A] =
4000

4000 + 2000
= 66.7% (10)

P [B] =
2000

4000 + 2000
= 33.3% (11)

Now use the law of total probability:

P [D] = P [D|A]P [A] + P [D|B]P [B] (12)

= (5%)(66.7%) + (2%)(33.3%) (13)

= 4% (14)
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Statistical independence

Statistical independence

Two events A and B are statistically independent if and only if

P [A ∩B] = P [A]P [B]. (15)

Equivalently, the conditional and unconditional probabilities of A and B
are equal:

P [A|B] =
P [A ∩B]

P [B]
=
P [A]P [B]

P [B]
= P [A] (16)

P [B|A] =
P [B ∩A]

P [A]
=
P [B]P [A]

P [A]
= P [B] (17)

Intuitively, the outcome B has no effect on the chance of A occurring,
and vice versa.
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Statistical independence

What if there are more than 2 events?

Joint statistical independence

The events {Ai}ni=1 are jointly statistically independent if and only if
for all k ∈ {1, 2, . . . , n}

P

 ⋂
1≤i1<i2<···≤ik

Aik

 =
∏

1≤i1<i2<···≤ik

P [Aik ] (18)

Note: pairwise independence does not suffice!

See e.g. this note http://faculty.washington.edu/fm1/394/

Materials/2-3indep.pdf
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Statistical independence

Pit-stop to build your intuition

Question: Can two disjoint events A and B with P [A] > 0, P [B] > 0 be
statistically independent?

Think about it for a moment

Claim: No, A and B must be dependent

Explanation:

1 A, B disjoint means A ∩B = ∅ which implies P [A ∩B] = 0

2 P [A] > 0, P [B] > 0 implies P [A]P [B] > 0

3 Therefore P [A ∩B] 6= P [A]P [B] and the claim follows

Intuition: If we know we flipped heads on a coin, that tells us we did not
flip tails.
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Bayes’ theorem

Derivation from definition of conditional probabilities:

P [A|B] =
P [A ∩B]

P [B]
, (19)

P [B|A] =
P [A ∩B]

P [A]
(20)

Notice the numerators of the right sides are the same!

Rearrange first line into

P [A ∩B] = P [A|B]P [B] (21)

and put it into the second line to get Bayes’ theorem

P [B|A] =
P [A|B]P [B]

P [A]
(22)

Intuition: Lets us reason about conditional probability of “flipped” events
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Bayes’ theorem

Cancer test

Denote the events

A: test says patient has cancer

B: patient actually has cancer

Given information:

Test has an accuracy of 95%

95% of the time when the test says the patient has cancer, they
actually do
95% of the time when the test says the patient does not have
cancer, they actually do not

The cancer rate in the population is 0.5%

Question: The patient being tested for cancer cares about the chance
they actually have cancer given the test says they do.
What is this probability?
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Bayes’ theorem - example

Solution:
Translate given information into math:

P [A|B] = P [Ac|Bc] = 95%, P [B] = 0.5% (23)

Use the law of total probability to find P [A], the probability of the test
saying a patient has cancer:

P [A] = P [A|B]P [B] + P [A|Bc]P [Bc] (24)

= (95%)(0.5%) + (100%− 95%)(100%− 0.5%) (25)

= 5.45% (26)

Now use Bayes’ theorem:

P [B|A] =
P [A|B]P [B]

P [A]
=

(95%)(0.5%)

5.45%
≈ 8.72% (27)
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Bayes’ theorem

How do we resolve this counter-intuitive result?

Even though the test is highly accurate (95%), the chance of actually
having cancer is low (8.72%), despite a positive test result. This is
because the base rate of cancer is very small, only 0.5%.

On the other hand, conditioning on a positive test result makes the
chance of cancer increase dramatically in a relative sense from 0.5% to
8.72%.

From the standpoint of the designer of the cancer test, the smaller the
base rate of cancer, the more accurate the test has to be to yield the
same probability of a patient actually having cancer.
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Homework

Homework P1-1:
Consider the previous example. Compute the probability that a patient
has cancer, given a negative test result.
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Homework

Homework P1-2: (1.33 in [1])
A large class in probability theory is taking a multiple-choice test. For a
particular question on the test, the fraction of examinees who know the
answer is p; 1− p is the fraction that will guess. The probability of
answering a question correctly is unity for an examinee who knows the
answer and 1/m for a guessee; m is the number of multiple-choice
alternatives.

1 Compute the probability that an examinee knew the answer to a
question given that he or she has correctly answered it in terms of m
and p.

2 Then evaluate this probability for the specific choice m = 4 and
p = 50%.
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Homework

Homework P1-3: (1.35 in [1])
Assume there are three machines A, B, and C in a semiconductor
manufacturing facility that make chips. They manufacture, respectively,
25, 35, and 40 percent of the total semiconductor chips there. Of their
outputs, respectively, 5, 4, and 2 percent of the chips are defective. A
chip is drawn randomly from the combined output of the three machines
and is found defective. What is the probability that this defective chip
was manufactured by machine A? by machine B? by machine C?
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Homework

Homework P1-4: (1.55 in [1])
An automatic breathing apparatus (B) used in anesthesia fails with
probability PB . A failure means death to the patient unless a monitor
system (M) detects the failure and alerts the physician. The monitor
system fails with probability PM . The failures of the system components
are independent events. Professor X, an M.D. at Hevardi Medical School,
argues that if PM > PB installation of M is useless. Compute the
probability of a patient dying with and without the monitor system in
place. Take PM = 0.1 = 2PB . Is Professor X correct in his assessment?
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Random variables

Ben Gravell Random Variables 3/63



Random variables

Random variable

A random variable (RV) X is a function that maps the sample space Ω
to real numbers R i.e. X : Ω→ R that satisfies the following properties:

1 For every Borel set of numbers B, the set EB = {ζ ∈ Ω, X(ζ) ∈ B}
is an event.

2 P [X =∞] = P [X = −∞] = 0
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Realizations

Realizations

Upon outcome ζ, a random variable produces a realization /
observation X(ζ), which is simply a number.

Think of a realization “popping into being” upon some trigger.

As shorthand we often refer to the realizations by the same
name/variable as the RV.

We can only observe realizations of the random variable, but not the
random variable itself.

Qualities of the random variable must either be

1 Assumed before-hand (model)
2 Inferred from realizations (data)
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Random variables - examples

Flip a coin:
X is one or zero for heads or tails respectively

Roll a die:
X is 1, 2, 3, 4, 5, 6, corresponding to the number of dots on the die face

Spin a wheel:
X is the angle at which it lands between 0 and 360 degrees
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Distributions

Cumulative distribution function (cdf)

The cumulative distribution function (cdf) is defined as

FX(x) = P [{ζ|X(ζ) ≤ x}] (1)

Notation: From here we will usually drop the notation of ζ related to the
underlying probability space, so P [{ζ|X(ζ) ≤ x}] becomes P [X ≤ x].
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Continuous and discrete random variables

If the cdf FX(x) is everywhere continuous
and differentiable, then X is a
continuous random variable.

4 2 0 2 4
0.0

0.5

1.0
Continuous

If the cdf FX(x) is piecewise constant
(stairstep shape), then X is a
discrete random variable.

4 2 0 2 4
0.0

0.5

1.0
Discrete

If neither holds, then X is a
mixed random variable.

4 2 0 2 4
0.0

0.5
Mixed

See mixed.py
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Mass and density functions

Probability mass function (pmf)

The probability mass function (pmf) of a discrete random variable is
defined as

PX(x) = P [X = x] (2)

= P [X ≤ x]− P [X < x] (3)

Probability density function (pdf)

The probability density function (pdf) of a continuous random
variable* is defined as

fX(x) =
d

dx
FX(x) (4)

* By introducing Dirac delta functions, the pdf can be defined for
discrete and mixed random variables.
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Continuous and discrete random variables

cdfs on top row, pdfs on bottom row

4 2 0 2 4
0.0

0.5

1.0
Continuous

4 2 0 2 4
0.00

0.25

0.50 Continuous

4 2 0 2 4
0.0

0.5

1.0
Discrete

4 2 0 2 4
0

200

400 Discrete

4 2 0 2 4
0.0

0.5
Mixed

4 2 0 2 4
0.00

0.25

0.50 Mixed

See mixed.py
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Properties of the cdf

1 FX(∞) = 1, FX(−∞) = 0

2 FX(x) is nondecreasing in x,
i.e. X1 ≤ x2 implies FX(x1) ≤ FX(x2)

3 FX(x) is continuous from the right,
i.e. FX(x) = limε→0+ FX(x+ ε)

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0 cdf

Figure 1: Plot of a typical cdf (std normal)
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Properties of the pdf

1 fX(x) ≥ 0

2
∫∞
−∞ fX(ξ)dξ = FX(∞)− FX(−∞) = 1

3 FX(x) =
∫ x
−∞ fX(ξ)dξ = P [X ≤ x]

4 FX (x2)− FX (x1) =
∫ x2

x1
fX(ξ)dξ = P [x1 < X ≤ x2]

4 2 0 2 4
0.0

0.1

0.2

0.3

0.4 pdf

Figure 2: Plot of a typical pdf (std normal)
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Distributions

Knowledge of either the pdf or cdf is sufficient to compute the other, via
integration or differentiation.

When we refer to a “distribution,” we mean anything that fully specifies
a random variable:

pdf / pmf

cdf

Moment generating function (see Ch. 4.5 of [1])

Characteristic function (see Ch. 4.7 of [1])

Let’s introduce a couple of quick concepts before we survey various
distributions
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Support of a distribution

Support of a distribution

The support of a distribution is the set of values that the random
variable X can take with nonzero probability density, i.e.

supp(X) = {x | fX(x) > 0}. (5)

The distinction between the support and the sample space only comes
into effect when the sample space is bigger than required by X

Sometimes convenient when working with different random variables
on a shared sample space

Example: Two dice with faces {1, 1, 1, 2, 3, 3} and {2, 3, 4, 5, 6, 6}
have different supports {1, 2, 3} and {2, 3, 4, 5, 6}, but we might
want a sample space {1, 2, 3, 4, 5, 6} to accommodate every possible
outcome from either of dice
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Mixture distributions

Mixture distribution

A mixture distribution is the distribution of a mixture random
variable Y formed as a composite of other component random variables
X1, X2, . . . , XN by selecting among them at random according to
weights w1, w2, . . . , wN .

If the component pdfs are fX1
, fX2

, . . . fXN
, then the mixture pdf is

simply the weighted average

fY (Y ) =

N∑
i=1

wifXi
(6)
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Discrete distributions
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Trivial distribution

What happens if we treat a non-random, fixed, constant number as a
random variable? (w.l.o.g. set X = 0)

Trivial distribution

A trivial random variable has the pmf

P [X = x] =

{
1 if x = 0,

0 otherwise.
(7)

Accordingly, the pdf is the Dirac delta function

fX(x) = δ(x) (8)

and the cdf is the Heaviside step function

FX(x) = H(x) (9)

All discrete distributions can be “built” from mixtures of this distribution.

Follows by definition of pmf
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Bernoulli distribution

Bernoulli distribution

A Bernoulli random variable has the pmf

P [X = x] =


p if x = 1,

1− p if x = 0,

0 otherwise.

(10)

If p is not specified, then assume p = 1/2.

Example: A coin flip is Bernoulli where heads = 1 and tails = 0.
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Rademacher distribution

Rademacher distribution

A Rademacher random variable has the pmf

P [X = x] =


p if x = 1,

1− p if x = −1,

0 otherwise.

(11)

Basically just the symmetric version of Bernoulli (which is asymmetric)

Use whichever is most convenient for the task at hand

Example: A coin flip is Rademacher where heads = 1 and tails = −1.
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Homework

Homework P2-1: If X is a Bernoulli random variable, write down a
function g such that Y = g(X) is a Rademacher random variable. Also,
write down an inverse function h = g−1 such that X = h(Y ) recovers a
Bernoulli distribution. Prove that your functions are correct by directly
evaluating the pmfs of g(X) and h(Y ).
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Binomial distribution

Consider the binomial experiment with n independent success/fail trials,
each governed by a Bernoulli RV.

The number of ways to choose k elements from a population of size n
(irrespective of their ordering) is called the number of combinations and
is determined by the binomial coefficient(

n

k

)
=

n!

(n− k)!k!
(12)

The probability of an experiment with k successes and n− k failures is

pk(1− p)n−k (13)

Since there are
(
n
k

)
ways in which the experiment could end like this, the

probability of seeing an experiment with k successes and n− k failures is(
n

k

)
pk(1− p)n−k (14)
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Binomial distribution

Binomial distribution

A random variable X follows a binomial distribution if it represents
getting exactly k successes out of the n trials, whose pmf is

P [X = k] =


(
n

k

)
pk(1− p)n−k if k = 0, 1, . . . , n,

0 otherwise

(15)

where p ∈ [0, 1] is a parameter representing the success probability of
each trial.
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Homework

Homework P2-2: (1.56 in [1])
In a particular communication network, the server broadcasts a packet of
data to N receivers. The server then waits to receive an acknowledgment
message from each of the N receivers before proceeding to broadcast the
next packet. If the server does not receive all the acknowledgments
within a certain time period, it will rebroadcast (retransmit) the same
packet. The server is then said to be in the “retransmission mode.” It
will continue retransmitting the packet until all N acknowledgments are
received. Then it will proceed to broadcast the next packet.

Let p := P [successful transmission of a single packet to a single receiver
along with successful acknowledgment]. Assume that these events are
independent for different receivers and separate transmission attempts.
Due to random impairments in the transmission media and the variable
condition of the receivers, we have that p < 1.

(continued on next slide)
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Homework

Homework P2-2 (cont.):
(a) In a fixed protocol of method of operation, we require that all N
of the acknowledgments be received in response to a given transmission
attempt for that packet transmission to be declared successful. Let the
event S(m) be defined as follows: S(m) := { a successful transmission of
one packet to all N receivers in m or fewer attempts }.

Find the probability

P (m) := P [S(m)]

Hint: Consider the complement of the event S(m).

(continued on next slide)
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Homework

Homework P2-2 (cont.):
(b) An improved system operates according to a dynamic protocol as
follows. Here we relax the acknowledgment requirement on
retransmission attempts, so as to only require acknowledgments from
those receivers that have not yet been heard from on previous attempts
to transmit the current packet. Let SD(m) be the same event as in part
(a) but using the dynamic protocol. Find the probability

PD(m) := P [SD(m)]

Hint: First consider the probability of the event SD(m) for an individual
receiver, and then generalize to the N receivers.

(continued on next slide)
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Homework

Homework P2-2 (cont.):
(c) Compare the performance of the two protocols from parts (a) and
(b) by comparing P (m) and PD(m) for N = 5 receivers, m = 2
transmission attempts, and success probability p = 0.9.
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Continuous distributions
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Uniform distribution

Uniform distribution

A random variable is uniform if the pdf is constant over a finite interval
[a, b], i.e. of the form

fX(x) =


1

b− a
if a ≤ x ≤ b,

0 otherwise.
(16)

Tail behavior: density drops to zero instantly outside [a, b]

Log density decays “infinitely” fast

Homework P2-3: Derive an expression for the cdf of a uniform random
variable.
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Gaussian distribution

Gaussian distribution

A random variable X is Gaussian or normal if it has a pdf of the form

fX(x;µ, σ2) =
1√

2πσ2
exp

(
−1

2

(x− µ)2

σ2

)
(17)

where µ and σ2 are parameters (we will define and see later they are the
mean and variance).

Notation: X ∼ N (µ, σ2) is read as “X is distributed according to a
normal distribution with mean mu and variance sigma-squared.”

Special case: If µ = 0 and σ2 = 1, then the distribution is called the
standard normal.

Tail behavior: log density decays quadratically

See gaussian.py
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Exponential distributions

Exponential distribution

A random variable X is exponential if it has a pdf of the form

fX(x) =

{
λexp(−λx) if x ≥ 0,

0 otherwise,
(18)

where λ > 0 is a parameter.

Homework P2-4: Derive an expression for the cdf of an exponential
random variable.
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Exponential distributions

Laplace distribution

A random variable X is Laplace or double exponential if it has a pdf

fX(x) =
1

2β
exp

(
−|x− µ|

β

)
(19)

where µ and β are location and scale parameters.

Notice how similar the Laplace distribution is to a Gaussian

Tail behavior: log density decays linearly - heavier than a Gaussian!
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Cauchy distribution

Cauchy distribution

A random variable X is Cauchy if it has a pdf of the form

fX(x) =
1

πγ

(
γ2

(x− x0)2 + γ2

)
(20)

where x0 and γ are location and scale parameters.

Example: The ratio of two independent normal variables X = Z1/Z2 is
Cauchy

The Cauchy distribution is very bizarre pathological distribution

It actually has an undefined mean and variance! (discussed later)

Makes parameter estimation tricky

Tail behavior: log density decays logarithmically - heavier than a Laplace!

Ben Gravell Random Variables 32/63



Other distributions
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Figure 3: Plot of various pdfs available in SciPy - see distributions.py
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Conditional distributions

We can condition random variables on random events

Conditional distribution function

The conditional distribution function of X given event B is

FX(x|B) =
P [X ≤ x and B]

P [B]
(21)

Conditional density function

The conditional density function of X given event B is

fX(x|B) =
d

dx
FX(x|B) (22)
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Joint distributions

Just as we had the joint probability of two events, we have the joint
distribution of two random variables

Joint distribution function

The joint (cumulative) distribution function of X and Y is

FXY (x, y) = P [X ≤ x and Y ≤ y] (23)

Joint probability mass function

The joint probability mass function of X and Y is

PXY (x, y) = P [X = x, Y = y] (24)

Joint density function

The joint density function of X and Y is

fXY (x, y) =
∂

∂x

∂

∂y
FXY (x, y) (25)
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Multinomial distribution

Here is an example of a joint distribution

Idea: Generalize the binomial distribution to trials with more than two
outcomes

Consider the multinomial experiment with n independent trials with m
outcomes, with each trial governed by a discrete RV with success
probabilities {pi}mi=1.

The number of times each outcome happens throughout the entire
experiment is a discrete RV Xi for i = 1, . . . ,m.

We are interested in the probability that the ith outcome appears exactly
ki times i.e. the joint distribution of the Xi.
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Multinomial distribution

The multinomial coefficient is the number of ways that the ith
outcome appears exactly ki times (irrespective of their ordering):

n!

k1!k2! · · · km!
(26)

The probability of an experiment with the ith outcome appearing exactly
ki times (irrespective of their ordering) is

m∏
i=1

pkii (27)

Since there are n!
k1!k2!···km! ways in which the experiment could end with

the ith outcome appearing exactly ki times, the probability of seeing
such an experiment is

n!

k1!k2! · · · km!

m∏
i=1

pkii (28)
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Multinomial distribution

Multinomial distribution

A collection of RVs {Xi}mi=1 follows a multinomial distribution if it
represents the multinomial experiment, whose joint pmf is

P [X1 = k1, X2 = k2, . . . , Xm = km] (29)

=


n!

k1!k2! · · · km!

m∏
i=1

pkii if
m∑
i=1

ki = n,

0 otherwise

(30)

where {pi}mi=1 is a set of parameters representing the success
probabilities, and must satisfy

∑m
i=1 pi = 1.

Exercise: As a special case, how can we recover the binomial distribution
from the multinomial distribution?
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Marginal distributions

If we have a joint distribution in hand, we can get the distribution of
each of the components by integrating (“marginalizing”)

Marginal density function

The marginal density functions are

fX(x) =

∫ ∞
−∞

fXY (x, y)dy (31)

fY (y) =

∫ ∞
−∞

fXY (x, y)dx (32)

Marginal distribution function

The marginal distribution functions are

FX(x) = FXY (x,∞) =

∫ x

−∞
fX(ξ)dξ (33)

FY (y) = FXY (∞, y) =

∫ y

−∞
fY (η)dη (34)
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Conditional distributions

We can also condition random variables on other random variables

Conditional density function

The conditional density function of X given Y is

fX|Y (x|y) =
fXY (x, y)

fY (y)
(35)

Conditional distribution function

The conditional distribution function of X given Y is

FX|Y (x|y) = P [X ≤ x|Y ≤ y] =

∫ x

−∞
fX|Y (ξ|y)dξ (36)

Notice that FX|Y (x|y) 6= FXY (x,y)
FY (y) (unlike the conditional pdf)
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Sum Rule for random variables

Let X and Y be two discrete random variables.

The probability that X takes the value xi, irrespective of the value of Y ,
is the total probability of X = xi, written as P [X = xi].

Sum Rule for random variables

The total probability of X can be computed as

P [X = xi] =
∑
j

P [X = xi|Y = yj ]P [Y = yj ] (37)

=
∑
j

P [X = xi, Y = yj ]. (38)

This follows from the law of total probability for the event X = xi and
the fact that all the events Y = yj partition the sample space of Y .

The total probability is also referred to as the marginal probability,
since we are marginalizing out the other variable, Y .
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Product Rule for random variables

Let X and Y be two discrete random variables.

Conditional probability (Again!)

For only the instances for which A = ai, the fraction of such instances
for which B = bj is P [B = bj |A = ai] and are called the conditional
probability of B = bj given A = ai.

Product Rule for random variables

The joint pmf of X and Y can be computed as

P [X = xi, Y = yj ] = P [Y = yj |X = xi]P [X = xi] (39)
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Bayes’ theorem for random variables

RV conditioned on RV

fY |X(y|x) =
fXY (x, y)

fX(x)
(40)

Event conditioned on RV

P [A|X = x] =
fX|A(x)P [A]

fX(x)
(41)

RV conditioned on event

fY |A(y) =
P [A|Y = y]fY (y)

P [A]
(42)
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Independent random variables

Independent random variables

Two random variables X and Y are statistically independent if the two
events {X ≤ x} and {Y ≤ y} are independent for any pair (x, y).

Equivalently,

FXY (x, y) = FX(x)FY (y) (43)

or

fXY (x, y) = fX(x)fY (y) (44)

You can imagine the generalization to more than two RV’s - joint
distribution is equal to product of the marginals

It is nice when RV’s are independent because it makes computing their
joint distribution trivial - just multiply the marginals!

Ben Gravell Random Variables 44/63



Functions of random variables
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Functions of random variables

Core problem:
What is the distribution of a function of a random variable?

Math:
Given fX(x) and Y = g(X), what is fY (y) ?

“Indirect” procedure:

1 Find the point set Cy such that {Y ≤ y} = {X ∈ Cy}
2 Find the cdf of Y as

FY (y) = P [Y ≤ y] = P [g(X) ≤ y] = P [X ∈ Cy] (45)

3 Find the pdf of Y as

fY (y) =
d

dy
FY (y) (46)
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Example: affine function of a random variable

Suppose g is affine, i.e. Y = g(X) = aX + b.

Case 1: a > 0

Step 1: Find the point set

{Y ≤ y} = {aX + b ≤ y} (47)

=

{
X ≤ y − b

a

}
= {X ∈ Cy} (48)

Step 2: Find the cdf

FY (y) = P [Y ≤ y] = P [aX + b ≤ y] (49)

= P

[
X ≤ y − b

a

]
= FX

(
y − b
a

)
(50)
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Example: affine function of a random variable

Step 3: Differentiate cdf to get pdf
Use the change of variables z = y−b

a so

fY (y) =
d

dy
FY (y) =

d

dy
FX

(
y − b
a

)
(51)

=
dFX(z)

dz
· dz
dy

(chain rule)

= fX(z) · 1

a
(52)
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Example: affine function of RV

Optional Exercise: Work out Case 2: a < 0

After doing that, you will find the solution is

fY (y) =
1

|a|
fX

(
y − b
a

)
if a 6= 0 (53)

Optional Exercise: Work out Case 3: a = 0 (degenerate case)
Hint: The solution is trivial: fY (y) = δ(y − b), a Dirac delta at b.
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Example: nonlinear function of RV

Example 3.2-8 in [1]

Consider the vertical coordinate of a spinner with uniform random angle

g(X) = sin(X) (sine map) (54)

fX(x) =


1

2π
if− π ≤ X ≤ π

0 else
(uniform distribution) (55)
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Example: nonlinear function of RV

Case 1: 0 ≤ y < 1

Step 1: Find the point set (this time it’s trickier)

{Y ≤ y} = {sin(X) ≤ y} (56)

=
{
−π < X ≤ sin−1(y)

}
∪
{
π − sin−1(y) < X ≤ π

}
(57)

= {X ∈ Cy} (58)
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Example: nonlinear function of RV

Step 2: Find the cdf

FY (y) = P [Y ≤ y] (59)

= P
[{
−π < X ≤ sin−1(y)

}
∪
{
π − sin−1(y) < X ≤ π

}]
(60)

= P
[
−π < X ≤ sin−1(y)

]
+ P [π − sin−1(y) < X ≤ π] (61)

=
[
FX(sin−1(y))− FX(−π)

]
+
[
FX(π)− FX(π − sin−1(y))

]
(62)

Step 3: Differentiate cdf to get pdf

fY (y) =
d

dy
FY (y) (63)

= fX
(
π − sin−1 y

) 1√
1− y2

+ fX
(
sin−1 y

) 1√
1− y2

(64)

=
1

π
· 1√

1− y2
for 0 ≤ y < 1 (65)
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Example: nonlinear function of RV

Optional Exercise: Work out Case 2: −1 < y ≤ 0
Hint: You should find the pdf is the same as for 0 ≤ y < 1

Optional Exercise: Work out Case 3: |y| >= 1
Hint: You should find the cdf is constant with respect to y
(either FY (y) = 0 or FY (y) = 1) and therefore the pdf is zero.

Therefore, the complete solution is

fY (y) =


1

π
· 1√

1− y2
if |y| < 1

0 else

(66)
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Example: nonlinear function of RV

We can check our solution against a histogram of empirical samples
- see function of rv.py
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Function of RV

Can we go directly from pdf of X to pdf of Y = g(X)
(without finding intermediate cdf)?

“Direct” procedure:

1 Find the root functions xi = xi(y) that satisfy y − g(xi) = 0 for any
fixed y

2 Compute derivative g′(x)

3 Evaluate |g′(xi)| check |g′(xi)| 6= 0

4 Compute the pdf directly as

fY (y) =
∑
i

fX(xi)

|g′(xi)|
(67)

Note: Throughout keep in mind that xi = xi(y) are functions!
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Example revisited: nonlinear function of RV

Example 3.2-9 in [1]

Consider again the problem

g(X) = sin(X) (sine map) (68)

fX(x) =


1

2π
if− π ≤ X ≤ π

0 else
(uniform distribution) (69)

Case 1: 0 ≤ y < 1

Step 1:
For any 0 ≤ y < 1 we have the roots of

y − g(x) = y − sin(x) = 0 (70)

are

x1 = sin−1(y) and x2 = π − sin−1(y) (71)
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Example revisited: nonlinear function of RV

Step 2:
We have the derivative

dg

dx
= cos(x) (72)

Step 3:
Evaluated at the roots, the derivative is

dg

dx

∣∣∣∣
x1

= cos(sin−1(y)),
dg

dx

∣∣∣∣
x2

= − cos(sin−1(y)) (73)
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Example revisited: nonlinear function of RV

When you see the composition of trig and inverse trig, there is usually
a nice simplification to make - use triangle diagram to help

sin(θ) =
y

1
(74)

θ = sin−1(y) (75)

cos(θ) =

√
1− y2

1
(76)

cos(sin−1(y)) =
√

1− y2 (77)

We have the absolute values∣∣∣∣dgdx
∣∣∣∣
x1

=

∣∣∣∣dgdx
∣∣∣∣
x2

=
√

1− y2 6= 0 for 0 ≤ y < 1 (78)
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Example revisited: nonlinear function of RV

Step 4:
Compute the pdf

fY (y) =
∑
i

fX(xi)

|g′(xi)|
(79)

=
1
2π√

1− y2
+

1
2π√

1− y2
(80)

=
1

π

√
1− y2 for 0 ≤ y < 1 (81)

which is the same result as we got using the “indirect” method.

Optional Exercise: Repeat the procedure for Case 2: −1 < y ≤ 0

Optional Exercise: Repeat the procedure for Case 3: |y| ≥ 1
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Function of two RVs

Core problem:
What is the distribution of a function of a random variable?

Math:
Given fXY (x, y) and Z = g(X,Y ), what is fZ(z) ?

“Indirect” procedure:

1 Find the point set Cz such that {Z ≤ z} = {(X,Y ) ∈ Cz}
2 Find the cdf of Z as

FZ(z) =

∫∫
(x,y)∈Cz

fXY (x, y)dxdy (82)

3 Find the pdf of Z as

fZ(z) =
d

dz
FZ(z) (83)
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Product of two RVs

Optional Exercise: Find fZ(z) where Z = XY
Hint: See Example 3.3-1 in [1]
Solution:

fZ(z) =

∫ ∞
−∞

1

|y|
fXY (z/y, y)dy (84)
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Sum of two RVs

Optional Exercise: Find fZ(z) where Z = X + Y Eqs. (3.3-13),
(3.3-14) in [1]

Solution:

fZ(z) =

∫ ∞
−∞

fXY (z − y, y)dy (85)

If X and Y are independent

fZ(z) =

∫ ∞
−∞

fX(x)fY (z − x)dx =

∫ ∞
−∞

fX(z − y)fY (y)dy (86)

which is a convolution integral

Evaluate by reversing one function and sliding it

See Examples 3.3-4, 3.3-5, 3.3-6, 3.3-7, 3.3-8 in [1]
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Homework: Max of two RVs

Homework P2-4: Find fZ(z) where Z = max(X,Y ) and X,Y are
independent.
Hint: See Example 3.3-2 in [1]
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Expectation

Expectation

The expectation or mean of a random variable X is

E[X] =

∫ ∞
−∞

xfX(x)dx (1)

The expectation of a function of a random variable g(X) is

E[g(X)] =

∫ ∞
−∞

g(x)fX(x)dx (2)

If the RV is discrete, these integrals become simple sums:

E[X] =
∑
i

xiPX(xi) (3)

E[g(X)] =
∑
i

g(xi)PX(xi) (4)
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Linearity of expectation

Expectation is a linear operator - follows from linearity of integration

E[X + Y ] (5)

=

∫ +∞

−∞

∫ +∞

−∞
(x+ y)fXY (x, y)dxdy (6)

=

∫ +∞

−∞

∫ +∞

−∞
xfXY (x, y)dxdy +

∫ +∞

−∞

∫ +∞

−∞
yfXY (x, y)dxdy (7)

=

∫ +∞

−∞
x

(∫ +∞

−∞
fXY (x, y)dy

)
dx+

∫ +∞

−∞
y

(∫ +∞

−∞
fXY (x, y)dx

)
dy (8)

=

∫ +∞

−∞
xfX(x)dx+

∫ +∞

−∞
yfY (x)dy (9)

= E[X] + E[Y ] (10)

Use induction to conclude the linearity property

E

[
N∑
i=1

Xi

]
=

N∑
i=1

E [Xi] (11)
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Expectation of a Gaussian

Recall the Gaussian random variable X ∼ N (µ, σ2).

Let’s show the mean is µ using the change of variable z = x−µ
σ

E[X] =

∫ ∞
−∞

x · fX(x)dx (12)

=

∫ ∞
−∞

x · 1

σ
√

2π
exp

(
−1

2

(
x− µ
σ

)2
)
dx (13)

=

∫ ∞
−∞

(σz + µ)
1

σ
√

2π
exp

(
−1

2
z2
)
dz (14)

=
σ√
2π

∫ ∞
−∞

z · exp

(
−1

2
z2
)
dz︸ ︷︷ ︸

=0 because integrand odd

+µ

[∫ ∞
−∞

1

σ
√

2π
exp

(
−1

2
z2
)
dz

]
︸ ︷︷ ︸

=1 because P [Z≤∞]=1

(15)

= µ (16)
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Conditional expectation

Conditional expectation

The conditional expectation of random variable Y given event B has
occurred is

E[Y |B] =

∫ ∞
−∞

yfY |B(y|B)dy (17)

The conditional expectation of random variable Y conditioned on
random variable X is

E[Y |X = x] =

∫ ∞
−∞

yfY |X(y|x)dy (18)

We have a law of total expectation (like law of total probability)

E[Y ] =

∫ ∞
−∞

E[Y |X = x]fX(x)dx (19)
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Moments

Moments are expectations of monomials of (shifted and scaled) RVs

Moments

The kth (raw) moment of X is

mk = E[Xk] (20)

The kth central moment of X is

ck = E[(X − E[X])k] (21)

The kth standardized moment of X is

sk =
E[(X − E[X])k]

E[(X − E[X])2]k/2
=

ck

c
k/2
2

(22)
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Moments

Moments summarize different aspects of the shape of a distribution

Name Definition Intuition

Mean µ = m1 Location or center
Variance σ2 = c2 Dispersion or spread

Std deviation σ =
√
σ2 Dispersion or spread

Skewness s3 Asymmetry or tilt
Kurtosis s4 Heaviness of tails

See moments.py
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Comparison of pdfs with different moments

6 4 2 0 2 4 6
0.0

0.1

0.2

0.3

0.4 mean=1.000
mean=-1.000

(a) Mean

6 4 2 0 2 4 6
0.0

0.2

0.4

0.6

0.8 std dev=2.000
std dev=0.500

(b) Standard deviation

4 2 0 2 4
0.0

0.2

0.4

0.6

skewness=0.934
skewness=-0.934

(c) Skewness

4 2 0 2 4
0.0

0.1

0.2

0.3

0.4

0.5

kurtosis=6.000
kurtosis=2.418

(d) Kurtosis
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Moments

We can convert between raw and central moments

Example: Second moment

c2 = E[(X − E[X])2] (23)

= E[X2 − 2E[X]X + E[X]2] (24)

= E[X2]− 2E[X]2 + E[X]2 (linearity of E[·])
= E[X2]− E[X]2 (25)

= m2 −m2
1 (26)

This relation generalizes to higher-order moments as

ck =

k∑
i=0

(
k

i

)
(−1)iµimk−i (27)
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Homework: Moments of a Gaussian

Homework P3-1:
Verify the expression for the variance of a Gaussian.
Hint: See Example 4.1-7 in [1]

Optional Exercise:
Find expressions for all moments of a Gaussian.
Hint: See e.g. https: // arxiv. org/ abs/ 1209. 4340
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Basic probability bounds

Often we want to bound the probability of certain events or random
variables without having to specify/compute their distribution

c.f. the first several pages of Wainwright’s book [2]
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Tail bounds

Markov inequality

Given a non-negative random variable X with finite mean, we have

P[X ≥ t] ≤ E[X]

t
for all t > 0 (28)

“X is probably small when its mean is small”

The most basic tail bound.

Basis for several “classical” concentration inequalities.
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Concentration inequalities

Chebyshev inequality

Given a random variable X with finite mean µ and variance σ2, we have

P[|X − µ| ≥ t] ≤ σ2

t2
for all t > 0 (29)

“X is probably close to its mean whenever its variance is small”

The most basic concentration inequality.

Proof: Follows by applying Markov inequality to the non-negative
random variable (X − µ)2.
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Concentration inequalities

Moment bound

Given a non-negative random variable X with finite moments up to order
k, we have

P[|X − µ| ≥ t] ≤
E
[
|X − µ|k

]
tk

for all t > 0 (30)

Proof: Follows by applying Markov inequality to the random variable
|X − µ|k
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Concentration inequalities

Chernoff bound

Given a non-negative random variable X with a moment generating
function in a neighborhood of zero, we have

P[X ≥ 0] ≤ inf
θ>0

E
[
eθX

]
(31)

Proof: Follows by applying Markov inequality to the random variable
eθ(X−µ) and optimizing over θ.

The moment bound with an optimal choice of k is never worse than the
Chernoff bound.

Nonetheless, the Chernoff bound is most widely used in practice, possibly
due to the ease of manipulating moment generating functions.
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Homework: Probability bounds

Homework P3-2:
Compare the Markov inequality bound with the exact tail probability
from the exponential cdf with parameter λ = 1; compute the probability
bounds at the level t = 2. How bad is the Markov bound compared with
the exact tail probability?
Hint: The mean of an exponential random variable is µ = 1/λ.

Homework P3-3:
Compare the Chebyshev inequality bound with the exact tail bound from
the standard normal cdf; compute the probability bounds at the level
t = 2. How bad is the Chebyshev bound compared with the exact
concentration probability?
Hint: The standard normal cdf does not have a closed-form expression,
so either use the cdf() method of scipy.stats.norm or a table of the
standard normal cdf to get the exact value. In case you run into issues,
Φ(2) = 1− Φ(−2) = 0.9772.
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Joint moments

Joint moments summarize different aspects of the shape of a joint
distribution

Joint moments

The ijth (raw) joint moment of random variables X and Y is

mij = E[XiY j ] (32)

The ijth central joint moment of random variables X and Y is

cij = E[(X − E[X])i(Y − E[Y ])j ] (33)
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Joint moments

Some joint moments have special, confusing names

The correlation is

m11 = E[XY ] (34)

The covariance is

c11 = E[(X − E[X])(Y − E[Y ])] (35)

The correlation coefficient is

ρ =
c11√
c02c20

(36)
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Homework: Joint moments

Homework P3-4:
Prove the relation

m11 = c11 + E[X]E[Y ]

Hint: It is similar to the earlier second moment relation m2 = c2 +m2
1

Homework P3-5:
When are the correlation and covariance equal?
Hint: Use the relation m11 = c11 + E[X]E[Y ] you just proved.

Homework P3-6:
Prove that ρ ∈ [−1, 1]
Hint: See Ch. 4.3 of [1]
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Uncorrelated and orthogonal random variables

Uncorrelated random variables

Two random variables are uncorrelated if their covariance is zero.

Orthogonal random variables

Two random variables are orthogonal if their correlation is zero.

Yes I know the terminology is confusing :/
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Homework: Uncorrelated random variables

Homework P3-7:
Prove that if X and Y are uncorrelated, then σ2

X+Y = σ2
X + σ2

Y

i.e. “the variance of the sum is the sum of the variances.”
Hint: Use linearity of expectation.

Homework P3-8:
Prove that if X and Y are independent, then they are uncorrelated.
Remark: The converse does not hold unless X and Y are both Gaussian.

Homework P3-9:
Under what condition(s) can a pair of uncorrelated random variables be
orthogonal?
Hint: This is a special case of one of the earlier exercises.
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Random vectors
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Random vectors

Random vector

A random vector is a vector of random variables.

The cdf of a random vector is defined as

FX(x) = P[X1 ≤ x1 and X2 ≤ x2 and . . . Xn ≤ xn] (37)

The pdf is defined as

fX(x) =
∂nFX(x)

∂x1∂x2 · · · ∂xn
(38)

Similar definitions for joint, marginal, and conditional distributions

See Ch. 5.1 of [1]
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Expectations

The expectation of a random vector X is the vector µX with entries

[µX ]i = E[X]i =

∫ ∞
−∞

xifXi
(xi)dxi (39)

where fXi(xi) is the ith marginal pdf.

Moments are defined similarly as with random variables.
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Second moments

(Auto)-covariance matrix of X

KX = E[(X − µX)(X − µX)ᵀ] (40)

(Cross)-covariance matrix between X and Y

CXY = E[(X − µX)(Y − µY )ᵀ] (41)

We can gather these up into the block covariance matrix

DXY =

[
KX CXY
Cᵀ
XY KY

]
= E

[[
X − µX
Y − µY

] [
X − µX
Y − µY

]ᵀ]
(42)
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Second moments

(Auto)-correlation matrix of X

RX = E[XXᵀ] � 0 (43)

(Cross)-correlation matrix between X and Y

SXY = E[XY ᵀ] (44)

We can gather these up into the block correlation matrix

BXY =

[
RX SXY
Sᵀ
XY RY

]
= E

[[
X
Y

] [
X
Y

]ᵀ]
(45)
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Homework: Second moment relations

Homework 3-10:
Prove the identity between covariance and correlation matrices

R = K + µµᵀ (46)

Hint: Use linearity of expectation.

Homework 3-11:
Write an expression for D in terms of B, µX , µY .
Hint: It follows immediately from R = K + µµᵀ by stacking X and Y .

Homework 3-12:
Prove that R � K � 0 and B � D � 0 where A � B means A−B is
symmetric positive semidefinite.
Hint: It follows by the above relations and the property of outer product
matrices AAᵀ � 0 for any matrix A, and taking A = µ.
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Uncorrelated and orthogonal random vectors

A random vector X is uncorrelated with itself if K is diagonal.

A random vector X is orthogonal with itself if R is diagonal.

Two random vectors X and Y are uncorrelated if C = 0.

Two random vectors X and Y are orthogonal if S = 0.

Optional Exercise:
Think about how these expressions can be summarized in terms of the
block matrices C and D.

Optional Exercise:
Under what condition(s) can a pair of uncorrelated random vectors be
orthogonal?
Hint: You already solved this in the scalar case.
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Whitening transformation

Sometimes we need to get a standardized version of a random variable

In the scalar case we used the standardizing transform

Z =
X − µ
σ

(47)

Subtract out the mean and normalize by the standard deviation, so
Z has zero mean and variance one

Need to assume σ > 0 for non-degeneracy
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Whitening transformation

The whitening transformation is the multivariate generalization of the
scalar standardizing transform

Based on the eigen-decomposition of the covariance matrix

The whitening transformation is

Z = Λ
−1/2
X Uᵀ

X(X − µ) (48)

Subtract the mean out and normalize, so Z has zero mean and
identity auto-covariance

ΛX is a diagonal matrix whose entries are the n eigenvalues of KX

The eigenvalues λi are real numbers since KX is symmetric
Need to assume λi > 0 for i = 1, . . . , n for non-degeneracy

Equivalent to assuming KX full rank

Λ
−1/2
X is diagonal with entries λ

−1/2
i

UX is an orthogonal matrix whose columns are n eigenvectors of KX
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Coloring transformation

Sometimes we need to get a a random vector Y with nonzero mean µY
and non-identity covariance KY from a white random vector

Inverse operation of the whitening transformation

The coloring transformation is

Y = UY Λ
1/2
Y X + µ (49)

ΛY is a diagonal matrix whose entries are the n eigenvalues of KY

UY is an orthogonal matrix whose columns are n eigenvectors of KY
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Multivariate Gaussian

The n-dimensional multivariate Gaussian pdf is

fX(x) =
1√

(2π)n det (K)
exp

[
−1

2
(x− µ)ᵀK−1(x− µ)

]
(50)

Mean is µ ∈ Rn

Covariance is K ∈ Rn×n+

2 0 2

2

0

2

2 0 2 2 0 2 2 0 2

Figure 2: Various multivariate Gaussian pdfs for n = 2.
See multivariate gaussian.py
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Properties of multivariate Gaussians

Gaussians are extremely special distributions with nice properties

Marginals of a Gaussian are Gaussian

Gaussians conditioned on Gaussians are Gaussian

Any affine transformation of a Gaussian is Gaussian

All pertinent information about a Gaussian is encoded in the mean
and covariance

Sums of random vectors tend towards a Gaussian
(central limit theorem, coming up)
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Homework: Multivariate Gaussian

Homework 3-13:
What is the pdf of a white (zero mean and identity covariance)
multivariate Gaussian random vector X? Can it be expressed in terms of
the marginal densities of each component of X? If so, write the
expression. Are the components of X statistically independent?
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Parameter estimation
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Parameter estimation

In many applications:

Distribution of a random variable X is unknown or too complicated
to compute

Only need some parameter θ that characterizes the distribution

Goal: Obtain a good approximation of parameter θ based only on
observations of X.

Estimator

An estimator Θ̂ is a function of the data {Xi} that approximates θ, but
is not an explicit function of θ.
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Judging parameter estimators

How do we judge the quality of an estimator?

Consistency

An estimator Θ̂n computed from n samples is consistent if

lim
n→∞

P
[
|Θ̂n − θ| > ε

]
= 0 (1)

for any positive tolerance ε > 0.

Consistency means “we can guarantee arbitrarily accurate estimates if we
use an arbitrarily large amount of data”
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Judging parameter estimators

What we really want:

Confidence bound

An estimator Θ̂n is ε-accurate with 1− δ confidence if

P
[
|Θ̂n − θ| > ε

]
≤ δ (2)

This is like soft consistency w/ finite data

Consistency allows us to take ε and δ as small as we like
(so long as we can pay for it with infinite data n→∞)

Quantifying n
Can be done exactly in certain special cases

e.g. estimating the mean of a Gaussian

Can be done conservatively using concentration inequalities in more
general cases

e.g. estimating the mean of any distribution w/ finite variance
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Judging parameter estimators

Confidence interval

Consider an estimator Θ̂n. Fix the number of samples n and fix a failure
probability δ. The 1− δ confidence interval is the smallest accuracy
tolerance ε such that

P
[
|Θ̂n − θ| > ε

]
≤ δ (3)

i.e. the estimator Θ̂n is ε-accurate with 1− δ confidence.

Basically the same as the confidence criterion where we fixed ε and
sought n, but here we fix n and seek ε
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Judging parameter estimators

Many classical
results use two
proxies for the ε-δ
criterion:

Bias

“systematic
errors”
“location”

Variance

“random
errors”
“spread”

Bias

The bias of an estimator Θ̂ is

|E[Θ̂]− θ|. (4)

The estimator is unbiased if

E[Θ̂] = θ. (5)

Variance

The variance of an estimator Θ̂ is

E[(Θ̂− θ)2]. (6)

The estimator is minimum variance if

Θ̂ = argmin
Θ

E[(Θ− θ)2]. (7)

Ben Gravell Parameter Estimation 8/31



Judging parameter estimators

Sometimes bias can be eliminated without affecting the variance

We will see an example of such a correction

Sometimes bias can only be reduced at the expense of higher variance

In machine learning this is a well-studied phenomenon called the
bias-variance tradeoff
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Sample average estimator

Sample average estimator of a RV

The sample average estimator of a random variable X given N
observations {Xi}Ni=1 is

µ̂X(n) :=
1

N

N∑
i=1

Xi

Sample average estimator of a function of a RV

The sample average estimator of a function g of a random variable X
given N observations {Xi}Ni=1 is

µ̂g(X)(n) :=
1

N

N∑
i=1

g(Xi)
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Properties of the sample average: bias

It’s easy to show that the sample average is unbiased:

E [µ̂X(n)] = E

[
1

n

n∑
i=1

Xi

]
(def. of µ̂X(n))

=
1

n

n∑
i=1

E [Xi] (linearity of E[·])

=
1

n

n∑
i=1

µX (def. of µX)

=
1

n
· n · µX (8)

= µX (9)
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Properties of the sample average: variance

The variance of the sample average is not much harder to find:

σ2
µ̂(n) := E

[
(µ̂X(n)− E [µ̂X(n)])2

]
(def. of σ2

µ̂(n))

= E
[
(µ̂X(n)− µX)2

]
(since µ̂ unbiased)

= E

( 1

n

n∑
i=1

(Xi − µX)

)2
 (def. of µ̂)

= E

[
1

n2

n∑
i=1

(Xi − µX)2

]
+ E

 1

n2

n∑
i=1

n∑
j 6=i

(Xi − µX) (Xj − µX)


(expand squared sum)

=
1

n2

n∑
i=1

E
[
(Xi − µX)2

]
+

1

n2

n∑
i=1

n∑
i 6=j

E [(Xi − µX) (Xj − µX)]

(linearity of E[·])

=
1

n2

n∑
i=1

σ2
X +

1

n2

n∑
i=1

n∑
i6=j

0 (def. of σ2
X , uncorrelation of Xi)

= σ2
X/n (10)
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Properties of the sample average: confidence

We can get a confidence bound by using the Chebyshev inequality:

P [|µ̂X(n)− µX | ≥ ε] ≤
σ2
µ̂(n)

ε2
=

1

n
· σ

2
X

ε2
(11)

Taking n→∞ reveals that the sample average is consistent:

lim
n→∞

P [|µ̂X(n)− µX | ≥ ε] = lim
n→∞

1

n
· σ

2
X

ε2
= 0 (12)

Remark: If we knew the form of the distribution e.g. Gaussian we could
get an exact confidence bound using the standard normal CDF.

Remark: This confidence bound involves the true variance σ2
X , which is

typically unknown. If X is Gaussian and σ2
X is replaced by a sample

variance estimate, an exact confidence bound can still be obtained using
the student T-distribution CDF - see Ch. 6.3 of [1].
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Sample variance

So far we estimated the mean - what about estimating the variance?

If we knew the true mean µ we could create the variance estimator

σ̂2
X(n) =

1

n

n∑
i=0

(Xi − µ)2 (13)

But of course we don’t know the true mean µ!

Natural idea: just use the sample mean in place of the true mean:

σ̂2
X(n) =

1

n

n∑
i=0

(Xi − µ̂)2 (14)

But there is an issue with this...
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Homework: Sample variance

Homework P4-1
Compute the expectation of the sample variance estimator

σ̂2
X(n) =

1

n

n∑
i=0

(Xi − µ̂X(n))2 (15)

where

µ̂X(n) =
1

n

n∑
i=0

Xi (16)

1 Is this sample variance estimator σ̂2
X(n) biased?

2 If so, how much is the bias?

3 How does the bias change with the number of samples n?

4 What correction needs to be made to σ̂2
X(n) in order to make the

estimator unbiased?
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Maximum likelihood estimation

Maximum likelihood estimation provides a principled way to design
estimators based on optimization.

Likelihood

The likelihood function L(θ) of the random variables {Xi}ni=1 for
outcome {xi}ni=1 under parameter θ is the parametric joint pdf

L(θ) = f{Xi}ni=1
({xi}ni=1; θ). (17)

As a special case, if {Xi}ni=1 are i.i.d. random variables then

L(θ) =

n∏
i=1

fX(xi; θ) (18)
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Maximum likelihood estimation

Maximum likelihood estimate

The maximum likelihood estimate for outcome {xi}ni=1 is the
parameter θ∗({xi}ni=1) that maximizes the likelihood, i.e.

θ∗({xi}ni=1) = argmax
θ

L(θ) (19)

The maximum likelihood estimator is the random variable

θ̂ = θ∗({Xi}ni=1) (20)
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MLE: mean of a Gaussian

We start by assuming the form of the distribution is Gaussian with
variance σ2. We are estimating the mean, so the parameter is θ = µ

The likelihood is

L(µ) =

n∏
i=1

1√
2πσ2

exp

(
−1

2

(xi − µ)2

σ2

)
(21)

=

(
1√

2πσ2

)n
exp

(
n∑
i=1

−1

2

(xi − µ)2

σ2

)
(22)

Since the log function is monotonic increasing, the argmax of L(µ) is the
same as the argmax of logL(µ). The log is easier to work with.

logL(µ) = −n
2

log(2πσ2)− 1

2σ2

n∑
i=1

(xi − µ)2 (23)
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MLE for mean of a Gaussian

To maximize the log likelihood we find the stationary point

0 =
∂ logL(µ)

∂µ

∣∣∣∣
µ∗

=
1

σ2

n∑
i=1

(xi − µ∗) (24)

which implies the MLE is

µ̂ =
1

n

n∑
i=1

Xi (25)

which happens to be the sample mean.
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Homework: MLE for variance of a Gaussian

Homework P4-2: Derive the expression for the maximum likelihood
estimator of the mean and variance of a Gaussian. Is the MLE variance
biased?
Hint: Use the log-likelihood

logL(µ, σ) = −n
2

log(2π)− n log(σ)− 1

2σ2

n∑
i=1

(xi − µ)2 (26)
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Least-squares estimation

Suppose we wish to estimate a vector parameter which is exposed
through the linear observation model

Y = Hθ +N (27)

Y is an observation vector

H is a known constant observation matrix

θ is an unknown constant parameter vector

N is a random observation noise vector

The observation Y is directly measured, but the noise N is not.
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Least-squares estimation

Define the residual

E = Y −Hθ (28)

which measures the error between the observation and its expected value.

A natural idea is to choose a parameter estimate that minimizes an
objective function v(θ) which increases with the size of the residual.

θ̂ = argmin
θ

v(θ) (29)

In particular, choose v(θ) as the squared norm of the residual:

v(θ) = ‖E‖2 = (Y −Hθ)ᵀ(Y −Hθ) (30)
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Least-squares estimation

Next we need some basic facts from optimization and matrix calculus.

Fact 1: The minimum of a continuous function f(θ) can only occur at a
stationary point where the gradient vanishes

0 =
∂f(θ)

∂θ
(31)

Fact 2: The derivative of an affine form is

d

dx
aᵀx = a (32)

and the derivative of a quadratic form is

d

dx
xᵀQx = 2Qx (33)
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Least-squares estimation

Since v(θ) is a quadratic form, we can compute the minimizer in
closed-form by finding the stationary point where the gradient of the
objective vanishes:

0 =
∂v(θ)

∂θ

∣∣∣∣
θ̂

= 2(HᵀH)θ̂ − 2HᵀY (34)

Rearranging yields the so-called normal equation

(HᵀH)θ̂ = HᵀY (35)

If HᵀH is invertible, we obtain the least-squares estimate (LSE)

θ̂ = (HᵀH)−1HᵀY (36)

Remark: If N is a white Gaussian noise, i.e. N ∼ N (0, I), then it can be
shown that the LSE is an unbiased, minimum variance, and maximum
likelihood estimator.
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Homework: Least-squares estimation

Homework P4-3: We are given the following data:6.2
7.8
2.2

 =

3
4
1

 θ +

n1

n2

n3

 (37)

where ni are random variables. Find a least-squares estimate for θ.
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Asymptotics
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Asymptotics

In this section we see major results from classical statistics

Claims are asymptotic; they only hold as the amount of data →∞

Claims are all about convergence of some kind

Contrast with finite-sample results c.f. [2]
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Weak law of large numbers (WLLN)

Weak law of large numbers

Let Xi be an infinite sequence of i.i.d. random variables with a finite,
common true mean µ and variance σ2. Consider the sample mean

µ̂(n) =
1

n

n∑
i=1

Xi (38)

Then for any fixed positive tolerance ε > 0 we have

lim
n→∞

P [|µ̂(n)− µ| < ε] = 1 (39)

i.e. the sample mean converges in probability to the true mean.

Proof: We already proved that the sample mean is consistent, which is
the same thing as the WLLN.
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Strong law of large numbers (SLLN)

Strong law of large numbers

Let Xi be an infinite sequence of i.i.d. random variables with a finite,
common true mean µ and variance σ2. Consider the sample mean

µ̂(n) =
1

n

n∑
i=1

Xi (40)

Then we have

P
[

lim
n→∞

µ̂(n) = µ
]

= 1 (41)

i.e. the sample mean converges almost surely to the true mean.

Proof: More involved than the WLLN. Also SLLN implies WLLN.

Notice the difference between weak and strong laws:

1 WLLN: Sequence of success probabilities approaches one

2 SLLN: Sequence of sample means approaches the true mean
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Central limit theorem

Central limit theorem

Let Xi be an infinite sequence of independent random variables with
cdf’s FXi , finite means µi and finite variances σ2

i .

Define the variance sum s2
n and normalized random variable Zn

s2
n =

n∑
i=1

σ2
i , Zn =

n∑
i=1

(Xi − µi)/sn (42)

Suppose there exists ε > 0 and for all n sufficiently large that

σi < εsn, i = 1, . . . , n (43)

Then

lim
n→∞

FZn
(z) = Φ(z) (44)

i.e. Zn converges in distribution to a standard normal.
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Homework: Central limit theorem

Homework P4-4: Let {Xi}ni=1 be a sequence of n i.i.d. random
variables. Compute the approximate probability

P[a ≤ S ≤ b] (45)

of the sum

S(n) =

n∑
i=1

Xi (46)

using the central limit theorem.
For concreteness, assume the Xi are uniform random variables on the
unit interval [0, 1], n = 100, a = 45, and b = 52.5.
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Information theory

Information theory concerns quantifying the amount of information
present in signals

Originally developed for sending and receiving messages over
communication channels

Deals primarily with discrete random variables

Applications

Machine learning e.g. classify images

Reinforcement learning e.g. teach robots how to balance

c.f. Ch. 1-3 of Mackay’s “Information Theory, Inference, and Learning
Algorithms” [1]

c.f. Ch. 3 of Goodfellow’s “Deep Learning” [2]
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Information

Intuitively, we want a quantity that measures

The amount of information communicated by an outcome

How surprising an outcome is

Our definition of “information” or “surprise” should satisfy three axioms:

1 Certain events yield zero information

They always happen, so they are not surprising

2 Less probable events yield more information

They happen less, so they are more surprising

3 The total information of independent events is the sum of the
information of each individual event

Their chances of happening are unrelated, so knowing one outcome
has no effect on how surprising the other outcome is
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Information

Information

The (Shannon) information of measuring random variable X with pmf
PX as outcome x is the quantity

IX(x) = − logb(PX(x)) (1)

The log base b is an arbitrary choice which has the effect of fixing the
units of information. Common choices:

b = 2, “bits”

b = e, “nats”

b = 10, “dits”

Information is a description of a distribution like the pmf or cdf.

Sometimes the random variable I(X) = IX(X) is also called the
information.
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Entropy

Entropy

The entropy of random variable X is the expected information of X

H(X) = EX [I(X)] (2)

=
∑
i

PX(xi)IX(xi) (3)

= −
∑
i

P (xi) log(PX(xi)) (4)

Entropy measures the amount of randomness in X.

Entropy is a summary statistic like the mean or variance.
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Example: Entropy of a coin flip

Let X be a Bernoulli random variable with success probability p

Let’s compute the entropy of X as a function of the probability p

H(X) = −
∑
i

P (xi) log(PX(xi)) (5)

= −p log(p)− (1− p) log(1− p) (6)
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Example: Entropy of a coin flip

Exercise: Compute p which maximize and minimize entropy.

Solution:

Max entropy when p = 1/2
Most random, heads and tails equally likely

Min entropy when p = 0 or p = 1
Least random, heads or tails is certain

0.0 0.2 0.4 0.6 0.8 1.0
p

0.00

0.25

0.50

0.75

1.00

En
tro

py

Figure 1: Entropy vs. parameter p for a Bernoulli random variable.
See entropy bernoulli.py
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Joint entropy

Joint entropy

The joint entropy between two random variables X and Y with joint
pmf PXY is

H(X,Y ) = −
∑
i

∑
j

PXY (xi, yi) log(PXY (xi, yi)) (7)

Joint entropy measures the amount of randomness in X and Y .

Special case:
X and Y independent if and only if the joint entropy is additive

H(X,Y ) = H(X) +H(Y ) (8)
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Mutual information

Mutual information

The mutual information between two random variables X and Y is

I(X,Y ) = H(X) +H(Y )−H(X,Y ) (9)

=
∑
i

∑
j

PXY (xi, yi) log

(
PXY (xi, yi)

PX(xi)PY (yi)

)
(10)

Mutual information measures the average reduction in uncertainty about
X that results from learning the value of Y .

Special case: I(X,X) = H(X), so entropy can be thought of as
“self mutual information”
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Cross-entropy

Cross-entropy

The cross-entropy from random variable Y to X is the expected
information of Y with respect to X

H(X||Y ) = EX [I(Y )] (11)

=
∑
i

PX(xi)IY (xi) (12)

= −
∑
i

PX(xi) log(PY (xi)) (13)

Cross-entropy measures the amount of randomness in Y , under the
fictitious assumption that Y has the distribution of X for the purpose of
computing expectation.

Special case: H(X||X) = H(X), so entropy can be thought of as
“self cross-entropy”
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Relative entropy

Relative entropy / Kullback-Leibler divergence

The relative entropy or Kullback–Leibler (KL) divergence from
random variable Y to X is

DKL(X||Y ) = H(X||Y )−H(X) (14)

=
∑
i

PX(xi) log

(
PX(xi)

PY (xi)

)
(15)

KL divergence measures the difference between two distributions.

KL divergence is not a distance metric because

1 It is not symmetric

2 The triangle inequality fails

See kl divergence.py
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Wasserstein metric

Wasserstein metric (“analytic” definition)

The pth Wasserstein metric between two pdfs fX and fY is

Wp(fX , fY ) = inf
π∈Π(fX ,fY )

(∫
Rn×Rn

‖x− y‖pdΠ(x, y)

)1/p

(16)

where Π(fX , fY ) is the space of joint pdfs with marginals fX and fY .

There are ∞ different joint pdfs with marginals fX and fY !

The joint pdf π defines a transport map between fX and fY .

π is a plan for moving the mass from fX to fY (and vice versa)
Finding the infimal π is a special case of the general optimal
transport problem c.f. [3]
In many cases, this ∞-dim infimization problem can be solved
analytically or by reformulating as a finite-dim optimization program
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Wasserstein metric

Wasserstein metric (“probabilistic” definition) [4]

The pth Wasserstein metric can be expressed as

Wp(fX , fY ) = inf
X∼fX , Y∼fY

(EXY [‖X − Y ‖p])1/p (17)

More facts:

The two pdfs fX and fY need not both be continuous or discrete

p = 1 and p = 2 are the most common choices

Comparison with KL divergence:

Like the KL divergence, the Wasserstein metric measures the
difference between two distributions

Unlike the KL divergence, the Wasserstein metric is a valid
distance metric

Formal analysis using generic results for distance metrics is easier
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Wasserstein metric

Special case: pth Wasserstein metric of two Dirac deltas
fX(x) = δ(x− a) and fY (y) = δ(y − b)

Wp(fX , fY ) = ‖a− b‖ (18)

Special case: 2nd Wasserstein metric of two Gaussians
fX = N (µX ,ΣX) and fY = N (µY ,ΣY )

W2(fX , fY ) =

√
‖µX − µY ‖2 + Tr

[
ΣX + ΣY − 2

(
Σ

1
2

Y ΣXΣ
1
2

Y

) 1
2

]
(19)
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Wasserstein metric

For the interested reader:

1 “Statistical aspects of Wasserstein distances” [4]

https://arxiv.org/abs/1806.05500

Contains a nice introduction on the Wasserstein metric.

2 “Data-Driven Distributionally Robust Optimization Using the
Wasserstein Metric: Performance Guarantees and Tractable
Reformulations” [5]

https://arxiv.org/abs/1505.05116

Quickly becoming a classic.
Details how to use the Wasserstein metric to solve optimization
problems involving random problem data with unknown distribution
while being robust to the worst-case distribution.
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